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Fig. 3. Dynamics of crystal surface evolution equation for di↵erent choices of initial data.
Near maxima, flat facets form and expand outward, while minima remain stationary.
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Fig. 4. Top row: The total variation energy decreases in time along numerical solutions,
reflecting the underlying gradient flow structure. Bottom row: The L

1 norms of the mobility M(h)
and the reciprocal of the mobility 1/M(h) are large, but remain bounded along the flow.

In Figure 4, we analyze properties of the numerical method, under the same
choices of parameters as in Figure 3. In the top row, we show the decrease in the
discrete TV norm kDhk1 in time along solutions of the equation, reflecting the gradient
flow structure of the equation. In the bottom row, we plot the L

1 norms of the mobility
M(h) and its reciprocal 1/M(h). A key assumption in our convergence result for the
PDHG method, Theorem 3.4, is that both remain bounded, uniformly in the spatial
discretization. We can see in the above simulations that, while these norms are very
large, they indeed remain bounded along the flow.

In Figure 5, we compare two di↵erent choices of mobility: equation (4.2) and a
modified mobility, replacing sgn(x) with tanh(10x). In both cases, we take ✏ = .04.
On one hand, the modified mobility has the benefit of drastically decreasing the L

1

norm of the mobility and its reciprocal: compare the plot on the right to the bottom
left plot of Figure 4. The method also requires fewer iterations to meet the stopping
criteria. On the other hand, the modified mobility allows for slightly more movement



Crystal surface evolution
• Evolution of a crystal near a fixed crystallographic plane of symmetry 

• h(x,t) = height of crystal; facets on crystal = { x: ∇ h(x,t) = 0 } 

• [Marzuola, Weare ’13]: continuum limit of kinetic Monte Carlo models 

• p=2, existence, uniqueness [Liu, Xu ’16-‘17, Xu ’18, Ambrose ’19,…] 

• p=1, numerics via microscopic SOS system [Marzuola, Weare ’13] 
                            finite difference method [Liu, Lu, Margetis, Marzuola ’17] 
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E(h) =
1
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|rh|p, p � 1
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By the Gibbs-Thomson relation [24, 25, 33, 39] (which is related to an ideal gas law
approximation), the corresponding local-equilibrium density of adatoms is formally
%s = %

0 exp[µs/(kBT )], where %
0 is a constant reference density [19,44], T is a temper-

ature, and kB is the Boltzmann constant. An application of Fick’s law then predicts
that the flux is

J = �Ds r%s = �Ds%
0re

µs/(kBT )
,

where Ds is the surface di↵usion constant [33]. In this way, we obtain the hydrody-
namic equation

@th + r · J = 0.

Normalizing all constants to be one by rescaling in space and time, we formally arrive
at the following PDE for the evolution of the crystal surface height:

@th = �e
��1h .(1.2)

A thorough derivation of (1.2) from microscopic dynamics can be found in [29].
Away from facets, this equation is consistent with the continuum limit of the

Burton-Cabrera-Frank (BCF) theory for moving steps in 2+1 dimensions [4, 33]. See
also [3] for a numerical study of 1d facet dynamics. This equation also relates to a
family of Kinetic Monte Carlo models of crystal surface relaxation, including both
the solid-on-solid (SOS) and discrete Gaussian models, in which the 1-Laplacian is
replaced by a p-Laplacian, p � 1 [12,25,34].

Note that, even in one dimension and for h(x, t) is smooth, the 1-Laplacian �1h

is a linear combination of positive and negative Dirac masses, so e
��1h is not well-

defined. Consequently, equation (1.2) must be interpreted in a generalized sense.
One avenue considered in previous work is to take a first order approximation of the
exponential in the Gibbs-Thomson relation, replacing e

x with 1 + x, which leads to
the H

�1 total variation flow studied by Giga, et. al., [13–15,22,37]

@th = �(��1h) .(1.3)

A limitation of this approach is that it treats local maxima and minima of h sym-
metrically, in contrast to the original equation (1.2), which causes local maxima to
form expanding facets, while local minima remain stationary. Ultimately, determin-
ing an appropriate notion of weak solution for equation (1.2) and proving existence
of solutions remains a challenging open problem.

In spite of these gaps in the underlying theory of the crystal surface evolution
equation, we seek to develop a computationally e�cient numerical method for accurate
simulation of its solutions, while respecting the inherent asymmetry between facet
formation at local maxima and pinning at local minima. Recent work by the middle
three authors and Margetis [29] and the fourth author and Weare [34], numerically
explored the crystal surface evolution equation, using various regularizations. On one
hand, these simulations compared well with existing microscopic models and respected
the di↵erent dynamics at local maxima and minima. On the other hand, they were
not motivated by a strong notion of convergence to the macrosopic PDE dynamics,
and due to the inherent sti↵ness of the model, were only e↵ective on coarse spatial
grids, with serious numerical convergence issues arising on fine grids, even in one
dimension.

A PROXIMAL-GRADIENT ALGORITHM FOR CRYSTAL SURFACE EVOLUTION 3

In contrast, we construct our numerical method for crystal surface evolution by
starting with the macroscopic PDE (1.2) and leveraging the formal gradient flow
structure of the equation, with respect to weighted H

�1 norms. To see this structure,
note that equation (1.2) may be rewritten in the following conservative form,

@th + r ·
✓

M(h)r@E
@h

◆
= 0,(1.4)

where E is the total variation energy (1.1) and M(h) is the exponential mobility

M(h) := e
��1h.(1.5)

For simplicity in what follows, we suppose that our underlying domain is the d-
dimensional torus Td and equation (1.4) is posed with periodic boundary conditions.
We normalize the initial data h(x, 0) = h0(x) to have mean zero,

R
h0 = 0, a property

that is then propagated along the flow (1.4).
Equations of this form (1.4) have a formal gradient flow structure with respect to

an H
�1 norm weighted by the mobility M(h), which we describe in detail in section 2.

For example, choosing the constant mobility M(h) ⌘ 1, one recovers classical H
�1

gradient flows, and in the case of the linear mobility M(h) = h + 1, one recovers
2-Wasserstein gradient flows on the space of probability measures [2, 38]. (Since h

has mean zero, h + 1 is a probability density as long as h � �1.). There has also
been significant work on equations of this form in the context of reaction di↵usion
equations [27] and Cahn-Hilliard equations [28], among many others.

Again, the problem of exponentiating ��1h arises in the definition of the mobility
(1.5). In order to circumvent this di�culty and thereby ensure that the weighted H

�1

gradient flow structure is well-defined, we introduce the following novel approximation:
given ' 2 C

1
c

(Td), ' � 0,
R
Td ' = 1, '✏(x) := '(x/✏)/✏

d, we consider

M✏(h) := e
�'✏⇤�1h.(1.6)

Unlike previous approximations of e
��1h via 1 � �1h, our approximation respects

the inherent asymmetry near local maxima and minima of h, becoming large when
��1h � 0 and vanishing when ��1h ⌧ 0.

With this approximation in hand, we are able to precisely define the weighted
H

�1 gradient flow of the total variation energy E with mobility M✏. Then, with the
goal of computing this flow numerically, we discretize the gradient flow in time, with
a fixed time step ⌧ > 0, via the following semi-implicit method:

(1.7) h
n+1 2 arg min

h

E(h) +
1

2⌧
kh � h

nk2
H

�1
hn

.

This approach is inspired by the classical minimizing movements scheme for gradient
flows, known as the JKO scheme in the 2-Wasserstein context [2,21]. In this way, our
numerical method can be seen as an extension of recent literature using minimizing
movement schemes to simulate nonlinear PDEs as gradient flows on metric spaces;
see [5–7, 26] and the references therein. More generally, it builds on the well-known
literature using implicit Euler time discretizations to simulate Hilbertian gradient
flows, including the H

�1 total variation flow mentioned in equation (1.3) above [23].
We show that the Euler-Lagrange equation characterizing solutions of the semi-

implicit scheme is a discrete time version of the conservative PDE (1.4):

h
n+1 � h

n

⌧
= �r ·

✓
M(hn)r @E

@hn+1

◆
.(1.8)

leverage (very formal) gradient flow structure to design new 
numerical method

M(h) = e��1h, E(h) = krhk1
<latexit sha1_base64="uO30WyvOfg696Is12TKsI/Tw3Oo="></latexit>

crystal growth PDE “gradient flow”
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rME(h) = �r ·
✓
M(h)r@E

@h

◆
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dth(t) = �rME(h(t))



Gradient flows

• Heuristic definition and examples


• Well-posedness of flows for omega convex energies

• h(t) evolves in the direction of steepest descent of    , with respect to M 
• ∇M is induced by the underlying metric structure
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By the Gibbs-Thomson relation [24, 25, 33, 39] (which is related to an ideal gas law
approximation), the corresponding local-equilibrium density of adatoms is formally
%s = %

0 exp[µs/(kBT )], where %
0 is a constant reference density [19,44], T is a temper-

ature, and kB is the Boltzmann constant. An application of Fick’s law then predicts
that the flux is

J = �Ds r%s = �Ds%
0re

µs/(kBT )
,

where Ds is the surface di↵usion constant [33]. In this way, we obtain the hydrody-
namic equation

@th + r · J = 0.

Normalizing all constants to be one by rescaling in space and time, we formally arrive
at the following PDE for the evolution of the crystal surface height:

@th = �e
��1h .(1.2)

A thorough derivation of (1.2) from microscopic dynamics can be found in [29].
Away from facets, this equation is consistent with the continuum limit of the

Burton-Cabrera-Frank (BCF) theory for moving steps in 2+1 dimensions [4, 33]. See
also [3] for a numerical study of 1d facet dynamics. This equation also relates to a
family of Kinetic Monte Carlo models of crystal surface relaxation, including both
the solid-on-solid (SOS) and discrete Gaussian models, in which the 1-Laplacian is
replaced by a p-Laplacian, p � 1 [12,25,34].

Note that, even in one dimension and for h(x, t) is smooth, the 1-Laplacian �1h

is a linear combination of positive and negative Dirac masses, so e
��1h is not well-

defined. Consequently, equation (1.2) must be interpreted in a generalized sense.
One avenue considered in previous work is to take a first order approximation of the
exponential in the Gibbs-Thomson relation, replacing e

x with 1 + x, which leads to
the H

�1 total variation flow studied by Giga, et. al., [13–15,22,37]

@th = �(��1h) .(1.3)

A limitation of this approach is that it treats local maxima and minima of h sym-
metrically, in contrast to the original equation (1.2), which causes local maxima to
form expanding facets, while local minima remain stationary. Ultimately, determin-
ing an appropriate notion of weak solution for equation (1.2) and proving existence
of solutions remains a challenging open problem.

In spite of these gaps in the underlying theory of the crystal surface evolution
equation, we seek to develop a computationally e�cient numerical method for accurate
simulation of its solutions, while respecting the inherent asymmetry between facet
formation at local maxima and pinning at local minima. Recent work by the middle
three authors and Margetis [29] and the fourth author and Weare [34], numerically
explored the crystal surface evolution equation, using various regularizations. On one
hand, these simulations compared well with existing microscopic models and respected
the di↵erent dynamics at local maxima and minima. On the other hand, they were
not motivated by a strong notion of convergence to the macrosopic PDE dynamics,
and due to the inherent sti↵ness of the model, were only e↵ective on coarse spatial
grids, with serious numerical convergence issues arising on fine grids, even in one
dimension.

A PROXIMAL-GRADIENT ALGORITHM FOR CRYSTAL SURFACE EVOLUTION 3

In contrast, we construct our numerical method for crystal surface evolution by
starting with the macroscopic PDE (1.2) and leveraging the formal gradient flow
structure of the equation, with respect to weighted H

�1 norms. To see this structure,
note that equation (1.2) may be rewritten in the following conservative form,

@th + r ·
✓

M(h)r@E
@h

◆
= 0,(1.4)

where E is the total variation energy (1.1) and M(h) is the exponential mobility

M(h) := e
��1h.(1.5)

For simplicity in what follows, we suppose that our underlying domain is the d-
dimensional torus Td and equation (1.4) is posed with periodic boundary conditions.
We normalize the initial data h(x, 0) = h0(x) to have mean zero,

R
h0 = 0, a property

that is then propagated along the flow (1.4).
Equations of this form (1.4) have a formal gradient flow structure with respect to

an H
�1 norm weighted by the mobility M(h), which we describe in detail in section 2.

For example, choosing the constant mobility M(h) ⌘ 1, one recovers classical H
�1

gradient flows, and in the case of the linear mobility M(h) = h + 1, one recovers
2-Wasserstein gradient flows on the space of probability measures [2, 38]. (Since h

has mean zero, h + 1 is a probability density as long as h � �1.). There has also
been significant work on equations of this form in the context of reaction di↵usion
equations [27] and Cahn-Hilliard equations [28], among many others.

Again, the problem of exponentiating ��1h arises in the definition of the mobility
(1.5). In order to circumvent this di�culty and thereby ensure that the weighted H

�1

gradient flow structure is well-defined, we introduce the following novel approximation:
given ' 2 C

1
c

(Td), ' � 0,
R
Td ' = 1, '✏(x) := '(x/✏)/✏

d, we consider

M✏(h) := e
�'✏⇤�1h.(1.6)

Unlike previous approximations of e
��1h via 1 � �1h, our approximation respects

the inherent asymmetry near local maxima and minima of h, becoming large when
��1h � 0 and vanishing when ��1h ⌧ 0.

With this approximation in hand, we are able to precisely define the weighted
H

�1 gradient flow of the total variation energy E with mobility M✏. Then, with the
goal of computing this flow numerically, we discretize the gradient flow in time, with
a fixed time step ⌧ > 0, via the following semi-implicit method:

(1.7) h
n+1 2 arg min

h

E(h) +
1

2⌧
kh � h

nk2
H

�1
hn

.

This approach is inspired by the classical minimizing movements scheme for gradient
flows, known as the JKO scheme in the 2-Wasserstein context [2,21]. In this way, our
numerical method can be seen as an extension of recent literature using minimizing
movement schemes to simulate nonlinear PDEs as gradient flows on metric spaces;
see [5–7, 26] and the references therein. More generally, it builds on the well-known
literature using implicit Euler time discretizations to simulate Hilbertian gradient
flows, including the H

�1 total variation flow mentioned in equation (1.3) above [23].
We show that the Euler-Lagrange equation characterizing solutions of the semi-

implicit scheme is a discrete time version of the conservative PDE (1.4):

h
n+1 � h

n

⌧
= �r ·

✓
M(hn)r @E

@hn+1

◆
.(1.8)

leverage (very formal) gradient flow structure to design new 
numerical method

M(h) = e��1h, E(h) = krhk1
<latexit sha1_base64="uO30WyvOfg696Is12TKsI/Tw3Oo="></latexit>

crystal growth PDE “gradient flow”

Examples: 
• M(h) = 1, H-1 gradient flow 
• M(h) = h, W2 gradient flow 
• M(h) nonnegative, concave, weighted W2 gradient flow 

[Carrillo, Lisini, Savaré, Slepčev ’09, Dolbeault, Nazaret, Savaré ’09, Lisini, Matthew, Savaré ’19,…] 
• M(h) ∈ Lin(ℝI × d,ℝI × d), gradient system [Liero, Mielke ’13] 

Our mobility falls well outside existing, rigorous theory of GF structure.
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Suppose                              is nonnegative. Define 

• Weighted Hilbert space: 

• Dual space: 

• Subdifferential             ,  gradient 

To go from here to a well-defined gradient flow, need to overcome obstacles: 

• time derivative of h(t) with respect to 

• M(h(t)) needs to remain integrable and nonnegative along the flow. 

