Math 108A Homework No. 3

1. Prove carefully that any non-empty subset of a linearly independent set of vectors is itself linearly independent.
2. (i) Prove carefully that if subsets S_{1} and S_{2} satisfy $S_{1} \subset S_{2}$, then

$$
\operatorname{span}\left(S_{1}\right) \subset \operatorname{span}\left(S_{2}\right)
$$

(ii) Prove carefully that if S_{1} and S_{2} are subsets of V then

$$
\operatorname{span}\left(S_{1} \cup S_{2}\right)=\operatorname{span}\left(S_{1}\right)+\operatorname{span}\left(S_{2}\right)
$$

3. Show that the union of two subspaces is a subspace if and only if one contains the other.
4. Suppose that $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots \ldots, \mathbf{v}_{k}$ are linearly independent and $\mathbf{w} \in V$. Prove that $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots \ldots, \mathbf{v}_{k}, \mathbf{w}$ are linearly independent if and only if $\mathbf{w} \notin \operatorname{span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots \ldots, \mathbf{v}_{k}\right)$
