
Math 164: Homework 4
(Due Friday, April 24th)

Questions followed by * are to be turned in. Questions without * are extra practice. At least one extra
practice question will appear on each exam.

Question 1 (Textbook Problem 4.3.1)

Consider the system of linear constraints

2x1 + x2 ≤ 100

x1 + x2 ≤ 80

x1 ≤ 40

x1, x2 ≥ 0 .

(a) Write this system of constraints in standard form, and determine all the basic solutions (feasible and
infeasible).

(b) Determine the extreme points of the feasible region (corresponding to both the standard form of the
constraints, as well as the original version).

Question 2* (Similar to Textbook Problem 4.3.4)

Consider the problem

minimize z = −5x1 − 7x2 ,

subject to − 3x1 + 2x2 ≤ 30

− 2x1 + x2 ≤ 12

x1, x2 ≥ 0 .

(a) Draw a graph of the feasible region.

(b) Determine the extreme points of the feasible region.

(c) Determine two linearly independent directions of unboundedness.

(d) Represent the point x = (6, 12)T as a convex combination of extreme points plus, if applicable, a
direction of unboundedness.

(e) Show that this problem has no minimizer.

(f) Convert the linear program to standard form and determine the basic feasible solutions and two linearly
independent directions of unboundedness for this version of the problem. Verify that the directions of
unboundedness satisfy Ad = 0 and d ≥ 0.

Question 3* (Textbook Problem 4.3.5)

Consider a linear program with the constraints in standard form

Ax = b and x ≥ 0 .

Prove that if d 6= 0 satisfies
Ad = 0 and d ≥ 0 ,

then d is a direction of unboundedness.
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Question 4* (Textbook Problem 4.3.9)

Consider a linear program with the following constraints:

4x1 + 7x2 + 2x3 − 3x4 + x5 + 4x6 = 4

−x1 − 2x2 + x3 + x4 − x6 = −1

x2 − 3x3 − x4 − x5 + 2x6 = 0

xi ≥ 0 , i = 1, . . . , 6 .

Determine every basis that corresponds to the basic feasible solution (0, 1, 0, 1, 0, 0)T . (The book uses the
word basis to refer to the set of basic variables—see page 107.)

Question 5 (Textbook Problem 4.1.1)

Let x be a feasible point for the constraints Ax = b, x ≥ 0 that is not an extreme point. Prove that there
exists a vector p 6= 0 satisfying

Ap = 0 , pi = 0 if xi = 0 .

Question 6 (Textbook Problem 4.4.4)

Let p be a direction of unboundedness for the constraints

Ax = b , x ≥ 0 .

Prove that −p cannot be a nonzero direction of unboundedness for these constraints.

Question 7 (Similar to Textbook Problem 4.4.5)

Let {d1, . . . , dk} be directions of unboundedness for the constraints Ax = b, x ≥ 0. Prove that

d =

k∑
i=1

αidi with αi ≥ 0

is also a direction of unboundedness for these constraints.

Question 8 (Similar to Textbook Problem 4.4.6)

Consider the linear program

minimize z = 2x1 − 3x2 ,

subject to 6x1 + 8x2 ≤ 24,

x2 − 2x1 ≤ 2 ,

x1, x2 ≥ 0 .

Represent the point x = (1, 1)T as a convex combination of extreme points, plus, if applicable, a direction
of unboundedness. Find two different representations.
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Question 9*

Consider the linear program in standard form:

minimize z = cTx ,

subject to Ax = b ,

x ≥ 0 .

Suppose that for some x in the feasible region and direction of unboundedness d, the point x + d is a
minimizer. Show that we must have cTd = 0. (Hint: show that if cTd < 0, the objective function is
unbounded below and if cTd > 0, x+ d could not have been the minimizer.)

Question 10* (inspired by Prof. Yinye Ye’s online lecture notes)

In class, we discussed an algorithm by which any linear program can be put into standard form. In a
sense, the original linear program is equilvalent to the linear program written in standard form because
the manipulations we performed did not change the underlying meaning of the linear program. In general,
we will say that two linear programs are equivalent if the manipulations that you use to go from the first
LP to the second LP can be “unwrapped” or “reversed” to go back from the second to the first. In this
problem, you will prove this equivalence for a few of the manipulations we used.

(a) Suppose S ⊆ Rn. Show that x = (x1, . . . , xn)t is a solution to the first mathematical program if and
only if x is a solution to the second mathematical program.

minimize z = f(x)

subject to x ∈ S
maximize z = −f(x)

subject to x ∈ S

(b) Suppose a1, a2, . . . , an, b ∈ R and S ⊆ Rn. Show that x = (x1, . . . , xn)t is a solution to the first
mathematical program if and only if x′ = (x1, x2, . . . , xn, s) is a solution to the second mathematical
program for some s ≥ 0.

minimize z = f(x1, x2, . . . , xn)

subject to a1x1 + a2x2 + · · ·+ anxn ≥ b
(x1, x2, . . . , xn)t ∈ S

minimize z = f(x1, x2, . . . , xn)

subject to a1x1 + a2x2 + · · ·+ anxn − s = b

(x1, x2, . . . , xn)t ∈ S
s ≥ 0

(c) Suppose a1, a2, . . . , an, b ∈ R and S ⊆ Rn. Show that x = (x1, . . . , xn)t is a solution to the first
mathematical program if and only if x′ = (x1, x2, . . . , xn, s) is a solution to the second mathematical
program for some s ≥ 0.

minimize z = f(x1, x2, . . . , xn)

subject to a1x1 + a2x2 + · · ·+ anxn ≤ b
(x1, x2, . . . , xn)t ∈ S

minimize z = f(x1, x2, . . . , xn)

subject to a1x1 + a2x2 + · · ·+ anxn + s = b

(x1, x2, . . . , xn)t ∈ S
s ≥ 0

(d) Suppose S ⊆ Rn. Show that x = (x1, . . . , xn)t is a solution to the first mathematical program if and
only if x′ = (x′1, x2, . . . , xn) is a solution to the second mathematical program, where x′1 = x1 − 2.

minimize z = f(x1, x2, . . . , xn)

subject to (x1, x2, . . . , xn)t ∈ S
x1 ≥ 2

minimize z = f(x′1 + 2, x2, . . . , xn)

subject to (x′1 + 2, x2, . . . , xn)t ∈ S
x′1 ≥ 0
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