Then,
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We conclude, in section 5, with several numerical examples that illustrate proper-
ties of our method. Our scheme accurately captures facet formation at local maxima
and pinning at local minima. Unlike previous numerical methods, which required a
coarse spatial discretization, we observe near first order convergence in both space and
time as the spatial discretization and time step ⌧ are refined. Finally, we also illus-
trate the importance of norm selection in our PDHG method, showing that selecting
norms following the classical L

2 approach can cause the number of iterations required
for convergence to increase dramatically as the spatial discretization is refined.

There are several directions for future work. As mentioned above, we believe
that the strength of our numerical method gives hope that the weighted gradient flow
setting is the appropriate context in which to define and prove existence of generalized
solutions to the crystal surface evolution equation, by analyzing the convergence of
the semi-implicit method as ⌧ ! 0 and ✏ ! 0. Our semi-implicit time discretization
and PDHG algorithm can also be naturally extended to related crystal evolution
PDEs: see Remark 3.3, where we describe how the 1-Laplacian in equation (1.2)
can be replaced by the standard Laplacian. Finally, our convergence result for the
PDHG scheme holds for general, integrable mobilities M(h). Consequently, it would
be natural to extend our approach to simulate related gradient flows for other choices
of nonlinear mobilities, such as M(h) = (1 + h)(1 � h) [8, 10, 28].

2. Crystal height evolution as a weighted H
�1 gradient flow. We now

describe the weighted H
�1 gradient flow structure of the crystal height evolution PDE

(1.2). In section 2.1, we define the weighted H
�1 spaces and the corresponding notions

of gradient flow. In section 2.2, we introduce the semi-implicit time discretization of
the gradient flow, which is the basis of our numerical scheme. In section 2.3, we
discuss how to apply this framework to the crystal height evolution equation.

2.1. Weighted H
�1 gradient flow. For any h : Td ! R, let M(h) 2 L

1(Td)
denote a nonnegative mobility. Using this mobility, we define the weighted Hilbert
space H

1
h
(Td) as the completion of C

1(Td) functions with mean zero, under the
weighted norm or inner product

kvk2
H

1
h

=

Z

Td

M(h)|rv|2 dx ,(2.1)

(u, v)1 =

Z

Td

M(h)ru ·rv dx .(2.2)

We define H
�1
h

(Td) :=
�
H

1
h
(Td)

�⇤
to be the dual space of H

1
h

and let h·, ·i denote the
duality pairing.

By the Riesz-Fréchet representation theorem, the duality mapping J : H
1
h
! H

�1
h

given by

hJ(v), ui = (v, u)1, 8u 2 H
1
h

is surjective. Now, consider the weighted Laplacian operator

�hu = r · (M(h)ru) ,

which is well defined for u 2 C
1(Td), in the sense of distributions. For u, v 2 C

1(Td)
with mean zero, by definition of (·, ·)1 and integration by parts, we have

hJ(v), ui = (v, u)1 = �
Z

Td

u�hv dx .
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[Otto ’01, 
Giga, Giga ’10, …]
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Hence, we identify J(v) = ��hv.
The inverse map J

�1 : H
�1
h

! H
1
h
,� 7! J

�1(�) is then given by

h , J
�1(�)i = ( ,�)�1 = �

Z

Td

 (��1
h
�) dx , 8 2 H

�1
h

,

where (·, ·)�1 denotes the inner product for H
�1
h

and ��1
h

denotes the inverse operator
of �h with mean zero. Consequently, we obtain,

(2.3) k k2
H

�1
h

= �
Z

Td

 ��1
h
 dx .

We now turn to the di↵erential structure induced by the H
�1
h

norm. Given a
convex functional E : H

�1
h

! R [ {+1}, its subdi↵erential is

@
H

�1
h

E( ) =
�
⇠ 2 H

�1
h

(Td) : E(') � E( ) + ('�  , ⇠)�1 8' 2 H
�1
h

 
.

For example, the identity mapping  7! { } is the subdi↵erential of the convex
functional E( ) = 1

2k k
2
H

�1
h

.

Using this notion of subdi↵erential, we may define H
�1
h

gradient flows. In order
for our construction of the weighted Hilbert spaces to remain valid, we require that
M(h) remains nonnegative and integrable along the flow, that is, the flow remains in
the space

L
1
M

=
�
h : Td ! R : M(h) 2 L

1 and M(h) � 0
 

.

Next, we introduce a notion of time derivative for a flow h(t) evolving through
the Hilbert spaces H

�1
h(t).

Definition 2.1. Given h : [0, T ] ! L
1
M

such that h(t) 2 H
�1
h(t) for all t 2 [0, T ],

we say that h(t) is di↵erentiable with respect to k · k
H

�1
h(t)

in case, for all t 2 [0, T ],

there exists ✏ > 0 so that, for all s 2 (t � ✏, t + ✏) \ [0, T ], h(s) 2 H
�1
h(t) and h(s) is

Fréchet di↵erentiable with respect to k · k
H

�1
h(t)

.

With this, we can now define an H
�1
h(t) gradient flow.

Definition 2.2. Given h : [0, T ] ! L
1
M

such that h(t) 2 H
�1
h(t) is di↵erentiable,

we say h is an H
�1
h(t) gradient flow of an energy E : H

�1
h(t) ! R [ {+1} with initial

condition h0 in case

(
@th(t) 2 �@

H
�1
h(t)

E(h(t)) for all t 2 [0, T ],

h(0) = h0.
(2.4)

In particular, given an energy E : H
�1
h

! R [ {+1}, we formally obtain the
following expression for its gradient with respect to H

�1
h

(Td),

lim
✏!0

E( + "⇠) � E( )

"
=

Z

Td

@E

@ 
⇠ =

Z

Td

��1
h

�h

@E

@ 
⇠ =

✓
�h

@E

@ 
, ⇠

◆

�1

Therefore,

r
H

�1
h

E( ) = �h

@E

@ 
.

= �
Z

Td

v�hv
<latexit sha1_base64="LppxXM4HP9O8NmHiC7yDaSeBhSc=">AAACDXicbVDLSsNAFJ34rPVVdelmsApuLIkKuhGKunBZoS9oYphMp+3QySTM3BRKyA+48VfcuFDErXt3/o3Tx0JbD1w4nHMv994TxIJrsO1va2FxaXllNbeWX9/Y3Nou7OzWdZQoymo0EpFqBkQzwSWrAQfBmrFiJAwEawT9m5HfGDCleSSrMIyZF5Ku5B1OCRjJLxxe4RPscgl+6oYEekGQVrOHdoYH2L1lAojfwwO/ULRL9hh4njhTUkRTVPzCl9uOaBIyCVQQrVuOHYOXEgWcCpbl3USzmNA+6bKWoZKETHvp+JsMHxmljTuRMiUBj9XfEykJtR6GgekcXaxnvZH4n9dKoHPppVzGCTBJJ4s6icAQ4VE0uM0VoyCGhhCquLkV0x5RhIIJMG9CcGZfnif105JzVrLvz4vl62kcObSPDtAxctAFKqM7VEE1RNEjekav6M16sl6sd+tj0rpgTWf20B9Ynz8QApru</latexit>

�hv = r · (M(h)rv)
<latexit sha1_base64="ip5wt+V/fSEstrwIO/nIgZwR9Fk=">AAACEnicbVA9SwNBEN2L3/Hr1NJmMQhJE+5U0EYIamEjRDAmkAthbrNJluztHbtzgRD8DTb+FRsLRWyt7Pw3bj4ENT4YeLw3w8y8MJHCoOd9Opm5+YXFpeWV7Ora+samu7V9a+JUM15hsYx1LQTDpVC8ggIlryWaQxRKXg175yO/2ufaiFjd4CDhjQg6SrQFA7RS0y0EF1wiNLu0T09poCCUQAPWipHmr/LdwrfULzTdnFf0xqCzxJ+SHJmi3HQ/glbM0ogrZBKMqftego0haBRM8rtskBqeAOtBh9ctVRBx0xiOX7qj+1Zp0XasbSmkY/XnxBAiYwZRaDsjwK75643E/7x6iu2TxlCoJEWu2GRRO5UUYzrKh7aE5gzlwBJgWthbKeuCBoY2xawNwf/78iy5PSj6h0Xv+ihXOpvGsUx2yR7JE58ckxK5JGVSIYzck0fyTF6cB+fJeXXeJq0ZZzqzQ37Bef8CdLKbbg==</latexit>
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Z

Td

 (��1
h
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�1
h

,

where (·, ·)�1 denotes the inner product for H
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h

and ��1
h

denotes the inverse operator
of �h with mean zero. Consequently, we obtain,

(2.3) k k2
H

�1
h

= �
Z

Td
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h
 dx .
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@
H
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h
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�
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h
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h
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�1
h(t)
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�1
h(t) and h(s) is
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H

�1
h(t)
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With this, we can now define an H
�1
h(t) gradient flow.

Definition 2.2. Given h : [0, T ] ! L
1
M

such that h(t) 2 H
�1
h(t) is di↵erentiable,

we say h is an H
�1
h(t) gradient flow of an energy E : H
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h(t) ! R [ {+1} with initial

condition h0 in case

(
@th(t) 2 �@

H
�1
h(t)

E(h(t)) for all t 2 [0, T ],

h(0) = h0.
(2.4)

In particular, given an energy E : H
�1
h

! R [ {+1}, we formally obtain the
following expression for its gradient with respect to H

�1
h

(Td),

lim
✏!0

E( + "⇠) � E( )

"
=

Z

Td

@E

@ 
⇠ =

Z

Td

��1
h

�h

@E

@ 
⇠ =

✓
�h

@E

@ 
, ⇠

◆

�1

Therefore,

r
H

�1
h

E( ) = �h

@E

@ 
.
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Consequently, under su�cient regularity of the energy functional E and under the
assumption that the mobility remains integrable and nonnegative along the flow,
H

�1
h

(Td) gradient flows correspond to solutions of the conservative PDE (1.4),

@th = �r
H

�1
h

E(h) () @th + �h

@E

@h
= 0 () @th + r ·

✓
M(h)r@E

@h

◆
= 0.(2.5)

2.2. Semi-implicit scheme for H
�1
h

gradient flows. We now describe a semi-
implicit analogue of the classical minimizing movement scheme to discretize our H

�1
h

gradient flows in time: given h
n 2 L

1
M

\ H
�1
hn , solve

(2.6) h
n+1 2 arg min

h2H
�1
hn

E(h) +
1

2⌧
kh � h

nk2
H

�1
hn

.

In the particular case M(h) = h + 1, h � �1, H
�1
h

gradient flows are 2-Wasserstein
gradient flows, and the above method can be interpreted as a semi-implicit variant of
the Jordan Kinderlehrer Otto (JKO) scheme [21], in which the Wasserstein distance is
approximated by the corresponding weighted H

�1 norm at the previous time step [5].
We begin by showing that, as long as the energy E is convex, lower semicontinuous,

and has compact sublevels with respect to an appropriate topology and E(hn) < +1,
then there exists a unique solution to this semi-implicit scheme.

Proposition 2.3. Fix h
n 2 L

1
M

\ H
�1
hn and consider an energy E : H

�1
hn !

R [ {+1}. Suppose E is convex and that there exists a topology � so that E and

H
�1
hn are both lower semicontinuous with respect to � and the sublevel sets of E are

relatively �-compact in H
�1
hn . Then, if E(hn) < +1, there exists a unique h

n+1
so

that

h
n+1 2 arg min

h2H
�1
hn

�(h), for �(h) := E(h) +
1

2⌧
kh � h

nk2
H

�1
hn

.(2.7)

Remark 2.4. Our assumption that h
n 2 L

1
M

, or equivalently, that the mobility
M(hn) is integrable and nonnegative, is necessary for the weighted Hilbert spaces to
be well-defined. Analogous requirements on the mobility have arisen in recent work
by Cancés, Gallouët, and Todeschi [5], in which they consider a fully-implicit time
discretization, in the special case that M(h) = h + 1 and h > �1.

Remark 2.5. We choose to introduce the additional topology � in Proposition 2.3
due to the fact that, in general, the topology induced by H

�1
hn

may not be strong
enough to ensure lower semicontinuity of the energy. In particular, this is the case for
the exponential mobility and total variation energy we consider in the next section.

Proof of Proposition 2.3. First, we consider existence. Since �(hn) = E(hn) <

+1,
inf

h2H
�1
hn (T)

�(h) < +1,

and we may choose a minimizing sequence h
k 2 H

�1
hn (T) so that limk!+1 �(hk) =

infh �(h). Since �(h) � E(h), {hk} belongs to a sublevel set of E , so up to a sub-
sequence, there exists h̄ so that h

k ��! h̄ 2 H
�1
h

. By lower semicontinuity of E and
k · k

H
�1
hn (T) with respect to �, lim infk!+1 �(hk) = �(h̄). Thus, h̄ is a solution of

(2.6), so a solution exists.

6 K. CRAIG, J-G. LIU, J. LU, J. L. MARZUOLA, AND L. WANG

Hence, we identify J(v) = ��hv.
The inverse map J

�1 : H
�1
h

! H
1
h
,� 7! J

�1(�) is then given by

h , J
�1(�)i = ( ,�)�1 = �

Z

Td

 (��1
h
�) dx , 8 2 H

�1
h

,

where (·, ·)�1 denotes the inner product for H
�1
h

and ��1
h

denotes the inverse operator
of �h with mean zero. Consequently, we obtain,

(2.3) k k2
H

�1
h

= �
Z

Td

 ��1
h
 dx .

We now turn to the di↵erential structure induced by the H
�1
h

norm. Given a
convex functional E : H

�1
h

! R [ {+1}, its subdi↵erential is

@
H

�1
h

E( ) =
�
⇠ 2 H

�1
h

(Td) : E(') � E( ) + ('�  , ⇠)�1 8' 2 H
�1
h

 
.

For example, the identity mapping  7! { } is the subdi↵erential of the convex
functional E( ) = 1

2k k
2
H

�1
h

.

Using this notion of subdi↵erential, we may define H
�1
h

gradient flows. In order
for our construction of the weighted Hilbert spaces to remain valid, we require that
M(h) remains nonnegative and integrable along the flow, that is, the flow remains in
the space

L
1
M

=
�
h : Td ! R : M(h) 2 L

1 and M(h) � 0
 

.

Next, we introduce a notion of time derivative for a flow h(t) evolving through
the Hilbert spaces H

�1
h(t).

Definition 2.1. Given h : [0, T ] ! L
1
M

such that h(t) 2 H
�1
h(t) for all t 2 [0, T ],

we say that h(t) is di↵erentiable with respect to k · k
H

�1
h(t)

in case, for all t 2 [0, T ],

there exists ✏ > 0 so that, for all s 2 (t � ✏, t + ✏) \ [0, T ], h(s) 2 H
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following expression for its gradient with respect to H
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(Td),

lim
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"
=

Z

Td

@E
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Z

Td

��1
h

�h

@E
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⇠ =

✓
�h

@E

@ 
, ⇠

◆

�1
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M(h) remains nonnegative and integrable along the flow, that is, the flow remains in
the space

L
1
M

=
�
h : Td ! R : M(h) 2 L

1 and M(h) � 0
 

.

Next, we introduce a notion of time derivative for a flow h(t) evolving through
the Hilbert spaces H

�1
h(t).

Definition 2.1. Given h : [0, T ] ! L
1
M

such that h(t) 2 H
�1
h(t) for all t 2 [0, T ],

we say that h(t) is di↵erentiable with respect to k · k
H

�1
h(t)

in case, for all t 2 [0, T ],

there exists ✏ > 0 so that, for all s 2 (t � ✏, t + ✏) \ [0, T ], h(s) 2 H
�1
h(t) and h(s) is

Fréchet di↵erentiable with respect to k · k
H

�1
h(t)

.

