Math 108A Homework No. 2

1.Prove carefully that if $U, V \leq W$, then $U+V \leq W$.

Is this still true if U is only a nonempty subset of W ?
2. (a) Give an example of a subset U of \mathbf{R}^{2} which is closed under addition and has additive inverses, but is not a subspace of \mathbf{R}^{2}.
(b) Give an example of a subset U of \mathbf{R}^{2} which is closed under scalar multiplication but is not a subspace of \mathbf{R}^{2}.
3. Prove or disprove:
(a) $U \leq V$ then $U+U=U$.
(b) A, B, C all subspaces of V, then $A \oplus B=A \oplus C$ implies $B=C$.
4. Prove or disprove:
(a) If the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots \ldots, \mathbf{v}_{k}$ are linearly independent and $\lambda_{1}, \ldots . . \lambda_{k}$ is a list of nonzero scalars, then the vectors $\lambda_{1} \mathbf{v}_{1}, \lambda_{2} \mathbf{v}_{2}, \ldots \ldots, \lambda_{k} \mathbf{v}_{k}$ are linearly independent.
(b) If $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots ., . \mathbf{v}_{k}\right\}$ and $\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots . ., \mathbf{w}_{k}\right\}$ are both linearly independent lists of vectors, then $\left\{\mathbf{v}_{1}+\mathbf{w}_{1}, \mathbf{v}_{2}+\mathbf{w}_{2}, \ldots \ldots, . \mathbf{v}_{k}+\mathbf{w}_{k}\right\}$ is a linearly independent list.

