## Math 108A Homework No. 5

1. Suppose that $V$ is a vector space and $S, T \in \mathcal{L}(V, V)$ satisfy $\operatorname{range}(S) \subset \operatorname{null}(T)$. Prove that STST is the zero map.
2. (a) Give an example of a linear map $T: \mathbf{R}^{4} \longrightarrow \mathbf{R}^{4}$ with $\operatorname{range}(T)=\operatorname{null}(T)$. (b) Prove or disprove: There is no such map $T: \mathbf{R}^{5} \longrightarrow \mathbf{R}^{5}$.
3. (a) Suppose $V$ and $W$ are both finite-dimensional. Prove that there exists an injective linear map from $V$ to $W$ if and only if $\operatorname{dim} V \leq \operatorname{dim} W$.
(b) Suppose $V$ and $W$ are both finite-dimensional. Prove that there exists an surjective linear map from $V$ to $W$ if and only if $\operatorname{dim} V \geq \operatorname{dim} W$.
4. Suppose that $U$ and $V$ are finite dimensional vector spaces and $T \in \mathcal{L}(U, V)$ and $S \in \mathcal{L}(V, W)$. Prove

$$
\operatorname{dim}(\operatorname{null}(S T)) \leq \operatorname{dim}(\operatorname{null}(S))+\operatorname{dim}(\operatorname{null}(T))
$$