With this, we can now define an H
�1
h(t) gradient flow.

Definition 2.2. Given h : [0, T ] ! L
1
M

such that h(t) 2 H
�1
h(t) is di↵erentiable,

we say h is an H
�1
h(t) gradient flow of an energy E : H

�1
h(t) ! R [ {+1} with initial

condition h0 in case

(
@th(t) 2 �@

H
�1
h(t)

E(h(t)) for all t 2 [0, T ],

h(0) = h0.
(2.4)

In particular, given an energy E : H
�1
h

! R [ {+1}, we formally obtain the
following expression for its gradient with respect to H

�1
h

(Td),

lim
✏!0

E( + "⇠) � E( )

"
=

Z

Td

@E

@ 
⇠ =

Z

Td

��1
h

�h

@E

@ 
⇠ =

✓
�h

@E

@ 
, ⇠

◆

�1

Therefore,

r
H

�1
h

E( ) = �h

@E

@ 
.
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Consequently, under su�cient regularity of the energy functional E and under the
assumption that the mobility remains integrable and nonnegative along the flow,
H

�1
h

(Td) gradient flows correspond to solutions of the conservative PDE (1.4),

@th = �r
H

�1
h

E(h) () @th + �h

@E

@h
= 0 () @th + r ·

✓
M(h)r@E

@h

◆
= 0.(2.5)

2.2. Semi-implicit scheme for H
�1
h

gradient flows. We now describe a semi-
implicit analogue of the classical minimizing movement scheme to discretize our H

�1
h

gradient flows in time: given h
n 2 L

1
M

\ H
�1
hn , solve

(2.6) h
n+1 2 arg min

h2H
�1
hn

E(h) +
1

2⌧
kh � h

nk2
H

�1
hn

.

In the particular case M(h) = h + 1, h � �1, H
�1
h

gradient flows are 2-Wasserstein
gradient flows, and the above method can be interpreted as a semi-implicit variant of
the Jordan Kinderlehrer Otto (JKO) scheme [21], in which the Wasserstein distance is
approximated by the corresponding weighted H

�1 norm at the previous time step [5].
We begin by showing that, as long as the energy E is convex, lower semicontinuous,

and has compact sublevels with respect to an appropriate topology and E(hn) < +1,
then there exists a unique solution to this semi-implicit scheme.

Proposition 2.3. Fix h
n 2 L

1
M

\ H
�1
hn and consider an energy E : H

�1
hn !

R [ {+1}. Suppose E is convex and that there exists a topology � so that E and

H
�1
hn are both lower semicontinuous with respect to � and the sublevel sets of E are

relatively �-compact in H
�1
hn . Then, if E(hn) < +1, there exists a unique h

n+1
so

that

h
n+1 2 arg min

h2H
�1
hn

�(h), for �(h) := E(h) +
1

2⌧
kh � h

nk2
H

�1
hn

.(2.7)

Remark 2.4. Our assumption that h
n 2 L

1
M

, or equivalently, that the mobility
M(hn) is integrable and nonnegative, is necessary for the weighted Hilbert spaces to
be well-defined. Analogous requirements on the mobility have arisen in recent work
by Cancés, Gallouët, and Todeschi [5], in which they consider a fully-implicit time
discretization, in the special case that M(h) = h + 1 and h > �1.

Remark 2.5. We choose to introduce the additional topology � in Proposition 2.3
due to the fact that, in general, the topology induced by H

�1
hn

may not be strong
enough to ensure lower semicontinuity of the energy. In particular, this is the case for
the exponential mobility and total variation energy we consider in the next section.

Proof of Proposition 2.3. First, we consider existence. Since �(hn) = E(hn) <

+1,
inf

h2H
�1
hn (T)

�(h) < +1,

and we may choose a minimizing sequence h
k 2 H

�1
hn (T) so that limk!+1 �(hk) =

infh �(h). Since �(h) � E(h), {hk} belongs to a sublevel set of E , so up to a sub-
sequence, there exists h̄ so that h

k ��! h̄ 2 H
�1
h

. By lower semicontinuity of E and
k · k

H
�1
hn (T) with respect to �, lim infk!+1 �(hk) = �(h̄). Thus, h̄ is a solution of

(2.6), so a solution exists.
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Consequently, under su�cient regularity of the energy functional E and under the
assumption that the mobility remains integrable and nonnegative along the flow,
H

�1
h

(Td) gradient flows correspond to solutions of the conservative PDE (1.4),

@th = �r
H

�1
h

E(h) () @th + �h

@E

@h
= 0 () @th + r ·

✓
M(h)r@E

@h

◆
= 0.(2.5)

2.2. Semi-implicit scheme for H
�1
h

gradient flows. We now describe a semi-
implicit analogue of the classical minimizing movement scheme to discretize our H

�1
h

gradient flows in time: given h
n 2 L

1
M

\ H
�1
hn , solve

(2.6) h
n+1 2 arg min

h2H
�1
hn

E(h) +
1

2⌧
kh � h

nk2
H

�1
hn

.

In the particular case M(h) = h + 1, h � �1, H
�1
h

gradient flows are 2-Wasserstein
gradient flows, and the above method can be interpreted as a semi-implicit variant of
the Jordan Kinderlehrer Otto (JKO) scheme [21], in which the Wasserstein distance is
approximated by the corresponding weighted H

�1 norm at the previous time step [5].
We begin by showing that, as long as the energy E is convex, lower semicontinuous,

and has compact sublevels with respect to an appropriate topology and E(hn) < +1,
then there exists a unique solution to this semi-implicit scheme.

Proposition 2.3. Fix h
n 2 L

1
M

\ H
�1
hn and consider an energy E : H

�1
hn !

R [ {+1}. Suppose E is convex and that there exists a topology � so that E and

H
�1
hn are both lower semicontinuous with respect to � and the sublevel sets of E are

relatively �-compact in H
�1
hn . Then, if E(hn) < +1, there exists a unique h

n+1
so

that

h
n+1 2 arg min

h2H
�1
hn

�(h), for �(h) := E(h) +
1

2⌧
kh � h

nk2
H

�1
hn

.(2.7)

Remark 2.4. Our assumption that h
n 2 L

1
M

, or equivalently, that the mobility
M(hn) is integrable and nonnegative, is necessary for the weighted Hilbert spaces to
be well-defined. Analogous requirements on the mobility have arisen in recent work
by Cancés, Gallouët, and Todeschi [5], in which they consider a fully-implicit time
discretization, in the special case that M(h) = h + 1 and h > �1.

Remark 2.5. We choose to introduce the additional topology � in Proposition 2.3
due to the fact that, in general, the topology induced by H

�1
hn

may not be strong
enough to ensure lower semicontinuity of the energy. In particular, this is the case for
the exponential mobility and total variation energy we consider in the next section.

Proof of Proposition 2.3. First, we consider existence. Since �(hn) = E(hn) <

+1,
inf

h2H
�1
hn (T)

�(h) < +1,

and we may choose a minimizing sequence h
k 2 H

�1
hn (T) so that limk!+1 �(hk) =

infh �(h). Since �(h) � E(h), {hk} belongs to a sublevel set of E , so up to a sub-
sequence, there exists h̄ so that h

k ��! h̄ 2 H
�1
h

. By lower semicontinuity of E and
k · k

H
�1
hn (T) with respect to �, lim infk!+1 �(hk) = �(h̄). Thus, h̄ is a solution of

(2.6), so a solution exists.
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Consequently, under su�cient regularity of the energy functional E and under the
assumption that the mobility remains integrable and nonnegative along the flow,
H

�1
h

(Td) gradient flows correspond to solutions of the conservative PDE (1.4),

@th = �r
H

�1
h

E(h) () @th + �h

@E

@h
= 0 () @th + r ·
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M(h)r@E
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◆
= 0.(2.5)

2.2. Semi-implicit scheme for H
�1
h

gradient flows. We now describe a semi-
implicit analogue of the classical minimizing movement scheme to discretize our H

�1
h

gradient flows in time: given h
n 2 L

1
M

\ H
�1
hn , solve

(2.6) h
n+1 2 arg min

h2H
�1
hn

E(h) +
1

2⌧
kh � h

nk2
H

�1
hn

.

In the particular case M(h) = h + 1, h � �1, H
�1
h

gradient flows are 2-Wasserstein
gradient flows, and the above method can be interpreted as a semi-implicit variant of
the Jordan Kinderlehrer Otto (JKO) scheme [21], in which the Wasserstein distance is
approximated by the corresponding weighted H

�1 norm at the previous time step [5].
We begin by showing that, as long as the energy E is convex, lower semicontinuous,

and has compact sublevels with respect to an appropriate topology and E(hn) < +1,
then there exists a unique solution to this semi-implicit scheme.

Proposition 2.3. Fix h
n 2 L

1
M

\ H
�1
hn and consider an energy E : H

�1
hn !

R [ {+1}. Suppose E is convex and that there exists a topology � so that E and

H
�1
hn are both lower semicontinuous with respect to � and the sublevel sets of E are

relatively �-compact in H
�1
hn . Then, if E(hn) < +1, there exists a unique h

n+1
so

that

h
n+1 2 arg min

h2H
�1
hn

�(h), for �(h) := E(h) +
1

2⌧
kh � h

nk2
H

�1
hn

.(2.7)

Remark 2.4. Our assumption that h
n 2 L

1
M

, or equivalently, that the mobility
M(hn) is integrable and nonnegative, is necessary for the weighted Hilbert spaces to
be well-defined. Analogous requirements on the mobility have arisen in recent work
by Cancés, Gallouët, and Todeschi [5], in which they consider a fully-implicit time
discretization, in the special case that M(h) = h + 1 and h > �1.

Remark 2.5. We choose to introduce the additional topology � in Proposition 2.3
due to the fact that, in general, the topology induced by H

�1
hn

may not be strong
enough to ensure lower semicontinuity of the energy. In particular, this is the case for
the exponential mobility and total variation energy we consider in the next section.

Proof of Proposition 2.3. First, we consider existence. Since �(hn) = E(hn) <

+1,
inf

h2H
�1
hn (T)

�(h) < +1,

and we may choose a minimizing sequence h
k 2 H

�1
hn (T) so that limk!+1 �(hk) =

infh �(h). Since �(h) � E(h), {hk} belongs to a sublevel set of E , so up to a sub-
sequence, there exists h̄ so that h

k ��! h̄ 2 H
�1
h

. By lower semicontinuity of E and
k · k

H
�1
hn (T) with respect to �, lim infk!+1 �(hk) = �(h̄). Thus, h̄ is a solution of

(2.6), so a solution exists.
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Consequently, under su�cient regularity of the energy functional E and under the
assumption that the mobility remains integrable and nonnegative along the flow,
H

�1
h

(Td) gradient flows correspond to solutions of the conservative PDE (1.4),
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2.2. Semi-implicit scheme for H
�1
h

gradient flows. We now describe a semi-
implicit analogue of the classical minimizing movement scheme to discretize our H

�1
h

gradient flows in time: given h
n 2 L

1
M

\ H
�1
hn , solve

(2.6) h
n+1 2 arg min

h2H
�1
hn

E(h) +
1

2⌧
kh � h

nk2
H

�1
hn

.

In the particular case M(h) = h + 1, h � �1, H
�1
h

gradient flows are 2-Wasserstein
gradient flows, and the above method can be interpreted as a semi-implicit variant of
the Jordan Kinderlehrer Otto (JKO) scheme [21], in which the Wasserstein distance is
approximated by the corresponding weighted H

�1 norm at the previous time step [5].
We begin by showing that, as long as the energy E is convex, lower semicontinuous,

and has compact sublevels with respect to an appropriate topology and E(hn) < +1,
then there exists a unique solution to this semi-implicit scheme.

Proposition 2.3. Fix h
n 2 L

1
M

\ H
�1
hn and consider an energy E : H

�1
hn !

R [ {+1}. Suppose E is convex and that there exists a topology � so that E and

H
�1
hn are both lower semicontinuous with respect to � and the sublevel sets of E are

relatively �-compact in H
�1
hn . Then, if E(hn) < +1, there exists a unique h

n+1
so

that

h
n+1 2 arg min

h2H
�1
hn

�(h), for �(h) := E(h) +
1

2⌧
kh � h

nk2
H

�1
hn

.(2.7)

Remark 2.4. Our assumption that h
n 2 L

1
M

, or equivalently, that the mobility
M(hn) is integrable and nonnegative, is necessary for the weighted Hilbert spaces to
be well-defined. Analogous requirements on the mobility have arisen in recent work
by Cancés, Gallouët, and Todeschi [5], in which they consider a fully-implicit time
discretization, in the special case that M(h) = h + 1 and h > �1.

Remark 2.5. We choose to introduce the additional topology � in Proposition 2.3
due to the fact that, in general, the topology induced by H

�1
hn

may not be strong
enough to ensure lower semicontinuity of the energy. In particular, this is the case for
the exponential mobility and total variation energy we consider in the next section.

Proof of Proposition 2.3. First, we consider existence. Since �(hn) = E(hn) <

+1,
inf

h2H
�1
hn (T)

�(h) < +1,

and we may choose a minimizing sequence h
k 2 H

�1
hn (T) so that limk!+1 �(hk) =

infh �(h). Since �(h) � E(h), {hk} belongs to a sublevel set of E , so up to a sub-
sequence, there exists h̄ so that h

k ��! h̄ 2 H
�1
h

. By lower semicontinuity of E and
k · k

H
�1
hn (T) with respect to �, lim infk!+1 �(hk) = �(h̄). Thus, h̄ is a solution of

(2.6), so a solution exists.
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Consequently, under su�cient regularity of the energy functional E and under the
assumption that the mobility remains integrable and nonnegative along the flow,
H

�1
h

(Td) gradient flows correspond to solutions of the conservative PDE (1.4),
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2.2. Semi-implicit scheme for H
�1
h

gradient flows. We now describe a semi-
implicit analogue of the classical minimizing movement scheme to discretize our H

�1
h

gradient flows in time: given h
n 2 L

1
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\ H
�1
hn , solve

(2.6) h
n+1 2 arg min

h2H
�1
hn

E(h) +
1

2⌧
kh � h

nk2
H

�1
hn

.

In the particular case M(h) = h + 1, h � �1, H
�1
h

gradient flows are 2-Wasserstein
gradient flows, and the above method can be interpreted as a semi-implicit variant of
the Jordan Kinderlehrer Otto (JKO) scheme [21], in which the Wasserstein distance is
approximated by the corresponding weighted H

�1 norm at the previous time step [5].
We begin by showing that, as long as the energy E is convex, lower semicontinuous,

and has compact sublevels with respect to an appropriate topology and E(hn) < +1,
then there exists a unique solution to this semi-implicit scheme.

Proposition 2.3. Fix h
n 2 L

1
M

\ H
�1
hn and consider an energy E : H

�1
hn !

R [ {+1}. Suppose E is convex and that there exists a topology � so that E and

H
�1
hn are both lower semicontinuous with respect to � and the sublevel sets of E are

relatively �-compact in H
�1
hn . Then, if E(hn) < +1, there exists a unique h

n+1
so

that

h
n+1 2 arg min

h2H
�1
hn

�(h), for �(h) := E(h) +
1

2⌧
kh � h

nk2
H

�1
hn

.(2.7)

Remark 2.4. Our assumption that h
n 2 L

1
M

, or equivalently, that the mobility
M(hn) is integrable and nonnegative, is necessary for the weighted Hilbert spaces to
be well-defined. Analogous requirements on the mobility have arisen in recent work
by Cancés, Gallouët, and Todeschi [5], in which they consider a fully-implicit time
discretization, in the special case that M(h) = h + 1 and h > �1.

