Math 164: Homework 7

Due Friday, May 22nd
Questions followed by * are to be turned in. Questions without * are extra practice. At least one extra practice question will appear on each exam.

Question 1 (Textbook Problem 6.2.8)

Solve the following linear program using duality theory.

$$
\begin{aligned}
\operatorname{minimize} & z=x_{1}+2 x_{2}+\cdots+n x_{n} \\
\text { subject to } & x_{1} \geq 1 \\
& x_{1}+x_{2} \geq 2 \\
& \cdots \\
& x_{1}+x_{2}+\cdots+x_{n} \geq n \\
& x_{1}, x_{2}, \ldots, x_{n} \geq 0
\end{aligned}
$$

(Hint: show that $x_{1}=n$ and $x_{2}, \ldots, x_{n}=0$ is feasible for the primal and find a feasible solution for the dual for which the values of the objective functions are equal. Then explain why this ensures you have found the optimal solution.)

Question 2* (Textbook Problem 6.2.16)

Consider the linear program

$$
\begin{gathered}
\operatorname{minimize} z=2 x_{1}+9 x_{2}+3 x_{3}, \\
\text { subject to }-3 x_{1}+2 x_{2}+x_{3} \geq 1, \\
x_{1}+4 x_{2}-x_{3} \geq 1 \\
x_{1}, x_{2}, x_{3} \geq 0
\end{gathered}
$$

(i) Find the dual to this problem and solve it graphically.
(ii) Use complementary slackness to obtain the solution to the primal.

Question 3*

Recall that a symmetric $n \times n$ matrix A is positive semi-definite if $x^{T} A x \geq 0$ for all $x \in \mathbb{R}^{n}$. Show that a matrix A is positive semi-definite if and only if all eigenvalues of A are nonnegative. (Hint: Use the Spectral Theorem from linear algebra. This theorem tells you that if a matrix is symmetric, then there exists an orthonormal basis of eigenvectors.)

Question 4* (Similar to Textbook Problem 2.3.20)

Determine if the following functions are convex, concave, both, or neither.
(a) $f\left(x_{1}, x_{2}\right)=2 x_{1}-4 x_{2}$
(b) $f\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}$
(c) $f\left(x_{1}, x_{2}\right)=2 x_{1}^{2}-2 x_{1} x_{2}+5 x_{2}^{2}+31 x_{1}-70 x_{2}$

Consider the function

$$
f\left(x_{1}, x_{2}\right)=2 x_{1}^{3}+2 x_{1} x_{2}^{2}+x_{1}+2 x_{2}^{3} .
$$

(a) Find the first three terms of the Taylor series for f centered at $x_{0}=(2,1)$.
(b) Evaluate this Taylor series for $p=(-0.1,0.1)^{T}$ and compare with the value of $f\left(x_{0}+p\right)$. Would we expect these values to become more similar or more different if we took $p=(-1,1)^{T}$ instead?

Question 6 (Textbook Problem 2.6.4)

Find the first three terms of the Taylor series for

$$
f\left(x_{1}, x_{2}\right)=\sqrt{x_{1}^{2}+x_{2}^{2}}
$$

about the point $x_{0}=(3,4)^{T}$.

Question 7* (Textbook Problem 2.6.6)

Prove that if $p^{T} \nabla f\left(x_{k}\right)<0$, then $f\left(x_{k}+\epsilon p\right)<f\left(x_{k}\right)$ for $\epsilon>0$ sufficiently small. (Hint: Expand $f\left(x_{k}+\epsilon p\right)$ as a Taylor series about the point x_{k} and look at $f\left(x_{k}+\epsilon p\right)-f\left(x_{k}\right)$. Pretend that $p^{T} D^{2}(\xi) p$ is a constant independent of ϵ and use the fact from class that $C_{1} \epsilon^{2}<C_{2} \epsilon$ for ϵ sufficiently small.)
(While is not technically true that $p^{T} D^{2}(\xi) p$ is a constant independent of ϵ, those of you who took Math 131 A could probably show that $p^{T} D^{2}(\xi) p$ is bounded above by a constant M, which is all you actually need for this problem.)

Question 8* (Textbook Problem 3.2.2)

Suppose A is an $m \times n$ matrix with full row rank. We say that a matrix Z of dimension $n \times r, r \geq n-m$, and rank $n-m$ is a null-space matrix for A if it satisfies $A Z=0$. If $r=n-m$ (i.e. the columns of Z are linearly independent), then Z is a basis matrix for the null space of A.

Let Z be an $n \times r$ null-space matrix for the matrix A. If Y is any invertible $r \times r$ matrix, prove that $\hat{Z}=Z Y$ is also a null-space matrix for A. Clearly explain how you use that Y is invertible.

