Math 117 Homework No. 2

1. (a) Suppose that the sequence \(\{a_n\} \) converges to 0, and that the sequence \(\{b_n\} \) is bounded.
Prove carefully that the sequence \(\{a_n b_n\} \) converges.

(b) Is (a) true if \(\{a_n\} \) converges to 1? In other words: Suppose \(\{a_n\} \) converges to 1 and the sequence \(\{b_n\} \) is bounded. Prove or disprove that \(\{a_n b_n\} \) converges.

2. (a) Prove carefully that if the sequence \(\{a_n\} \) is convergent with limit \(A \), and \(a_n \geq 0 \) for all \(n \), then \(A \geq 0 \).

(b) Give an example which shows that if in (a), we change the hypothesis to \(a_n > 0 \) for all \(n \), this does not imply \(A > 0 \).

(c) Using the result of part (a), show that if the sequence \(\{a_n\} \) is convergent with limit \(A \) and \(\lambda \leq a_n \leq \mu \) for all \(n \), then \(\lambda \leq A \leq \mu \).

3. (a) Suppose that \(\{a_n\} \) converges with limit \(A \). Fix some integer \(p > 1 \). Prove carefully that the sequence \(\{a_{p,n}\} \) (in other words the sequence formed by taking every \(p \)-th term of the original sequence) converges with limit \(A \).

(b) Is the converse of (a) true? In other words: Suppose \(\{a_n\} \) is a sequence with the property that for every fixed integer \(p > 1 \), the sequence \(\{a_{p,n}\} \) converges. Prove or disprove that \(\{a_n\} \) converges.