Remark 2.5. We choose to introduce the additional topology � in Proposition 2.3
due to the fact that, in general, the topology induced by H

�1
hn

may not be strong
enough to ensure lower semicontinuity of the energy. In particular, this is the case for
the exponential mobility and total variation energy we consider in the next section.

Proof of Proposition 2.3. First, we consider existence. Since �(hn) = E(hn) <

+1,
inf

h2H
�1
hn (T)

�(h) < +1,

and we may choose a minimizing sequence h
k 2 H

�1
hn (T) so that limk!+1 �(hk) =

infh �(h). Since �(h) � E(h), {hk} belongs to a sublevel set of E , so up to a sub-
sequence, there exists h̄ so that h

k ��! h̄ 2 H
�1
h

. By lower semicontinuity of E and
k · k

H
�1
hn (T) with respect to �, lim infk!+1 �(hk) = �(h̄). Thus, h̄ is a solution of

(2.6), so a solution exists.
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- the mobility                              doesn’t make sense, even for d=1M(h) = e��1h, E(h) = krhk1
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Consequently, under su�cient regularity of the energy functional E and under the
assumption that the mobility remains integrable and nonnegative along the flow,
H

�1
h

(Td) gradient flows correspond to solutions of the conservative PDE (1.4),

@th = �r
H

�1
h

E(h) () @th + �h

@E

@h
= 0 () @th + r ·

✓
M(h)r@E

@h

◆
= 0.(2.5)

2.2. Semi-implicit scheme for H
�1
h

gradient flows. We now describe a semi-
implicit analogue of the classical minimizing movement scheme to discretize our H

�1
h

gradient flows in time: given h
n 2 L

1
M

\ H
�1
hn , solve

(2.6) h
n+1 2 arg min

h2H
�1
hn

E(h) +
1

2⌧
kh � h

nk2
H

�1
hn

.

In the particular case M(h) = h + 1, h � �1, H
�1
h

gradient flows are 2-Wasserstein
gradient flows, and the above method can be interpreted as a semi-implicit variant of
the Jordan Kinderlehrer Otto (JKO) scheme [21], in which the Wasserstein distance is
approximated by the corresponding weighted H

�1 norm at the previous time step [5].
We begin by showing that, as long as the energy E is convex, lower semicontinuous,

and has compact sublevels with respect to an appropriate topology and E(hn) < +1,
then there exists a unique solution to this semi-implicit scheme.

Proposition 2.3. Fix h
n 2 L

1
M

\ H
�1
hn and consider an energy E : H

�1
hn !

R [ {+1}. Suppose E is convex and that there exists a topology � so that E and

H
�1
hn are both lower semicontinuous with respect to � and the sublevel sets of E are

relatively �-compact in H
�1
hn . Then, if E(hn) < +1, there exists a unique h

n+1
so

that

h
n+1 2 arg min

h2H
�1
hn

�(h), for �(h) := E(h) +
1

2⌧
kh � h

nk2
H

�1
hn

.(2.7)

Remark 2.4. Our assumption that h
n 2 L

1
M

, or equivalently, that the mobility
M(hn) is integrable and nonnegative, is necessary for the weighted Hilbert spaces to
be well-defined. Analogous requirements on the mobility have arisen in recent work
by Cancés, Gallouët, and Todeschi [5], in which they consider a fully-implicit time
discretization, in the special case that M(h) = h + 1 and h > �1.

Remark 2.5. We choose to introduce the additional topology � in Proposition 2.3
due to the fact that, in general, the topology induced by H

�1
hn

may not be strong
enough to ensure lower semicontinuity of the energy. In particular, this is the case for
the exponential mobility and total variation energy we consider in the next section.

Proof of Proposition 2.3. First, we consider existence. Since �(hn) = E(hn) <

+1,
inf

h2H
�1
hn (T)

�(h) < +1,

and we may choose a minimizing sequence h
k 2 H

�1
hn (T) so that limk!+1 �(hk) =

infh �(h). Since �(h) � E(h), {hk} belongs to a sublevel set of E , so up to a sub-
sequence, there exists h̄ so that h

k ��! h̄ 2 H
�1
h

. By lower semicontinuity of E and
k · k

H
�1
hn (T) with respect to �, lim infk!+1 �(hk) = �(h̄). Thus, h̄ is a solution of

(2.6), so a solution exists.
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- we consider mollified mobility, which respects asymmetry of curvature
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Consequently, under su�cient regularity of the energy functional E and under the
assumption that the mobility remains integrable and nonnegative along the flow,
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(Td) gradient flows correspond to solutions of the conservative PDE (1.4),
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gradient flows. We now describe a semi-
implicit analogue of the classical minimizing movement scheme to discretize our H
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.

In the particular case M(h) = h + 1, h � �1, H
�1
h

gradient flows are 2-Wasserstein
gradient flows, and the above method can be interpreted as a semi-implicit variant of
the Jordan Kinderlehrer Otto (JKO) scheme [21], in which the Wasserstein distance is
approximated by the corresponding weighted H

�1 norm at the previous time step [5].
We begin by showing that, as long as the energy E is convex, lower semicontinuous,

and has compact sublevels with respect to an appropriate topology and E(hn) < +1,
then there exists a unique solution to this semi-implicit scheme.

Proposition 2.3. Fix h
n 2 L

1
M

\ H
�1
hn and consider an energy E : H

�1
hn !

R [ {+1}. Suppose E is convex and that there exists a topology � so that E and

H
�1
hn are both lower semicontinuous with respect to � and the sublevel sets of E are

relatively �-compact in H
�1
hn . Then, if E(hn) < +1, there exists a unique h

n+1
so

that

h
n+1 2 arg min

h2H
�1
hn

�(h), for �(h) := E(h) +
1

2⌧
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.(2.7)

Remark 2.4. Our assumption that h
n 2 L

1
M

, or equivalently, that the mobility
M(hn) is integrable and nonnegative, is necessary for the weighted Hilbert spaces to
be well-defined. Analogous requirements on the mobility have arisen in recent work
by Cancés, Gallouët, and Todeschi [5], in which they consider a fully-implicit time
discretization, in the special case that M(h) = h + 1 and h > �1.

Remark 2.5. We choose to introduce the additional topology � in Proposition 2.3
due to the fact that, in general, the topology induced by H

�1
hn

may not be strong
enough to ensure lower semicontinuity of the energy. In particular, this is the case for
the exponential mobility and total variation energy we consider in the next section.

Proof of Proposition 2.3. First, we consider existence. Since �(hn) = E(hn) <

+1,
inf

h2H
�1
hn (T)

�(h) < +1,

and we may choose a minimizing sequence h
k 2 H

�1
hn (T) so that limk!+1 �(hk) =

infh �(h). Since �(h) � E(h), {hk} belongs to a sublevel set of E , so up to a sub-
sequence, there exists h̄ so that h

k ��! h̄ 2 H
�1
h

. By lower semicontinuity of E and
k · k

H
�1
hn (T) with respect to �, lim infk!+1 �(hk) = �(h̄). Thus, h̄ is a solution of

(2.6), so a solution exists.
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In contrast, we construct our numerical method for crystal surface evolution by
starting with the macroscopic PDE (1.2) and leveraging the formal gradient flow
structure of the equation, with respect to weighted H

�1 norms. To see this structure,
note that equation (1.2) may be rewritten in the following conservative form,

@th + r ·
✓

M(h)r@E
@h

◆
= 0,(1.4)

where E is the total variation energy (1.1) and M(h) is the exponential mobility

M(h) := e
��1h.(1.5)

For simplicity in what follows, we suppose that our underlying domain is the d-
dimensional torus Td and equation (1.4) is posed with periodic boundary conditions.
We normalize the initial data h(x, 0) = h0(x) to have mean zero,

R
h0 = 0, a property

that is then propagated along the flow (1.4).
Equations of this form (1.4) have a formal gradient flow structure with respect to

an H
�1 norm weighted by the mobility M(h), which we describe in detail in section 2.

For example, choosing the constant mobility M(h) ⌘ 1, one recovers classical H
�1

gradient flows, and in the case of the linear mobility M(h) = h + 1, one recovers
2-Wasserstein gradient flows on the space of probability measures [2, 38]. (Since h

has mean zero, h + 1 is a probability density as long as h � �1.). There has also
been significant work on equations of this form in the context of reaction di↵usion
equations [27] and Cahn-Hilliard equations [28], among many others.

Again, the problem of exponentiating ��1h arises in the definition of the mobility
(1.5). In order to circumvent this di�culty and thereby ensure that the weighted H

�1

gradient flow structure is well-defined, we introduce the following novel approximation:
given ' 2 C

1
c

(Td), ' � 0,
R
Td ' = 1, '✏(x) := '(x/✏)/✏

d, we consider

M✏(h) := e
�'✏⇤�1h.(1.6)

Unlike previous approximations of e
��1h via 1 � �1h, our approximation respects

the inherent asymmetry near local maxima and minima of h, becoming large when
��1h � 0 and vanishing when ��1h ⌧ 0.

With this approximation in hand, we are able to precisely define the weighted
H

�1 gradient flow of the total variation energy E with mobility M✏. Then, with the
goal of computing this flow numerically, we discretize the gradient flow in time, with
a fixed time step ⌧ > 0, via the following semi-implicit method:

(1.7) h
n+1 2 arg min

h

E(h) +
1

2⌧
kh � h

nk2
H

�1
hn

.

This approach is inspired by the classical minimizing movements scheme for gradient
flows, known as the JKO scheme in the 2-Wasserstein context [2,21]. In this way, our
numerical method can be seen as an extension of recent literature using minimizing
movement schemes to simulate nonlinear PDEs as gradient flows on metric spaces;
see [5–7, 26] and the references therein. More generally, it builds on the well-known
literature using implicit Euler time discretizations to simulate Hilbertian gradient
flows, including the H

�1 total variation flow mentioned in equation (1.3) above [23].
We show that the Euler-Lagrange equation characterizing solutions of the semi-

implicit scheme is a discrete time version of the conservative PDE (1.4):

h
n+1 � h

n

⌧
= �r ·

✓
M(hn)r @E

@hn+1

◆
.(1.8)
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Unlike previous approximations of e
��1h via 1 � �1h, our approximation respects

the inherent asymmetry near local maxima and minima of h, becoming large when
��1h � 0 and vanishing when ��1h ⌧ 0.

With this approximation in hand, we are able to precisely define the weighted
H

�1 gradient flow of the total variation energy E with mobility M✏. Then, with the
goal of computing this flow numerically, we discretize the gradient flow in time, with
a fixed time step ⌧ > 0, via the following semi-implicit method:
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n+1 2 arg min
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.

This approach is inspired by the classical minimizing movements scheme for gradient
flows, known as the JKO scheme in the 2-Wasserstein context [2,21]. In this way, our
numerical method can be seen as an extension of recent literature using minimizing
movement schemes to simulate nonlinear PDEs as gradient flows on metric spaces;
see [5–7, 26] and the references therein. More generally, it builds on the well-known
literature using implicit Euler time discretizations to simulate Hilbertian gradient
flows, including the H

�1 total variation flow mentioned in equation (1.3) above [23].
We show that the Euler-Lagrange equation characterizing solutions of the semi-

implicit scheme is a discrete time version of the conservative PDE (1.4):
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n+1 � h

n

⌧
= �r ·

✓
M(hn)r @E

@hn+1

◆
.(1.8)

ex ⇡ 1 + x, M(h) ⇡ 1��1h
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Consequently, under su�cient regularity of the energy functional E and under the
assumption that the mobility remains integrable and nonnegative along the flow,
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(Td) gradient flows correspond to solutions of the conservative PDE (1.4),
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gradient flows are 2-Wasserstein
gradient flows, and the above method can be interpreted as a semi-implicit variant of
the Jordan Kinderlehrer Otto (JKO) scheme [21], in which the Wasserstein distance is
approximated by the corresponding weighted H

�1 norm at the previous time step [5].
We begin by showing that, as long as the energy E is convex, lower semicontinuous,

and has compact sublevels with respect to an appropriate topology and E(hn) < +1,
then there exists a unique solution to this semi-implicit scheme.
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R [ {+1}. Suppose E is convex and that there exists a topology � so that E and
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Remark 2.4. Our assumption that h
n 2 L

1
M

, or equivalently, that the mobility
M(hn) is integrable and nonnegative, is necessary for the weighted Hilbert spaces to
be well-defined. Analogous requirements on the mobility have arisen in recent work
by Cancés, Gallouët, and Todeschi [5], in which they consider a fully-implicit time
discretization, in the special case that M(h) = h + 1 and h > �1.

Remark 2.5. We choose to introduce the additional topology � in Proposition 2.3
due to the fact that, in general, the topology induced by H

�1
hn

may not be strong
enough to ensure lower semicontinuity of the energy. In particular, this is the case for
the exponential mobility and total variation energy we consider in the next section.

Proof of Proposition 2.3. First, we consider existence. Since �(hn) = E(hn) <

+1,
inf

h2H
�1
hn (T)

�(h) < +1,

and we may choose a minimizing sequence h
k 2 H

�1
hn (T) so that limk!+1 �(hk) =

infh �(h). Since �(h) � E(h), {hk} belongs to a sublevel set of E , so up to a sub-
sequence, there exists h̄ so that h

k ��! h̄ 2 H
�1
h

. By lower semicontinuity of E and
k · k

H
�1
hn (T) with respect to �, lim infk!+1 �(hk) = �(h̄). Thus, h̄ is a solution of

(2.6), so a solution exists.
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In contrast, we construct our numerical method for crystal surface evolution by
starting with the macroscopic PDE (1.2) and leveraging the formal gradient flow
structure of the equation, with respect to weighted H

�1 norms. To see this structure,
note that equation (1.2) may be rewritten in the following conservative form,

@th + r ·
✓

M(h)r@E
@h

◆
= 0,(1.4)

where E is the total variation energy (1.1) and M(h) is the exponential mobility

M(h) := e
��1h.(1.5)

For simplicity in what follows, we suppose that our underlying domain is the d-
dimensional torus Td and equation (1.4) is posed with periodic boundary conditions.
We normalize the initial data h(x, 0) = h0(x) to have mean zero,

R
h0 = 0, a property

that is then propagated along the flow (1.4).
Equations of this form (1.4) have a formal gradient flow structure with respect to

an H
�1 norm weighted by the mobility M(h), which we describe in detail in section 2.

For example, choosing the constant mobility M(h) ⌘ 1, one recovers classical H
�1

gradient flows, and in the case of the linear mobility M(h) = h + 1, one recovers
2-Wasserstein gradient flows on the space of probability measures [2, 38]. (Since h

has mean zero, h + 1 is a probability density as long as h � �1.). There has also
been significant work on equations of this form in the context of reaction di↵usion
equations [27] and Cahn-Hilliard equations [28], among many others.

Again, the problem of exponentiating ��1h arises in the definition of the mobility
(1.5). In order to circumvent this di�culty and thereby ensure that the weighted H

�1

gradient flow structure is well-defined, we introduce the following novel approximation:
given ' 2 C

1
c

(Td), ' � 0,
R
Td ' = 1, '✏(x) := '(x/✏)/✏

d, we consider

M✏(h) := e
�'✏⇤�1h.(1.6)

Unlike previous approximations of e
��1h via 1 � �1h, our approximation respects

the inherent asymmetry near local maxima and minima of h, becoming large when
��1h � 0 and vanishing when ��1h ⌧ 0.

