MATH 164: HOMEWORK 3

Due Friday April, 17th

Questions followed by * are to be turned in. Questions without * are extra practice. At least one extra practice question will appear on each exam.

Question 1 (Similar to Textbook Problem 3.1.2)

Consider the set defined by the constraints $x_2 - x_1 = 0$, $x_1 \leq 1$, and $x_2 \leq 1$. At each of the following points determine the set of feasible directions: $x_a = (0,0)^T$, $x_b = (1,1)^T$, $x_c = (0.5,0.5)^T$.

Question 2* (Similar to Textbook Problem 4.1.1)

Consider the problem

minimize
$$f(x)$$
,
subject to $x_1 + 2x_2 + 4x_3 = 8$,
 $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$.

- (a) Find the set of all feasible directions at points $x_a = (0, 0, 2)^T$, $x_b = (2, 1, 1)^T$, $x_c = (6, 1, 0)^T$.
- (b) Using part (a), verify that $p = (-4, 0, 1)^T$ is a feasible direction for $x_c = (6, 1, 0)^T$. Then find an upper bound on the step length α so that $x_c + \alpha p$ is a feasible point.

Question 3^{*} (Similar to Textbook Problem 4.1.1)

Consider the linear program

minimize
$$f(x)$$
,
subject to $x_1 - x_2 \le 1$,
 $x_1 + x_2 \le 1$,
 $x_1 \ge 0$.

For the following choices of f(x), solve the linear program graphically, i.e. find a global minimizer for f(x)or show that none exists: (a) $f(x) = -x_1$, (b) $f(x) = x_2$, (c) $f(x) = -x_1 - x_2$. Do any of the functions have more than one global minimizer?

Question 4 (Similar to Textbook Problem 4.1.1)

Fix a > 0. Solve the linear program graphically, i.e. find a global minimizer for f(x) or show none exists.

minimize
$$f(x) = x_1 - 2x_2$$

subject to $x_1 + x_2 \le a$,
 $x_1 \ge 0$,
 $x_2 \ge 0$.

Solve the linear program graphically, i.e. find a global minimizer for f(x) or show that none exists.

minimize
$$-x_1 + 2x_2$$
,
subject to $5x_1 + 2x_2 \ge 10$,
 $2x_1 + 3x_2 \le 40$,
 $x_1 \le 15$,
 $x_2 \le 15$.

Question 6* (Similar to Textbook Problem 4.1.1)

Solve the linear program graphically, i.e. find a global minimizer for f(x) or show that none exists.

minimize
$$-x_1 - x_2$$
,
subject to $x_2 - x_1 \ge 0$,
 $x_2 - 2x_1 \ge 2$,
 $x_1 \ge 0$,
 $x_2 \ge 0$.

Question 7* (Similar to Textbook Problem 4.1.1)

Solve the linear program graphically, i.e. find a global minimizer for f(x) or show that none exists.

minimize
$$\pi x_1 + ex_2$$
,
subject to $x_1 + x_2 \le 6$,
 $x_2 - x_1 \ge 3$,
 $2x_1 - x_2 \ge 2$,
 $x_1 \ge 0$
 $x_2 \ge 0$.

no question 8?

Question 9* (Similar to Textbook Problem 4.2.2)

Convert the following linear program to standard form:

minimize
$$z = x_1 - 5x_2 - 7x_3$$
,
subject to $3x_1 - x_2 + 9x_3 \ge 7$,
 $5x_1 + 0x_2 - 3x_3 = 1$,
 $7x_1 + 5x_2 + 5x_3 \le 9$,
 $x_1 \ge -2$,
 x_2, x_3 free.

Question 10 (Similar to Textbook Problem 4.2.3)

Convert the linear program in Question 5 to standard form.