Math 108A Homework No. 4

1. Prove or give a counter-example: If $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}$ is a basis of V and $U \leq V$ such that $\mathbf{v}_{1}, \mathbf{v}_{2}$ are both in U and \mathbf{v}_{3} and \mathbf{v}_{4} and both not in U, then $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is a basis of U.
2. Suppose that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots \ldots, \mathbf{v}_{m}\right\}$ are linearly independent and $\mathbf{w} \in V$. Prove that

$$
\operatorname{dim}\left(\operatorname{span}\left(\mathbf{v}_{1}+\mathbf{w}, \mathbf{v}_{2}+\mathbf{w}, \ldots \ldots . \mathbf{v}_{m}+\mathbf{w}\right)\right) \geq m-1
$$

3. Suppose that $U_{1}, \ldots . ., U_{k}$ are subspaces of V. Prove that

$$
\operatorname{dim}\left(U_{1}+U_{2}+\ldots+U_{k}\right) \leq \operatorname{dim}\left(U_{1}\right)+\operatorname{dim}\left(U_{2}\right)+\ldots .+\operatorname{dim}\left(U_{k}\right)
$$

4. Find all values of λ so that the vectors $(\lambda, 1,1),(1, \lambda, 1),(1,1, \lambda)$ are linearly dependent.