With this approximation in hand, we are able to precisely define the weighted
H

�1 gradient flow of the total variation energy E with mobility M✏. Then, with the
goal of computing this flow numerically, we discretize the gradient flow in time, with
a fixed time step ⌧ > 0, via the following semi-implicit method:

(1.7) h
n+1 2 arg min

h

E(h) +
1

2⌧
kh � h

nk2
H

�1
hn

.

This approach is inspired by the classical minimizing movements scheme for gradient
flows, known as the JKO scheme in the 2-Wasserstein context [2,21]. In this way, our
numerical method can be seen as an extension of recent literature using minimizing
movement schemes to simulate nonlinear PDEs as gradient flows on metric spaces;
see [5–7, 26] and the references therein. More generally, it builds on the well-known
literature using implicit Euler time discretizations to simulate Hilbertian gradient
flows, including the H

�1 total variation flow mentioned in equation (1.3) above [23].
We show that the Euler-Lagrange equation characterizing solutions of the semi-

implicit scheme is a discrete time version of the conservative PDE (1.4):

h
n+1 � h

n

⌧
= �r ·

✓
M(hn)r @E

@hn+1

◆
.(1.8)
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Consequently, under su�cient regularity of the energy functional E and under the
assumption that the mobility remains integrable and nonnegative along the flow,
H

�1
h

(Td) gradient flows correspond to solutions of the conservative PDE (1.4),
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H

�1
h

E(h) () @th + �h

@E

@h
= 0 () @th + r ·

✓
M(h)r@E
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◆
= 0.(2.5)

2.2. Semi-implicit scheme for H
�1
h

gradient flows. We now describe a semi-
implicit analogue of the classical minimizing movement scheme to discretize our H

�1
h

gradient flows in time: given h
n 2 L

1
M

\ H
�1
hn , solve

(2.6) h
n+1 2 arg min

h2H
�1
hn

E(h) +
1

2⌧
kh � h

nk2
H

�1
hn

.

In the particular case M(h) = h + 1, h � �1, H
�1
h

gradient flows are 2-Wasserstein
gradient flows, and the above method can be interpreted as a semi-implicit variant of
the Jordan Kinderlehrer Otto (JKO) scheme [21], in which the Wasserstein distance is
approximated by the corresponding weighted H

�1 norm at the previous time step [5].
We begin by showing that, as long as the energy E is convex, lower semicontinuous,

and has compact sublevels with respect to an appropriate topology and E(hn) < +1,
then there exists a unique solution to this semi-implicit scheme.

Proposition 2.3. Fix h
n 2 L

1
M

\ H
�1
hn and consider an energy E : H

�1
hn !

R [ {+1}. Suppose E is convex and that there exists a topology � so that E and

H
�1
hn are both lower semicontinuous with respect to � and the sublevel sets of E are

relatively �-compact in H
�1
hn . Then, if E(hn) < +1, there exists a unique h

n+1
so

that

h
n+1 2 arg min

h2H
�1
hn

�(h), for �(h) := E(h) +
1

2⌧
kh � h

nk2
H

�1
hn

.(2.7)

Remark 2.4. Our assumption that h
n 2 L

1
M

, or equivalently, that the mobility
M(hn) is integrable and nonnegative, is necessary for the weighted Hilbert spaces to
be well-defined. Analogous requirements on the mobility have arisen in recent work
by Cancés, Gallouët, and Todeschi [5], in which they consider a fully-implicit time
discretization, in the special case that M(h) = h + 1 and h > �1.

Remark 2.5. We choose to introduce the additional topology � in Proposition 2.3
due to the fact that, in general, the topology induced by H

�1
hn

may not be strong
enough to ensure lower semicontinuity of the energy. In particular, this is the case for
the exponential mobility and total variation energy we consider in the next section.

Proof of Proposition 2.3. First, we consider existence. Since �(hn) = E(hn) <

+1,
inf

h2H
�1
hn (T)

�(h) < +1,

and we may choose a minimizing sequence h
k 2 H

�1
hn (T) so that limk!+1 �(hk) =

infh �(h). Since �(h) � E(h), {hk} belongs to a sublevel set of E , so up to a sub-
sequence, there exists h̄ so that h

k ��! h̄ 2 H
�1
h

. By lower semicontinuity of E and
k · k

H
�1
hn (T) with respect to �, lim infk!+1 �(hk) = �(h̄). Thus, h̄ is a solution of

(2.6), so a solution exists.

M✏(h) = e�'✏⇤�1h, E(h) = krhk1
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- we consider a semi-implicit scheme (c.f. [Murphy, Walkington ’19] for PME) 
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there exists a unique solution hn+1 to our semi-implicit scheme

A PROXIMAL-GRADIENT ALGORITHM FOR CRYSTAL SURFACE EVOLUTION 3

In contrast, we construct our numerical method for crystal surface evolution by
starting with the macroscopic PDE (1.2) and leveraging the formal gradient flow
structure of the equation, with respect to weighted H

�1 norms. To see this structure,
note that equation (1.2) may be rewritten in the following conservative form,

@th + r ·
✓

M(h)r@E
@h

◆
= 0,(1.4)
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We normalize the initial data h(x, 0) = h0(x) to have mean zero,
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Unlike previous approximations of e
��1h via 1 � �1h, our approximation respects

the inherent asymmetry near local maxima and minima of h, becoming large when
��1h � 0 and vanishing when ��1h ⌧ 0.

With this approximation in hand, we are able to precisely define the weighted
H

�1 gradient flow of the total variation energy E with mobility M✏. Then, with the
goal of computing this flow numerically, we discretize the gradient flow in time, with
a fixed time step ⌧ > 0, via the following semi-implicit method:
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flows, known as the JKO scheme in the 2-Wasserstein context [2,21]. In this way, our
numerical method can be seen as an extension of recent literature using minimizing
movement schemes to simulate nonlinear PDEs as gradient flows on metric spaces;
see [5–7, 26] and the references therein. More generally, it builds on the well-known
literature using implicit Euler time discretizations to simulate Hilbertian gradient
flows, including the H
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We show that the Euler-Lagrange equation characterizing solutions of the semi-
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Consequently, under su�cient regularity of the energy functional E and under the
assumption that the mobility remains integrable and nonnegative along the flow,
H

�1
h

(Td) gradient flows correspond to solutions of the conservative PDE (1.4),
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H

�1
h

E(h) () @th + �h

@E

@h
= 0 () @th + r ·
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M(h)r@E
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◆
= 0.(2.5)

2.2. Semi-implicit scheme for H
�1
h

gradient flows. We now describe a semi-
implicit analogue of the classical minimizing movement scheme to discretize our H

�1
h

gradient flows in time: given h
n 2 L

1
M

\ H
�1
hn , solve

(2.6) h
n+1 2 arg min

h2H
�1
hn

E(h) +
1

2⌧
kh � h

nk2
H

�1
hn

.

In the particular case M(h) = h + 1, h � �1, H
�1
h

gradient flows are 2-Wasserstein
gradient flows, and the above method can be interpreted as a semi-implicit variant of
the Jordan Kinderlehrer Otto (JKO) scheme [21], in which the Wasserstein distance is
approximated by the corresponding weighted H

�1 norm at the previous time step [5].
We begin by showing that, as long as the energy E is convex, lower semicontinuous,

and has compact sublevels with respect to an appropriate topology and E(hn) < +1,
then there exists a unique solution to this semi-implicit scheme.

Proposition 2.3. Fix h
n 2 L

1
M

\ H
�1
hn and consider an energy E : H

�1
hn !

R [ {+1}. Suppose E is convex and that there exists a topology � so that E and

H
�1
hn are both lower semicontinuous with respect to � and the sublevel sets of E are

relatively �-compact in H
�1
hn . Then, if E(hn) < +1, there exists a unique h

n+1
so

that

h
n+1 2 arg min

h2H
�1
hn

�(h), for �(h) := E(h) +
1

2⌧
kh � h

nk2
H

�1
hn

.(2.7)

Remark 2.4. Our assumption that h
n 2 L

1
M

, or equivalently, that the mobility
M(hn) is integrable and nonnegative, is necessary for the weighted Hilbert spaces to
be well-defined. Analogous requirements on the mobility have arisen in recent work
by Cancés, Gallouët, and Todeschi [5], in which they consider a fully-implicit time
discretization, in the special case that M(h) = h + 1 and h > �1.

Remark 2.5. We choose to introduce the additional topology � in Proposition 2.3
due to the fact that, in general, the topology induced by H

�1
hn

may not be strong
enough to ensure lower semicontinuity of the energy. In particular, this is the case for
the exponential mobility and total variation energy we consider in the next section.

Proof of Proposition 2.3. First, we consider existence. Since �(hn) = E(hn) <

+1,
inf

h2H
�1
hn (T)

�(h) < +1,

and we may choose a minimizing sequence h
k 2 H

�1
hn (T) so that limk!+1 �(hk) =

infh �(h). Since �(h) � E(h), {hk} belongs to a sublevel set of E , so up to a sub-
sequence, there exists h̄ so that h

k ��! h̄ 2 H
�1
h

. By lower semicontinuity of E and
k · k

H
�1
hn (T) with respect to �, lim infk!+1 �(hk) = �(h̄). Thus, h̄ is a solution of

(2.6), so a solution exists.

- we consider a semi-implicit scheme (c.f. [Murphy, Walkington ’19] for PME) 

- for the TV energy E, if hn ∈ D(E) and M(hn) is integrable and nonnegative, 
there exists a unique solution hn+1 to our semi-implicit scheme
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In contrast, we construct our numerical method for crystal surface evolution by
starting with the macroscopic PDE (1.2) and leveraging the formal gradient flow
structure of the equation, with respect to weighted H

�1 norms. To see this structure,
note that equation (1.2) may be rewritten in the following conservative form,

@th + r ·
✓

M(h)r@E
@h

◆
= 0,(1.4)

where E is the total variation energy (1.1) and M(h) is the exponential mobility

M(h) := e
��1h.(1.5)

For simplicity in what follows, we suppose that our underlying domain is the d-
dimensional torus Td and equation (1.4) is posed with periodic boundary conditions.
We normalize the initial data h(x, 0) = h0(x) to have mean zero,

R
h0 = 0, a property

that is then propagated along the flow (1.4).
Equations of this form (1.4) have a formal gradient flow structure with respect to

an H
�1 norm weighted by the mobility M(h), which we describe in detail in section 2.

For example, choosing the constant mobility M(h) ⌘ 1, one recovers classical H
�1

gradient flows, and in the case of the linear mobility M(h) = h + 1, one recovers
2-Wasserstein gradient flows on the space of probability measures [2, 38]. (Since h

has mean zero, h + 1 is a probability density as long as h � �1.). There has also
been significant work on equations of this form in the context of reaction di↵usion
equations [27] and Cahn-Hilliard equations [28], among many others.

Again, the problem of exponentiating ��1h arises in the definition of the mobility
(1.5). In order to circumvent this di�culty and thereby ensure that the weighted H

�1

gradient flow structure is well-defined, we introduce the following novel approximation:
given ' 2 C

1
c

(Td), ' � 0,
R
Td ' = 1, '✏(x) := '(x/✏)/✏

d, we consider

M✏(h) := e
�'✏⇤�1h.(1.6)

Unlike previous approximations of e
��1h via 1 � �1h, our approximation respects

the inherent asymmetry near local maxima and minima of h, becoming large when
��1h � 0 and vanishing when ��1h ⌧ 0.

With this approximation in hand, we are able to precisely define the weighted
H

�1 gradient flow of the total variation energy E with mobility M✏. Then, with the
goal of computing this flow numerically, we discretize the gradient flow in time, with
a fixed time step ⌧ > 0, via the following semi-implicit method:

(1.7) h
n+1 2 arg min

h

E(h) +
1

2⌧
kh � h

nk2
H

�1
hn

.

This approach is inspired by the classical minimizing movements scheme for gradient
flows, known as the JKO scheme in the 2-Wasserstein context [2,21]. In this way, our
numerical method can be seen as an extension of recent literature using minimizing
movement schemes to simulate nonlinear PDEs as gradient flows on metric spaces;
see [5–7, 26] and the references therein. More generally, it builds on the well-known
literature using implicit Euler time discretizations to simulate Hilbertian gradient
flows, including the H

�1 total variation flow mentioned in equation (1.3) above [23].
We show that the Euler-Lagrange equation characterizing solutions of the semi-

implicit scheme is a discrete time version of the conservative PDE (1.4):

h
n+1 � h

n

⌧
= �r ·

✓
M(hn)r @E

@hn+1

◆
.(1.8)
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movement schemes to simulate nonlinear PDEs as gradient flows on metric spaces;
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M✏(h) = e�'✏⇤�1h, E(h) = krhk1
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Consequently, under su�cient regularity of the energy functional E and under the
assumption that the mobility remains integrable and nonnegative along the flow,
H
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(Td) gradient flows correspond to solutions of the conservative PDE (1.4),
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implicit analogue of the classical minimizing movement scheme to discretize our H
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.

In the particular case M(h) = h + 1, h � �1, H
�1
h

gradient flows are 2-Wasserstein
gradient flows, and the above method can be interpreted as a semi-implicit variant of
the Jordan Kinderlehrer Otto (JKO) scheme [21], in which the Wasserstein distance is
approximated by the corresponding weighted H

�1 norm at the previous time step [5].
We begin by showing that, as long as the energy E is convex, lower semicontinuous,

and has compact sublevels with respect to an appropriate topology and E(hn) < +1,
then there exists a unique solution to this semi-implicit scheme.

Proposition 2.3. Fix h
n 2 L

1
M

\ H
�1
hn and consider an energy E : H

�1
hn !

R [ {+1}. Suppose E is convex and that there exists a topology � so that E and

H
�1
hn are both lower semicontinuous with respect to � and the sublevel sets of E are

relatively �-compact in H
�1
hn . Then, if E(hn) < +1, there exists a unique h

n+1
so

that

h
n+1 2 arg min

h2H
�1
hn

�(h), for �(h) := E(h) +
1

2⌧
kh � h

nk2
H

�1
hn

.(2.7)

Remark 2.4. Our assumption that h
n 2 L

1
M

, or equivalently, that the mobility
M(hn) is integrable and nonnegative, is necessary for the weighted Hilbert spaces to
be well-defined. Analogous requirements on the mobility have arisen in recent work
by Cancés, Gallouët, and Todeschi [5], in which they consider a fully-implicit time
discretization, in the special case that M(h) = h + 1 and h > �1.

Remark 2.5. We choose to introduce the additional topology � in Proposition 2.3
due to the fact that, in general, the topology induced by H

�1
hn

may not be strong
enough to ensure lower semicontinuity of the energy. In particular, this is the case for
the exponential mobility and total variation energy we consider in the next section.

Proof of Proposition 2.3. First, we consider existence. Since �(hn) = E(hn) <

+1,
inf

h2H
�1
hn (T)

�(h) < +1,

and we may choose a minimizing sequence h
k 2 H

�1
hn (T) so that limk!+1 �(hk) =

infh �(h). Since �(h) � E(h), {hk} belongs to a sublevel set of E , so up to a sub-
sequence, there exists h̄ so that h

k ��! h̄ 2 H
�1
h

. By lower semicontinuity of E and
k · k

H
�1
hn (T) with respect to �, lim infk!+1 �(hk) = �(h̄). Thus, h̄ is a solution of

(2.6), so a solution exists.

