Math 164: Homework 4.5

Not to be turned in - extra practice for Midterm 1

Question 1 (Similar to Textbook Problem 4.4.5)

Let $\left\{d_{1}, \ldots, d_{k}\right\}$ be directions of unboundedness for the constraints $A x=b, x \geq 0$. Prove that

$$
d=\sum_{i=1}^{k} \alpha_{i} d_{i} \text { with } \alpha_{i} \geq 0
$$

is also a direction of unboundedness for these constraints.

Question 2 (Similar to Textbook Problem 4.4.6)

Consider the linear program

$$
\begin{gathered}
\operatorname{minimize} z=2 x_{1}-3 x_{2}, \\
\text { subject to } 6 x_{1}+8 x_{2} \leq 24, \\
\\
x_{2}-2 x_{1} \leq 2, \\
\\
x_{1}, x_{2} \geq 0 .
\end{gathered}
$$

Represent the point $x=(1,1)^{T}$ as a convex combination of extreme points, plus, if applicable, a direction of unboundedness. Find two different representations.

Question 3 (Similar to Textbook Problem 4.4.8)

Suppose that a linear program with bounded feasible region has l optimal extreme points v_{1}, \ldots, v_{l}. Prove that a point is optimal for the linear program if and only if it can be expressed as a convex combination of these optimal extreme points.

Question 4 (Textbook Problem 5.2.7)

Prove that the set of optimal solutions to a linear program is a convex set.

Question 5

Consider the linear program:

$$
\begin{aligned}
\operatorname{minimize} & x_{1}-x_{2}, \\
\text { subject to } & x_{1}+x_{2} \leq 5, \\
& x_{1}+2 x_{2} \leq 6, \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

(a) Put the linear program into standard form by introducing slack variables $\left\{x_{3}, x_{4}\right\}$.
(b) Show that $[0,3,2,0]^{T}$ is a basic feasible solution. What is the corresponding set of basic variables?
(c) Is $[0,3,2,0]^{T}$ the minimizer? If no, give a feasible direction which lowers the value of the objective function. If yes, show that there is no feasible direction which lowers the value of the objective function. Hint: use the characterization of feasible directions at a b.f.s. that we derived in class.
(d) Solve the linear program graphically and compare you answer with part (c).

