Math 164: Homework 2

Due Friday, April 10th
Questions followed by * are to be turned in. Questions without * are extra practice. At least one extra practice question will appear on each exam.

Question 1* (Friedburg, Linear Algebra, "The Rank of a Matrix and Matrix Inverses" and "Systems of Linear Equations")

Consider the matrix and vector

$$
A=\left(\begin{array}{ccc}
1 & 2 & 1 \\
1 & -1 & -1
\end{array}\right), \quad b=\binom{0}{1} .
$$

- What is the rank of A ? Give a basis for the row space and a basis for the column space.
- Show that A has full row rank. (An $m \times n$ matrix A has full row rank if is has rank m.) This is a quick consequence of the previous part.
- If an $m \times n$ matrix A has full row rank, then for all vectors b of length m, there exists a solution to $A x=b$. Find all solutions to $A x=b$.
- Is it possible for an $m \times n$ matrix to have full row rank if $m>n$ (i.e. if the matrix is taller than it is wide)?

Question 2* (Similar to Textbook Problem 2.3.3)

Consider a feasible region S defined by a set of linear constraints

$$
S=\{x: A x \geq b\} .
$$

(Note that we have $A x \geq b$, not $A x \leq b$.) Prove that for any $m \times n$ matrix A and any $b \in \mathbb{R}^{m}, S$ is convex.

Question 3 (Textbook Problem 2.3.4)

Prove that a function f is concave if and only if $-f$ is convex.

Question 4 (Textbook Problem 2.3.13)

Let f be a convex function on the convex set S. Prove that the set

$$
T=\{x \in S: f(x) \leq k\}
$$

is convex for all real numbers k. Draw a picture of this set in the case $f(x)=x^{2}$ and $k=1$.
Question 5* (Similar to Textbook Problem 2.3.18)
Express $(4,4)^{T}$ as a convex combination of $(0,0)^{T},(2,8)^{T}$, and $(6,2)^{T}$.

Question 6 (Textbook Problem 2.3.8)

Let f be a function on a convex set $S \subseteq \mathbb{R}^{d}$. Prove that f is convex if and only if

$$
f\left(\sum_{i=1}^{k} \alpha_{i} x_{i}\right) \leq \sum_{i=1}^{k} \alpha_{i} f\left(x_{i}\right)
$$

for all $x_{1}, \ldots, x_{k} \in S$ and $0 \leq \alpha_{i} \leq 1$ satisfying $\sum_{i=1}^{k} \alpha_{i}=1$.

Question 7 (Textbook Problem 2.3.9)

Prove the famous arithmetic-geometric mean inequality: for $x_{1}, \ldots, x_{k} \geq 0$,

$$
\left(x_{1}+\cdots+x_{k}\right) / k \geq\left(x_{1} \cdots x_{k}\right)^{1 / k} .
$$

The left hand side is the arithmetic mean (or average) of x_{1}, \ldots, x_{k}. The right hand side is the geometric mean of x_{1}, \ldots, x_{k}. If you want to impress your friends, start using the phrase "geometric mean" in casual conversation. (Hint: show $f(x)=-\log (x)$ is convex on $S=(0,+\infty)$ and apply the previous problem. You may assume that $f \in C^{2}(R ; R)$ is convex iff $f^{\prime \prime}(x) \geq 0$.)

Question 8* (Textbook Problem 2.2.7)

Let $f(x)$ be any function and let S be the set of integers. Prove that every point in S is a local minimizer of f.

Question 9* (Textbook Problem 2.3.1)

Prove that the intersection of two convex sets is also a convex set. Then cut this part: use this to prove that the intersection of a finite number of convex sets is also a convex set.

Question 10 (Textbook Problem 2.3.1)

Let $S_{1}=\left\{x: x_{1}+x_{2} \leq 1, x_{1} \geq 0\right\}$ and $S_{2}=\left\{x: x_{1}-x_{2} \geq 0, x_{1} \leq 1\right\}$, and let $S=S_{1} \cup S_{2}$. Prove that S_{1} and S_{2} are both convex sets but S is not a convex set. This shows that the union of convex sets is not necessarily convex.