M✏(h) = e�'✏⇤�1h, E(h) = krhk1
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dimensional torus Td and equation (1.4) is posed with periodic boundary conditions.
We normalize the initial data h(x, 0) = h0(x) to have mean zero,

R
h0 = 0, a property

that is then propagated along the flow (1.4).
Equations of this form (1.4) have a formal gradient flow structure with respect to

an H
�1 norm weighted by the mobility M(h), which we describe in detail in section 2.

For example, choosing the constant mobility M(h) ⌘ 1, one recovers classical H
�1

gradient flows, and in the case of the linear mobility M(h) = h + 1, one recovers
2-Wasserstein gradient flows on the space of probability measures [2, 38]. (Since h

has mean zero, h + 1 is a probability density as long as h � �1.). There has also
been significant work on equations of this form in the context of reaction di↵usion
equations [27] and Cahn-Hilliard equations [28], among many others.

Again, the problem of exponentiating ��1h arises in the definition of the mobility
(1.5). In order to circumvent this di�culty and thereby ensure that the weighted H

�1

gradient flow structure is well-defined, we introduce the following novel approximation:
given ' 2 C

1
c

(Td), ' � 0,
R
Td ' = 1, '✏(x) := '(x/✏)/✏

d, we consider

M✏(h) := e
�'✏⇤�1h.(1.6)

Unlike previous approximations of e
��1h via 1 � �1h, our approximation respects

the inherent asymmetry near local maxima and minima of h, becoming large when
��1h � 0 and vanishing when ��1h ⌧ 0.

With this approximation in hand, we are able to precisely define the weighted
H

�1 gradient flow of the total variation energy E with mobility M✏. Then, with the
goal of computing this flow numerically, we discretize the gradient flow in time, with
a fixed time step ⌧ > 0, via the following semi-implicit method:

(1.7) h
n+1 2 arg min

h

E(h) +
1

2⌧
kh � h

nk2
H

�1
hn

.

This approach is inspired by the classical minimizing movements scheme for gradient
flows, known as the JKO scheme in the 2-Wasserstein context [2,21]. In this way, our
numerical method can be seen as an extension of recent literature using minimizing
movement schemes to simulate nonlinear PDEs as gradient flows on metric spaces;
see [5–7, 26] and the references therein. More generally, it builds on the well-known
literature using implicit Euler time discretizations to simulate Hilbertian gradient
flows, including the H

�1 total variation flow mentioned in equation (1.3) above [23].
We show that the Euler-Lagrange equation characterizing solutions of the semi-

implicit scheme is a discrete time version of the conservative PDE (1.4):

h
n+1 � h

n

⌧
= �r ·

✓
M(hn)r @E

@hn+1

◆
.(1.8)

krhk1 +
1

2⌧
kh� hnk2

H
�1
hn| {z }
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krhk1 +
1

2⌧
kh� hnk2

H
�1
hn

= f(Kh) + g(h)
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• how to interpret mobility? 

• how to discretize in time? 

• how to discretize in space?

“gradient flow”

A PROXIMAL-GRADIENT ALGORITHM FOR CRYSTAL SURFACE EVOLUTION 7

Consequently, under su�cient regularity of the energy functional E and under the
assumption that the mobility remains integrable and nonnegative along the flow,
H

�1
h

(Td) gradient flows correspond to solutions of the conservative PDE (1.4),

@th = �r
H

�1
h

E(h) () @th + �h

@E

@h
= 0 () @th + r ·

✓
M(h)r@E

@h

◆
= 0.(2.5)

2.2. Semi-implicit scheme for H
�1
h

gradient flows. We now describe a semi-
implicit analogue of the classical minimizing movement scheme to discretize our H

�1
h

gradient flows in time: given h
n 2 L

1
M

\ H
�1
hn , solve

(2.6) h
n+1 2 arg min

h2H
�1
hn

E(h) +
1

2⌧
kh � h

nk2
H

�1
hn

.

In the particular case M(h) = h + 1, h � �1, H
�1
h

gradient flows are 2-Wasserstein
gradient flows, and the above method can be interpreted as a semi-implicit variant of
the Jordan Kinderlehrer Otto (JKO) scheme [21], in which the Wasserstein distance is
approximated by the corresponding weighted H

�1 norm at the previous time step [5].
We begin by showing that, as long as the energy E is convex, lower semicontinuous,

and has compact sublevels with respect to an appropriate topology and E(hn) < +1,
then there exists a unique solution to this semi-implicit scheme.

Proposition 2.3. Fix h
n 2 L

1
M

\ H
�1
hn and consider an energy E : H

�1
hn !

R [ {+1}. Suppose E is convex and that there exists a topology � so that E and

H
�1
hn are both lower semicontinuous with respect to � and the sublevel sets of E are

relatively �-compact in H
�1
hn . Then, if E(hn) < +1, there exists a unique h

n+1
so

that

h
n+1 2 arg min

h2H
�1
hn

�(h), for �(h) := E(h) +
1

2⌧
kh � h

nk2
H

�1
hn

.(2.7)

Remark 2.4. Our assumption that h
n 2 L

1
M

, or equivalently, that the mobility
M(hn) is integrable and nonnegative, is necessary for the weighted Hilbert spaces to
be well-defined. Analogous requirements on the mobility have arisen in recent work
by Cancés, Gallouët, and Todeschi [5], in which they consider a fully-implicit time
discretization, in the special case that M(h) = h + 1 and h > �1.

Remark 2.5. We choose to introduce the additional topology � in Proposition 2.3
due to the fact that, in general, the topology induced by H

�1
hn

may not be strong
enough to ensure lower semicontinuity of the energy. In particular, this is the case for
the exponential mobility and total variation energy we consider in the next section.

Proof of Proposition 2.3. First, we consider existence. Since �(hn) = E(hn) <

+1,
inf

h2H
�1
hn (T)

�(h) < +1,

and we may choose a minimizing sequence h
k 2 H

�1
hn (T) so that limk!+1 �(hk) =

infh �(h). Since �(h) � E(h), {hk} belongs to a sublevel set of E , so up to a sub-
sequence, there exists h̄ so that h

k ��! h̄ 2 H
�1
h

. By lower semicontinuity of E and
k · k

H
�1
hn (T) with respect to �, lim infk!+1 �(hk) = �(h̄). Thus, h̄ is a solution of

(2.6), so a solution exists.

M✏(h) = e�'✏⇤�1h, E(h) = krhk1
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- primal-dual algorithm! (c.f. [Laborde, Benamou, Carlier ’16], [Carrillo, C., Wang, Wei ’19],…) 

- what is the role of the Hilbert spaces           ? 
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In contrast, we construct our numerical method for crystal surface evolution by
starting with the macroscopic PDE (1.2) and leveraging the formal gradient flow
structure of the equation, with respect to weighted H

�1 norms. To see this structure,
note that equation (1.2) may be rewritten in the following conservative form,

@th + r ·
✓

M(h)r@E
@h

◆
= 0,(1.4)

where E is the total variation energy (1.1) and M(h) is the exponential mobility

M(h) := e
��1h.(1.5)

For simplicity in what follows, we suppose that our underlying domain is the d-
dimensional torus Td and equation (1.4) is posed with periodic boundary conditions.
We normalize the initial data h(x, 0) = h0(x) to have mean zero,

R
h0 = 0, a property

that is then propagated along the flow (1.4).
Equations of this form (1.4) have a formal gradient flow structure with respect to

an H
�1 norm weighted by the mobility M(h), which we describe in detail in section 2.

For example, choosing the constant mobility M(h) ⌘ 1, one recovers classical H
�1

gradient flows, and in the case of the linear mobility M(h) = h + 1, one recovers
2-Wasserstein gradient flows on the space of probability measures [2, 38]. (Since h

has mean zero, h + 1 is a probability density as long as h � �1.). There has also
been significant work on equations of this form in the context of reaction di↵usion
equations [27] and Cahn-Hilliard equations [28], among many others.

Again, the problem of exponentiating ��1h arises in the definition of the mobility
(1.5). In order to circumvent this di�culty and thereby ensure that the weighted H

�1

gradient flow structure is well-defined, we introduce the following novel approximation:
given ' 2 C

1
c

(Td), ' � 0,
R
Td ' = 1, '✏(x) := '(x/✏)/✏

d, we consider

M✏(h) := e
�'✏⇤�1h.(1.6)

Unlike previous approximations of e
��1h via 1 � �1h, our approximation respects

the inherent asymmetry near local maxima and minima of h, becoming large when
��1h � 0 and vanishing when ��1h ⌧ 0.

With this approximation in hand, we are able to precisely define the weighted
H

�1 gradient flow of the total variation energy E with mobility M✏. Then, with the
goal of computing this flow numerically, we discretize the gradient flow in time, with
a fixed time step ⌧ > 0, via the following semi-implicit method:

(1.7) h
n+1 2 arg min

h

E(h) +
1

2⌧
kh � h

nk2
H

�1
hn

.

This approach is inspired by the classical minimizing movements scheme for gradient
flows, known as the JKO scheme in the 2-Wasserstein context [2,21]. In this way, our
numerical method can be seen as an extension of recent literature using minimizing
movement schemes to simulate nonlinear PDEs as gradient flows on metric spaces;
see [5–7, 26] and the references therein. More generally, it builds on the well-known
literature using implicit Euler time discretizations to simulate Hilbertian gradient
flows, including the H

�1 total variation flow mentioned in equation (1.3) above [23].
We show that the Euler-Lagrange equation characterizing solutions of the semi-

implicit scheme is a discrete time version of the conservative PDE (1.4):

h
n+1 � h

n

⌧
= �r ·

✓
M(hn)r @E

@hn+1

◆
.(1.8)

krhk1 +
1

2⌧
kh� hnk2

H
�1
hn| {z }
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2⌧
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= f(Kh) + g(h)
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SOLVING LARGE-SCALE OPTIMIZATION PROBLEMS WITH
A CONVERGENCE RATE INDEPENDENT OF GRID SIZE⇤
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Abstract. We present a primal-dual method to solve L
1-type nonsmooth optimization problems

independently of the grid size. We apply these results to two important problems: the Rudin–Osher–
Fatemi image denoising model and the L

1 earth mover’s distance from optimal transport. Crucially,
we provide analysis that determines the choice of optimal step sizes and we prove that our method
converges independently of the grid size. Our approach allows us to solve these problems on grids as
large as 4096⇥ 4096 in a few minutes without parallelization.

Key words. total variation denoising, earth mover’s distance, optimal transport, primal-dual
algorithm, grid size independence
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1. Introduction. In recent years there has been an explosion of interest ([12,
4, 18, 16, 5, 17, 20] and many more) in solving convex optimization problems using
first-order algorithms. The primary advantage of first-order algorithms (as compared
to, say, Newton’s method) is that one need only evaluate the proximal operator or the
gradient of the functional at the current position. As a result, the complexity of each
iteration is typically linear in the total number of grid points. This opens the door to
solving extremely large problems, which would be infeasible with other methods.

However, such a viewpoint often sweeps under the rug that the convergence rate
of first-order methods may depend badly on the size of the problem. This dependence
may enter through two competing factors—the distance between the minimizer and
the initial point, and the stability of the descent information. These factors are easiest
to understand in the context of smooth gradient descent. Indeed, given a smooth
convex functional F with a unique global minimum at u⇤, gradient descent using the
inner product (·, ·)H has the convergence rate

F (un)  F (u⇤) + 2LH

ku⇤
� u0k

2
H

n+ 4
,(1.1)

where un is the nth iterate, u0 is the initial point, and LH is the Lipschitz constant of
rHF in the norm k·kH [19]. Strengthening the inner product (·, ·)H decreases LH at
the expense of increasing ku⇤

�u0kH (and vice versa). In the continuum setting, if LH

or ku⇤
�u0kH is infinite, then on a discrete grid the corresponding quantity will grow

as the grid resolution becomes finer. In these cases, each iteration of the first-order
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method is extremely e�cient, but the number of required iterations depends on the
problem size. This can place a severe restriction on the size of solvable problems.

The situation appears to be particularly dire for pathological problems where at
least one of LH or ku⇤

�u0kH is infinite for any choice of inner product. In this case,
(1.1) would suggest that it is not possible to obtain a convergence rate independent of
the grid size. Our goal in this paper is to show that this is in fact not the case—even
for pathological problems the convergence rates of first-order methods can be made
independent of the problem size.

Our approach is inspired by a more powerful convergence rate estimate given by
Nesterov in [19]. In addition to an accelerated convergence rate, Nesterov’s estimate
sequence framework reveals that for smooth convex F one has

F (un)  min
u


F (u) + 4LH

ku� u0k
2
H

(n+ 2)2

�
.(1.2)

This estimate gives far more flexibility, as we can attempt to approximate the mini-
mizer u⇤ with a sequence {uR}R>0 where each uR satisfies uR 2 argmin

ku�u0kR F (u).
If we then let �F (R) = F (uR)� F (u⇤) we see that

F (un)� F (u⇤)  �F (R) + 4LH

R2

(n+ 2)2
.(1.3)

As long as �F (R) ! 0 as R ! 1, we can choose R and n so that the right-hand side
of (1.3) is as small as desired. This perspective makes it clear that LH < 1 should be
prioritized over ku⇤

�u0kH < 1 when choosing an inner product. More importantly,
we can see that the convergence rate can be made independent of the problem size.

In this paper, we are interested in L1-type problems where the functional F is
not smooth. As such, we must consider methods which can handle nondi↵erentiable
functions. A powerful framework for nonsmooth optimization is given by primal-dual
splitting schemes. Primal-dual algorithms convert minimization problems of the form

F (u) = f(Ku) + g(u)(1.4)

into saddle point problems

L(u, p) = (Ku, p)Z + g(u)� f⇤(p),(1.5)

where f and g are convex functions, K : H ! Z is a linear map between Hilbert
spaces, and f⇤ is the convex dual of f . If one can easily compute the proximal oper-
ators of f and g, then there are many e�cient algorithms for finding the saddle point
of (1.5) such as Douglas–Rachford splitting, augmented Lagrangian, the alternating
direction of multipliers method, split Bregman, PDHG, and Nesterov’s excessive gap
method [7, 15, 11, 10, 12, 17].

In this paper, we work with a modified version of Chambolle and Pock’s primal-
dual hybrid gradient algorithm (PDHG) [4], which we call G-prox PDHG; see below.
(We pause here to note that through various reductions G-prox PDHG can be shown to
be equivalent to the well-known Douglas–Rachford splitting algorithm.) We also note
that we could have carried out our analysis and results by building upon Nesterov’s
excessive gap technique [17] instead of using PDHG.

Both PDHG and G-prox PDHG search for the saddle point of (1.5) by alternating
proximal updates of the primal and dual variables. The key di↵erence between G-prox
PDHG and the original PDHG algorithm is that our u update equation uses the
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we provide analysis that determines the choice of optimal step sizes and we prove that our method
converges independently of the grid size. Our approach allows us to solve these problems on grids as
large as 4096⇥ 4096 in a few minutes without parallelization.
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1. Introduction. In recent years there has been an explosion of interest ([12,
4, 18, 16, 5, 17, 20] and many more) in solving convex optimization problems using
first-order algorithms. The primary advantage of first-order algorithms (as compared
to, say, Newton’s method) is that one need only evaluate the proximal operator or the
gradient of the functional at the current position. As a result, the complexity of each
iteration is typically linear in the total number of grid points. This opens the door to
solving extremely large problems, which would be infeasible with other methods.

