Math 108A Homework No. 2

1.Prove carefully that if $U, V \leq W$, then $U + V \leq W$.

Is this still true if U is only a nonempty subset of W?

2. (a) Give an example of a subset U of \mathbf{R}^2 which is closed under addition and has additive inverses, but is not a subspace of \mathbf{R}^2 .

(b) Give an example of a subset U of \mathbf{R}^2 which is closed under scalar multiplication but is not a subspace of \mathbf{R}^2 .

3. Prove or disprove:
(a) U ≤ V then U + U = U.
(b) A, B, C all subspaces of V, then A ⊕ B = A ⊕ C implies B = C.

4. Prove or disprove:

(a) If the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are linearly independent and $\lambda_1, \dots, \lambda_k$ is a list of nonzero scalars, then the vectors $\lambda_1 \mathbf{v}_1, \lambda_2 \mathbf{v}_2, \dots, \lambda_k \mathbf{v}_k$ are linearly independent. (b) If $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ and $\{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_k\}$ are both linearly independent lists of vectors, then $\{\mathbf{v}_1 + \mathbf{w}_1, \mathbf{v}_2 + \mathbf{w}_2, \dots, \mathbf{v}_k + \mathbf{w}_k\}$ is a linearly independent list.