Math 164: Homework 7.5

(Not to be turned in: extra practice for midterm)
Questions followed by * are to be turned in. Questions without * are extra practice. At least one extra practice question will appear on each exam.

Question 1 (Textbook Problem 3.2.1 (i))

Compute a basis matrix for the null space of the matrix A and express the x as $x=p+q$ where p is in the null space of A and q is in the range of A^{T}.

$$
A=\left(\begin{array}{llll}
1 & 1 & 1 & 1
\end{array}\right), \quad x=(-2,4,5,-2)^{T} .
$$

Question 2 (Similar to Textbook Problem 3.2.1 (ii))

Compute a basis matrix for the null space of the matrix A and express the x as $x=p+q$ where p is in the null space of A and q is in the range of A^{T}.

$$
A=\left(\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
-1 & 1 & 1 & -1
\end{array}\right), \quad x=(3,4,0,4)^{T}
$$

Question 3 (Textbook Problem 11.2.1(i))

Use the first and second derivatives to find the local maxima and local minima of

$$
f(x)=15+12 x-25 x^{2}+2 x^{3} .
$$

Question 4 (Similar to Textbook Problem 11.2.3)

Consider the function

$$
f\left(x_{1}, x_{2}\right)=8 x_{1}^{2}+4 x_{1} x_{2}+12 x_{2}^{2}-24 x_{1}+40 x_{2}-28 .
$$

Find all stationary points of this function and determine whether they are local minimizers and maximizers. Does this function have a global minimizer or a global maximizer? (Hint: when do you know that a local minimizer is a global minimizer?)

Question 5 (Textbook Problem 11.2.9)
Let

$$
f(x)=2 x_{1}^{2}+x_{2}^{2}-2 x_{1} x_{2}+2 x_{1}^{3}+x_{1}^{4} .
$$

Determine the minimizers/maximizers of f and indicate what kind of minima or maxima (local, global, strict) they are.

Question 6 (Similar to Textbook Problem 11.2.10)

Let

$$
f(x)=c x_{1}^{2}+2 x_{2}^{2}-4 x_{1} x_{2}-4 x_{2}+2,
$$

where $c \in \mathbb{R}$.
(a) Determine the stationary points of f for each value of c.
(b) For what values of c can f have a minimizer?