However, such a viewpoint often sweeps under the rug that the convergence rate
of first-order methods may depend badly on the size of the problem. This dependence
may enter through two competing factors—the distance between the minimizer and
the initial point, and the stability of the descent information. These factors are easiest
to understand in the context of smooth gradient descent. Indeed, given a smooth
convex functional F with a unique global minimum at u⇤, gradient descent using the
inner product (·, ·)H has the convergence rate

F (un)  F (u⇤) + 2LH

ku⇤
� u0k

2
H

n+ 4
,(1.1)

where un is the nth iterate, u0 is the initial point, and LH is the Lipschitz constant of
rHF in the norm k·kH [19]. Strengthening the inner product (·, ·)H decreases LH at
the expense of increasing ku⇤

�u0kH (and vice versa). In the continuum setting, if LH

or ku⇤
�u0kH is infinite, then on a discrete grid the corresponding quantity will grow

as the grid resolution becomes finer. In these cases, each iteration of the first-order
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CONVERGENCE RATE INDEPENDENT OF GRID SIZE 1101

method is extremely e�cient, but the number of required iterations depends on the
problem size. This can place a severe restriction on the size of solvable problems.

The situation appears to be particularly dire for pathological problems where at
least one of LH or ku⇤

�u0kH is infinite for any choice of inner product. In this case,
(1.1) would suggest that it is not possible to obtain a convergence rate independent of
the grid size. Our goal in this paper is to show that this is in fact not the case—even
for pathological problems the convergence rates of first-order methods can be made
independent of the problem size.

Our approach is inspired by a more powerful convergence rate estimate given by
Nesterov in [19]. In addition to an accelerated convergence rate, Nesterov’s estimate
sequence framework reveals that for smooth convex F one has

F (un)  min
u


F (u) + 4LH

ku� u0k
2
H

(n+ 2)2

�
.(1.2)

This estimate gives far more flexibility, as we can attempt to approximate the mini-
mizer u⇤ with a sequence {uR}R>0 where each uR satisfies uR 2 argmin

ku�u0kR F (u).
If we then let �F (R) = F (uR)� F (u⇤) we see that

F (un)� F (u⇤)  �F (R) + 4LH

R2

(n+ 2)2
.(1.3)

As long as �F (R) ! 0 as R ! 1, we can choose R and n so that the right-hand side
of (1.3) is as small as desired. This perspective makes it clear that LH < 1 should be
prioritized over ku⇤

�u0kH < 1 when choosing an inner product. More importantly,
we can see that the convergence rate can be made independent of the problem size.

In this paper, we are interested in L1-type problems where the functional F is
not smooth. As such, we must consider methods which can handle nondi↵erentiable
functions. A powerful framework for nonsmooth optimization is given by primal-dual
splitting schemes. Primal-dual algorithms convert minimization problems of the form

F (u) = f(Ku) + g(u)(1.4)

into saddle point problems

L(u, p) = (Ku, p)Z + g(u)� f⇤(p),(1.5)

where f and g are convex functions, K : H ! Z is a linear map between Hilbert
spaces, and f⇤ is the convex dual of f . If one can easily compute the proximal oper-
ators of f and g, then there are many e�cient algorithms for finding the saddle point
of (1.5) such as Douglas–Rachford splitting, augmented Lagrangian, the alternating
direction of multipliers method, split Bregman, PDHG, and Nesterov’s excessive gap
method [7, 15, 11, 10, 12, 17].

In this paper, we work with a modified version of Chambolle and Pock’s primal-
dual hybrid gradient algorithm (PDHG) [4], which we call G-prox PDHG; see below.
(We pause here to note that through various reductions G-prox PDHG can be shown to
be equivalent to the well-known Douglas–Rachford splitting algorithm.) We also note
that we could have carried out our analysis and results by building upon Nesterov’s
excessive gap technique [17] instead of using PDHG.

Both PDHG and G-prox PDHG search for the saddle point of (1.5) by alternating
proximal updates of the primal and dual variables. The key di↵erence between G-prox
PDHG and the original PDHG algorithm is that our u update equation uses the
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u⇤<latexit sha1_base64="2aSlzN1tVs3Lle75qaxa1CJL/RY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBZBPJREBT0WvXisaD+gDWWz3bRLN5uwOxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkQKg6777RRWVtfWN4qbpa3tnd298v5B08SpZrzBYhnrdkANl0LxBgqUvJ1oTqNA8lYwup36rSeujYjVI44T7kd0oEQoGEUrPaS9s1654lbdGcgy8XJSgRz1Xvmr249ZGnGFTFJjOp6boJ9RjYJJPil1U8MTykZ0wDuWKhpx42ezUyfkxCp9EsbalkIyU39PZDQyZhwFtjOiODSL3lT8z+ukGF77mVBJilyx+aIwlQRjMv2b9IXmDOXYEsq0sLcSNqSaMrTplGwI3uLLy6R5XvUuqu79ZaV2k8dRhCM4hlPw4ApqcAd1aACDATzDK7w50nlx3p2PeWvByWcO4Q+czx/9HY2Y</latexit>

• Nesterov: 
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method is extremely e�cient, but the number of required iterations depends on the
problem size. This can place a severe restriction on the size of solvable problems.

The situation appears to be particularly dire for pathological problems where at
least one of LH or ku⇤

�u0kH is infinite for any choice of inner product. In this case,
(1.1) would suggest that it is not possible to obtain a convergence rate independent of
the grid size. Our goal in this paper is to show that this is in fact not the case—even
for pathological problems the convergence rates of first-order methods can be made
independent of the problem size.

Our approach is inspired by a more powerful convergence rate estimate given by
Nesterov in [19]. In addition to an accelerated convergence rate, Nesterov’s estimate
sequence framework reveals that for smooth convex F one has

F (un)  min
u


F (u) + 4LH

ku� u0k
2
H

(n+ 2)2

�
.(1.2)

This estimate gives far more flexibility, as we can attempt to approximate the mini-
mizer u⇤ with a sequence {uR}R>0 where each uR satisfies uR 2 argmin

ku�u0kR F (u).
If we then let �F (R) = F (uR)� F (u⇤) we see that

F (un)� F (u⇤)  �F (R) + 4LH

R2

(n+ 2)2
.(1.3)

As long as �F (R) ! 0 as R ! 1, we can choose R and n so that the right-hand side
of (1.3) is as small as desired. This perspective makes it clear that LH < 1 should be
prioritized over ku⇤

�u0kH < 1 when choosing an inner product. More importantly,
we can see that the convergence rate can be made independent of the problem size.

In this paper, we are interested in L1-type problems where the functional F is
not smooth. As such, we must consider methods which can handle nondi↵erentiable
functions. A powerful framework for nonsmooth optimization is given by primal-dual
splitting schemes. Primal-dual algorithms convert minimization problems of the form

F (u) = f(Ku) + g(u)(1.4)

into saddle point problems

L(u, p) = (Ku, p)Z + g(u)� f⇤(p),(1.5)

where f and g are convex functions, K : H ! Z is a linear map between Hilbert
spaces, and f⇤ is the convex dual of f . If one can easily compute the proximal oper-
ators of f and g, then there are many e�cient algorithms for finding the saddle point
of (1.5) such as Douglas–Rachford splitting, augmented Lagrangian, the alternating
direction of multipliers method, split Bregman, PDHG, and Nesterov’s excessive gap
method [7, 15, 11, 10, 12, 17].

In this paper, we work with a modified version of Chambolle and Pock’s primal-
dual hybrid gradient algorithm (PDHG) [4], which we call G-prox PDHG; see below.
(We pause here to note that through various reductions G-prox PDHG can be shown to
be equivalent to the well-known Douglas–Rachford splitting algorithm.) We also note
that we could have carried out our analysis and results by building upon Nesterov’s
excessive gap technique [17] instead of using PDHG.

Both PDHG and G-prox PDHG search for the saddle point of (1.5) by alternating
proximal updates of the primal and dual variables. The key di↵erence between G-prox
PDHG and the original PDHG algorithm is that our u update equation uses the
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 min
ku�u0kHR


F (u) + 4LH

ku� u0k2H
(n+ 2)2

�

 F (u⇤) + 4LH

R2

(n+ 2)2
+ min

ku�u0kHR
F (u)� F (u⇤)

| {z }
�F (R)

<latexit sha1_base64="dodFUZmwmTkSQHk/reV7lW4jTaA=">AAAC7HicjVJLb9QwEHbCqyyvLRy5WKxAW1a7SpZK5ViBVPXAoazYttI6jRzH2bXqOMGPSqs0v4ELBxDiyg/ixr9hNhuptAWJkSx/nvnmm/HYSSmFsUHwy/Nv3Lx1+87G3c69+w8ePupuPj40hdOMT1khC32cUMOlUHxqhZX8uNSc5onkR8np21X86IxrIwr1wS5LHuV0rkQmGLXgijc9/wWR/CMmuVBxRc7d0MUBOY9JTu2CUVnt17ghTJo9szO813dbeIC38bvLrExTVmGQwEMMIoBOxiB5Qanrqq8G462TMbC1mC9shAnprBsA1fjlv3UnkHSRPcDEqZTrBEK8+p/em6aHbZUa2CmXlsZ7/Qmcur1gFDSGr4OwBT3U2kHc/UnSgrmcK8skNWYWBqWNKqqtYJLXHeIMLyk7pXM+A6hozk1UNY9V4+fgSXFWaFjK4sb7Z0ZFc2OWeQLM1T3M1djK+bfYzNnsdVQJVTrLFVsXypzEtsCrl8ep0JxZuQRAmRbQK2YLChO08D86MITw6pWvg8PxKHw1Ct5v93bftOPYQE/RM9RHIdpBu2gfHaApYp7wPnlfvK++8j/73/zva6rvtTlP0CXzf/wGwvTkpw==</latexit>

ku⇤ � u0kH = +1
<latexit sha1_base64="7E9gZ3aAYAlZxhW2qHkMpF+U3zc=">AAACDnicbVDLSsNAFJ3UV62vqks3g6UgiiVRQTdC0U2XFewDmhAm00k7dDIJMxMhpPkCN/6KGxeKuHXtzr9x2mahrQcuHM65l3vv8SJGpTLNb6OwtLyyulZcL21sbm3vlHf32jKMBSYtHLJQdD0kCaOctBRVjHQjQVDgMdLxRrcTv/NAhKQhv1dJRJwADTj1KUZKS265ao9j9xiewtg17bGb2gFSQ4xY2sgyeA1PbMp9lbjlilkzp4CLxMpJBeRouuUvux/iOCBcYYak7FlmpJwUCUUxI1nJjiWJEB6hAelpylFApJNO38lgVSt96IdCF1dwqv6eSFEgZRJ4unNyrZz3JuJ/Xi9W/pWTUh7FinA8W+THDKoQTrKBfSoIVizRBGFB9a0QD5FAWOkESzoEa/7lRdI+q1nnNfPuolK/yeMoggNwCI6ABS5BHTRAE7QABo/gGbyCN+PJeDHejY9Za8HIZ/bBHxifP6NFmzk=</latexit>

�F (R) ! 0
<latexit sha1_base64="kiN3HpPVYLkob6EDvJZKHIK9DiY=">AAAB+nicbVDLSsNAFL3xWesr1aWbwSLUTUlU0GVREJdV7AOaECaTSTt08mBmopTYT3HjQhG3fok7/8Zpm4W2HrhwOOde7r3HTzmTyrK+jaXlldW19dJGeXNre2fXrOy1ZZIJQlsk4Yno+lhSzmLaUkxx2k0FxZHPaccfXk38zgMVkiXxvRql1I1wP2YhI1hpyTMrTkC5wt517e4YOSpBlmdWrbo1BVokdkGqUKDpmV9OkJAsorEiHEvZs61UuTkWihFOx2UnkzTFZIj7tKdpjCMq3Xx6+hgdaSVAYSJ0xQpN1d8TOY6kHEW+7oywGsh5byL+5/UyFV64OYvTTNGYzBaFGUf6xUkOKGCCEsVHmmAimL4VkQEWmCidVlmHYM+/vEjaJ3X7tG7dnlUbl0UcJTiAQ6iBDefQgBtoQgsIPMIzvMKb8WS8GO/Gx6x1yShm9uEPjM8fSQKStA==</latexit>

<latexit sha1_base64="wiBC1bo0x12Zr1bVZt3em0S03kQ="></latexit>

1) Z = H = L
2(Rd)

2) Z = L
2(Rd) , H = Ḣ

1(Rd)



Which Hilbert space?
• [Jacobs, Léger, Li, Osher ’19] 
• Analogous result holds for Chambolle-Pock’s PDHG method (nonsmooth): 
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encode the definition of a saddle point. In addition, the primal-dual gap controls how
close one is to the minimizer of F , namely,

G(u, p) = F (u)� inf
u02H

L(u0, p) � F (u)� inf
u02H

F (u0).

Now we are ready to discuss the PDHG algorithm. PDHG searches for a saddle
point of L as follows.

Algorithm 1. PDHG.

un+1 = argmin
u2H

g(u) + (u,KT p̄n)H +
1

2⌧
ku� unk

2
H
,(2.6)

pn+1 = argmax
p2Z

�f⇤(p) + (Kun+1, p)Z �
1

2�
k(p� pn)k

2
Z
,(2.7)

p̄n+1 = 2pn+1 � pn.(2.8)

The main source of instability in the PDHG algorithm is the decoupling of the u
and p update steps. The scheme is stable if ⌧�kKTKkH < 1 [4]. However, if K is
an unbounded operator from H to Z, there are no nonzero step sizes which produce
a stable scheme. Thus, we see that the underlying Hilbert spaces H and Z play a
crucial role in the stability of the algorithm.

We conclude the background section with an important result of Chambolle and
Pock which provides a convergence rate for the PDHG algorithm. The convergence
rate is given in terms of a slightly unusual object, the partial primal-dual gap

GR1,R2(u, p) = sup
kp0�p0kZR1

L(u, p0)� inf
ku0�u0kHR2

L(u0, p),(2.9)

where u0 and p0 are the initial iterates of u and p. The partial primal-dual gap restricts
the search for maximizers p0 and minimizers u0 to balls of finite radius centered at
the initial iterates. As a result, it is possible for the partial primal-dual gap to
vanish at non saddle points. However, if GR1,R2(û, p̂) vanishes and kp̂ � p0kZ < R1,
kû� u0kH < R2, then (û, p̂) is a saddle point [4].

Theorem 2.1 (Chambolle and Pock [4]). Suppose that K : H ! Z is a bounded

operator and the step sizes ⌧ and � satisfy ⌧�kKTKkH < 1. Let uN = 1
N

PN
n=1 un

and pN = 1
N

PN
n=1 pn, where un and pn are the sequence of iterates produced by

Algorithm 1. After N iterations the partial primal-dual gap satisfies

GR1,R2(u
N , pN ) 

1

2N

✓
R2

1

⌧
+

R2
2

�

◆
.(2.10)

Formula (2.10) is very interesting. The radii R1 and R2 play the same role as the
distance term ku� u0k

2
H

in the gradient descent convergence rate formulas (1.1) and
(1.2). Similarly, the step size restriction ⌧�kKTKkH < 1 plays the same role as the
Lipschitz constant LH. Thus, we see that the convergence rate of PDHG depends on
the inner products (·, ·)H and (·, ·)Z in the same way as gradient descent. We shall
see shortly that we will be able to use these features to convert Theorem 2.1 into our
main result.
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Algorithm. G-prox PDHG.

un+1 = argmin
u2H

g(u) + (Ku, p̄n)Z +
1

2⌧
kK(u� un)k

2
Z
,

pn+1 = argmax
p2Z

�f⇤(p) + (Kun+1, p)Z �
1

2�
k(p� pn)k

2
Z
,

p̄n+1 = 2pn+1 � pn.

generalized prox term kK(u�un)k2Z as opposed to ku�unk
2
Z
for the original algorithm.

