Math 164: Homework 3

Due Friday April, 17th
Questions followed by * are to be turned in. Questions without * are extra practice. At least one extra practice question will appear on each exam.

Question 1 (Similar to Textbook Problem 3.1.2)

Consider the set defined by the constraints $x_{2}-x_{1}=0, x_{1} \leq 1$, and $x_{2} \leq 1$. At each of the following points determine the set of feasible directions: $x_{a}=(0,0)^{T}, x_{b}=(1,1)^{T}, x_{c}=(0.5,0.5)^{T}$.

Question 2* (Similar to Textbook Problem 4.1.1)

Consider the problem

$$
\begin{aligned}
\operatorname{minimize} & f(x) \\
\text { subject to } & x_{1}+2 x_{2}+4 x_{3}=8, \\
& x_{1} \geq 0, x_{2} \geq 0, x_{3} \geq 0 .
\end{aligned}
$$

(a) Find the set of all feasible directions at points $x_{a}=(0,0,2)^{T}, x_{b}=(2,1,1)^{T}, x_{c}=(6,1,0)^{T}$.
(b) Using part (a), verify that $p=(-4,0,1)^{T}$ is a feasible direction for $x_{c}=(6,1,0)^{T}$. Then find an upper bound on the step length α so that $x_{c}+\alpha p$ is a feasible point.

Question 3* (Similar to Textbook Problem 4.1.1)

Consider the linear program

$$
\begin{aligned}
\operatorname{minimize} & f(x) \\
\text { subject to } & x_{1}-x_{2} \leq 1, \\
& x_{1}+x_{2} \leq 1, \\
& x_{1} \geq 0
\end{aligned}
$$

For the following choices of $f(x)$, solve the linear program graphically, i.e. find a global minimizer for $f(x)$ or show that none exists: (a) $f(x)=-x_{1}$, (b) $f(x)=x_{2},(c) f(x)=-x_{1}-x_{2}$.
Do any of the functions have more than one global minimizer?
Question 4 (Similar to Textbook Problem 4.1.1)
Fix $a>0$. Solve the linear program graphically, i.e. find a global minimizer for $f(x)$ or show none exists.

$$
\begin{gathered}
\operatorname{minimize} f(x)=x_{1}-2 x_{2}, \\
\text { subject to } \\
x_{1}+x_{2} \leq a, \\
x_{1} \geq 0, \\
\\
x_{2} \geq 0 .
\end{gathered}
$$

Question 5 (Similar to Textbook Problem 4.1.1)

Solve the linear program graphically, i.e. find a global minimizer for $f(x)$ or show that none exists.

$$
\begin{aligned}
\operatorname{minimize} & -x_{1}+2 x_{2}, \\
\text { subject to } & 5 x_{1}+2 x_{2} \geq 10, \\
& 2 x_{1}+3 x_{2} \leq 40, \\
& x_{1} \leq 15 \\
& x_{2} \leq 15 .
\end{aligned}
$$

Question 6* (Similar to Textbook Problem 4.1.1)

Solve the linear program graphically, i.e. find a global minimizer for $f(x)$ or show that none exists.

$$
\begin{array}{cl}
\operatorname{minimize} & -x_{1}-x_{2}, \\
\text { subject to } & x_{2}-x_{1} \geq 0, \\
& x_{2}-2 x_{1} \geq 2, \\
& x_{1} \geq 0 \\
& x_{2} \geq 0 .
\end{array}
$$

Question 7* (Similar to Textbook Problem 4.1.1)

Solve the linear program graphically, i.e. find a global minimizer for $f(x)$ or show that none exists.

$$
\begin{aligned}
\operatorname{minimize} & \pi x_{1}+e x_{2}, \\
\text { subject to } & x_{1}+x_{2} \leq 6 \\
& x_{2}-x_{1} \geq 3 \\
& 2 x_{1}-x_{2} \geq 2, \\
& x_{1} \geq 0 \\
& x_{2} \geq 0
\end{aligned}
$$

no question 8 ?

Question 9* (Similar to Textbook Problem 4.2.2)

Convert the following linear program to standard form:

$$
\begin{aligned}
& \operatorname{minimize} z=x_{1}-5 x_{2}-7 x_{3} \\
& \text { subject to } 3 x_{1}-x_{2}+9 x_{3} \geq 7, \\
& 5 x_{1}+0 x_{2}-3 x_{3}=1, \\
& 7 x_{1}+5 x_{2}+5 x_{3} \leq 9 \\
& x_{1} \geq-2, \\
& x_{2}, x_{3} \text { free. }
\end{aligned}
$$

Question 10 (Similar to Textbook Problem 4.2.3)

Convert the linear program in Question 5 to standard form.