This can be understood as preconditioning the u descent direction with the operator
(KTK)�1. As a result, this scheme has a much more satisfactory stability condition.
The primal-dual step size parameters ⌧ and � only need to satisfy

⌧� < 1

compared to ⌧� < 1
kKTKkH

for the original algorithm. When K is an unbounded

operator, say, K = r and H = Z = L2, the step sizes of the discrete PDHG algorithm
must depend on the grid resolution. On the other hand, the step sizes of the discrete
G-prox PDHG algorithm will be clearly independent of the grid size. As one might
expect from our exposition above, we must pay for the increased stability by increasing
the distance between the solution u⇤ and the initial point u0. Indeed this is the case;
the convergence rate will now depend on kK(u⇤

� u0)kZ as opposed to ku⇤
� u0kH

for the original PDHG. However, this trade-o↵ is worth it. We shall show in section
3 (cf. Theorem 3.1) that under certain technical conditions the averaged sequence of

primal iterates uN = 1
N

PN
n=1 un satisfies

F (uN )  min
u


F (u) +

CkK(u� u0)kH
N

�
(1.6)

for some constant C < 1. This estimate shows that an approximate solution to the
optimization problem can be obtained independently of the grid size as long as

�F (R) = min
kK(u�u0)kZR

F (u)� F (u⇤)

goes to zero as R ! 1.
In order to obtain the convergence rate given in (1.6) the step sizes ⌧ and �

must be chosen optimally. Note this is nontrivial as the stability condition ⌧� < 1
has a degree of freedom. As it turns out, the optimal choices of ⌧ and � are highly
dependent on the properties of the functional F , the underlying space H, and the
primal and dual solutions u⇤ and p⇤, respectively. Furthermore, we shall see that the
optimal choices of ⌧ and � may depend on the user’s desired error tolerance. For
example, the optimal step sizes used to find an ✏ accurate solution may be di↵erent
from the optimal step sizes used to find an ✏/2 accurate solution!

In the face of such a complication, it seems unlikely that there is an elegant
or concise statement which provides the optimal convergence rate and optimal step
sizes for general F . Instead, we focus on two important problems: the Rudin–Osher–
Fatemi (ROF) image denoising model and the earth mover’s distance (EMD) between
two probability measures. Both of these problems can be solved very e�ciently with
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F (uN )  F (u⇤) + C
R

N
+ min

ku�u0kHR
F (u)� F (u⇤)

| {z }
�F (R)

<latexit sha1_base64="WmtIT223NlY/mJWC94yrGFweDEI=">AAACWnicbVFdSxwxFM2M36u2W9s3X0KXwq7FZaYK7aNUEJ9EF1eFzTJkMnc0mMmM+Sgscf5kX0qhf6VgZnceWvVC4Nxz7z3JPUkrwbWJot9BuLS8srq2vtHZ3Np+87b7budKl1YxGLNSlOompRoElzA23Ai4qRTQIhVwnd4fN/XrH6A0L+WlmVUwLeit5Dln1Hgq6T6c9G1yNsBEwANu8N4Af8bHmOSKMjeq3Vntc2JlBir1FDhScJk48mj3bRKRx4QU1NwxKtxpvVAZ1Y3QAO+3erXvzkAYmpz0Rz7r9qJhNA/8EsQt6KE2zpPuT5KVzBYgDRNU60kcVWbqqDKcCag7xGqoKLuntzDxUNIC9NTNranxJ89kOC+VP9LgOfvvhKOF1rMi9Z3NHvp5rSFfq02syb9NHZeVNSDZ4qLcCmxK3PiMM66AGTHzgDLF/Vsxu6PeQeN/o+NNiJ+v/BJcfRnGB8Po4rB39L21Yx3too+oj2L0FR2hU3SOxoihX+hvsBqsBX/CMNwINxetYdDOvEf/RfjhCea4sP4=</latexit>

⌧�kKTKk2
H

< 1
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• Outer time iteration: 

• Inner time iteration: for λσ < 1, 

hn+1 = argmin
h
E(h) + 1

2⌧
kh� hnk2

H
�1
hn

<latexit sha1_base64="1hrIvbIJ3FoWA/hqxKe9ieJKXz8=">AAACQHicbZBNaxsxEIa16UdSpx9Oe+xlqAmkhJhdN5BcCiGlkGMCdRzw2susrPWKSNpF0gaMop/WS35Cbz3nkkNL6bWnyI4PbdIXBC/vzDCaJ68FNzaOv0crjx4/ebq69qy1/vzFy1ftjdenpmo0ZX1aiUqf5WiY4Ir1LbeCndWaocwFG+Tnn+b1wQXThlfqi53VbCRxqnjBKdoQZe1BOXZqO/HwEVyqJaCeSq58VkIq0ZYUhfvst8r3sA1poZG6xLsepBYbD+llCTtQjlV6Oe5l7mjsdhKfuRB4n7U7cTdeCB6aZGk6ZKnjrP0tnVS0kUxZKtCYYRLXduRQW04F8620MaxGeo5TNgxWoWRm5BYAPGyGZAJFpcNTFhbp3xMOpTEzmYfO+VXmfm0e/q82bGyxP3Jc1Y1lit4tKhoBtoI5TZhwzagVs2CQah7+CrTEwMkG5q0AIbl/8kNz2usmH7rxyW7n4HCJY428Je/IFknIHjkgR+SY9AklX8k1+UF+RlfRTfQr+n3XuhItZ96QfxT9uQXIa66/</latexit>

A PROXIMAL-GRADIENT ALGORITHM FOR CRYSTAL SURFACE EVOLUTION 11

The PDHG algorithm [9, equation 11] is then given as follows:
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where �, � > 0 are given parameters. We note that the second step is an extrapolation,
while the other two steps are optimization sub-problems in h and �, respectively.

The PDHG iterations are easier to compute than our original minimization prob-
lem (3.1), since their optimizers are characterized by the Euler-Lagrange equations:

h
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where

(id +�@F
⇤)�1(u(x)) = min(|u(x)|, 1) sgn(u(x)).

These have several benefits over the Euler-Lagrange equation for the semi-implicit
scheme (1.8), which in the case of the total variation energy is given by

h
n+1 = (��1

hn + ⌧�1)
�1

�
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hn h
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�
.

First, our method allows us to avoid inverting the 1-Laplacian, which would require
further regularizations. Second, our approach preserves the decrease of the TV energy
at the discrete time level: see Remark 3.1 and Figure 4 below. Third, as predicted
in our main convergence theorem, Theorem 3.4, we are able to choose � large to ease
inversion of �h: see Figure 6 below.

Remark 3.1 (interpretation as proximal point algorithm). In the special case
that � = �, the PDHG method can be characterized as a proximal point algorithm
on the product space Ḣ

1(T) ⇥ L
2(T)d, endowed with the norm k · kL := kL1/2 · k2 for

L =


�� �r·
��r id

�
.

For further details in a slightly simpler case see, for example, He and Yuan [18].

Remark 3.2 (choice of norms). It is essential to the convergence of the PDHG
algorithm that we use a Ḣ

1 norm penalization in our definition of h
(m+1), instead of an

L
2 penalization, as in our definition of �

(m+1). As observed by Jacobs, Léger, Li, and
Osher [20], this choice of norms ensures that the gradient operator r : Ḣ

1 ! (L2)d

is bounded, so Chambolle and Pock’s estimate of the partial primal dual gap applies:
see equations (3.27) and (3.28) in the proof of our main theorem.

Remark 3.3 (extension to the standard Laplacian). It is possible to extend the
above algorithm to the case of crystal evolution equations with alternative surface
energy interactions. In particular, when �1 is replaced by � = �2 (see e.g. [1,
11, 12, 16, 30–32]), one would replace F

⇤(�) with F
⇤(�) = �k�k21. In this case,

(I + �@F
⇤)�1(u) = u/kuk2. On the other hand, for general �p, p 6= 1, 2, there is no

explicit formula for this operator (the proximal map).
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�
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�
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inversion of �h: see Figure 6 below.

Remark 3.1 (interpretation as proximal point algorithm). In the special case
that � = �, the PDHG method can be characterized as a proximal point algorithm
on the product space Ḣ
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see equations (3.27) and (3.28) in the proof of our main theorem.

Remark 3.3 (extension to the standard Laplacian). It is possible to extend the
above algorithm to the case of crystal evolution equations with alternative surface
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11, 12, 16, 30–32]), one would replace F
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where �, � > 0 are given parameters. We note that the second step is an extrapolation,
while the other two steps are optimization sub-problems in h and �, respectively.
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First, our method allows us to avoid inverting the 1-Laplacian, which would require
further regularizations. Second, our approach preserves the decrease of the TV energy
at the discrete time level: see Remark 3.1 and Figure 4 below. Third, as predicted
in our main convergence theorem, Theorem 3.4, we are able to choose � large to ease
inversion of �h: see Figure 6 below.

Remark 3.1 (interpretation as proximal point algorithm). In the special case
that � = �, the PDHG method can be characterized as a proximal point algorithm
on the product space Ḣ

1(T) ⇥ L
2(T)d, endowed with the norm k · kL := kL1/2 · k2 for
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For further details in a slightly simpler case see, for example, He and Yuan [18].

Remark 3.2 (choice of norms). It is essential to the convergence of the PDHG
algorithm that we use a Ḣ

1 norm penalization in our definition of h
(m+1), instead of an
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2 penalization, as in our definition of �

(m+1). As observed by Jacobs, Léger, Li, and
Osher [20], this choice of norms ensures that the gradient operator r : Ḣ

1 ! (L2)d

is bounded, so Chambolle and Pock’s estimate of the partial primal dual gap applies:
see equations (3.27) and (3.28) in the proof of our main theorem.

Remark 3.3 (extension to the standard Laplacian). It is possible to extend the
above algorithm to the case of crystal evolution equations with alternative surface
energy interactions. In particular, when �1 is replaced by � = �2 (see e.g. [1,
11, 12, 16, 30–32]), one would replace F

⇤(�) with F
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1 ! (L2)d

is bounded, so Chambolle and Pock’s estimate of the partial primal dual gap applies:
see equations (3.27) and (3.28) in the proof of our main theorem.

Remark 3.3 (extension to the standard Laplacian). It is possible to extend the
above algorithm to the case of crystal evolution equations with alternative surface
energy interactions. In particular, when �1 is replaced by � = �2 (see e.g. [1,
11, 12, 16, 30–32]), one would replace F

⇤(�) with F
⇤(�) = �k�k21. In this case,

(I + �@F
⇤)�1(u) = u/kuk2. On the other hand, for general �p, p 6= 1, 2, there is no

explicit formula for this operator (the proximal map).

kr
h
k 1

+
1 2⌧
kh

�
h
n
k2 H

�
1

h
n

|
{z

}
<latexit sha1_base64="B9BQXQ4iZ4zLhBBlZAPtaO/lYHA="></latexit>

discretize 
via finite 
difference 
method



Theorem: [CMLLW ’20] Let d=1. Suppose the PDHG algorithm is 
initialized with  

Then for all δ>0, there exist M̃, λ, σ, so that 

Convergence of PDHG
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F (h(M))� F (hn+1)  �, 8M � M̃,
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Remarks: 

- Extends to general M(h) provided that M(hn) and 1/M(hn+1) integrable  
[c.f. Cancés, Gallouët, and Todeschi ’19] 

- We require d=1 to conclude                                      . Higher integrability 
of 1/M(hn+1) would be required to weaken this assumption. 

- If one has ∇ hⁿ ∈ BV, quantitative estimates: M̃~δ-², λ~δ-1,σ~δ 
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sgn(x) tan(10x)

Fig. 1. Choosing the function sgn(x) or tanh(x) in the mobility (4.2) leads to di↵erent behavior
as ✏ ! 0, Nx ! +1. Above, we consider the spatially discrete mobility for height profile h(x) =
sin(x). Left: For the original mobility, with sgn(x), even when ✏ ! 0 slowly as Nx ! +1, the
L
1 norm of the mobility diverges. Right: Approximating with tanh(10x) allows us to send ✏ ! 0

rapidly as Nx ! +1, while preserving a uniform bound on the L
1 norm of the mobility.

L
1 norm of the mobility to become unbounded as ✏ ! 0, Nx ! +1, going against the

assumption in our convergence result for the PDHG method, Theorem 3.4, which was
proved for fixed ✏ > 0. On the other hand, the tanh(10x) approximation allows us to
refine ✏ and Nx simultaneously, while keeping the L

1 norm of the mobility bounded.
A thorough analysis of these limits is related to the question of existence of solutions
to the crystal surface evolution equation, and we leave a detailed study to future work.
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5. Numerical Results. In this section, we present a range of numerical exam-
ples illustrating the performance of the proposed algorithm. In each test, we consider
the stopping criteria k(h(m+1)�h

(m)
, �

(m+1)��
(m))k < �, where we take the thresh-

old � = 5⇥ 10�6. Unless otherwise specified, the outer time step for the semi-implicit
scheme h

n is chosen to be ⌧ = T/10, where T is the final computational time, so
that Nt = 10. In order to ensure that the matrix inverse in the definition of h

(m+1),
equation (4.1), is well defined, we choose � su�ciently large so that ⌧

�
kADtDk < 1.

In the following examples, we choose � = 5 ⇥ 10�4
, � = 500 for all Nx. We consider

three choices of initial data, as shown in Figure 2.
In Figure 3, we display the dynamics of the crystal surface evolution equation for

each choice of initial data. We chose ✏ = 0.04, Nx = 200 in each of these calculations,
letting T = 10�2 in the case of the Sinusoidal and the Facet dynamics and T = 10�3

for the Jump dynamics. Near the maxima, flat facets expand outward like a free
boundary type solution, while the minimum is stationary, as predicted in [29].
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Fig. 3. Dynamics of crystal surface evolution equation for di↵erent choices of initial data.
Near maxima, flat facets form and expand outward, while minima remain stationary.
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Fig. 4. Top row: The total variation energy decreases in time along numerical solutions,
reflecting the underlying gradient flow structure. Bottom row: The L

1 norms of the mobility M(h)
and the reciprocal of the mobility 1/M(h) are large, but remain bounded along the flow.

In Figure 4, we analyze properties of the numerical method, under the same
choices of parameters as in Figure 3. In the top row, we show the decrease in the
discrete TV norm kDhk1 in time along solutions of the equation, reflecting the gradient
flow structure of the equation. In the bottom row, we plot the L

1 norms of the mobility
M(h) and its reciprocal 1/M(h). A key assumption in our convergence result for the
PDHG method, Theorem 3.4, is that both remain bounded, uniformly in the spatial
discretization. We can see in the above simulations that, while these norms are very
large, they indeed remain bounded along the flow.

In Figure 5, we compare two di↵erent choices of mobility: equation (4.2) and a
modified mobility, replacing sgn(x) with tanh(10x). In both cases, we take ✏ = .04.
On one hand, the modified mobility has the benefit of drastically decreasing the L

1

norm of the mobility and its reciprocal: compare the plot on the right to the bottom
left plot of Figure 4. The method also requires fewer iterations to meet the stopping
criteria. On the other hand, the modified mobility allows for slightly more movement

Observations: 
- facet formation at local maxima 
- pinning at local minima 
Nx = 200, Nt = 10, σ = 0.0005, λ = 500, ε =0.04

T = 0.001

T = 0.01 T = 0.01
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Fig. 3. Dynamics of crystal surface evolution equation for di↵erent choices of initial data.
Near maxima, flat facets form and expand outward, while minima remain stationary.
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Fig. 4. Top row: The total variation energy decreases in time along numerical solutions,
reflecting the underlying gradient flow structure. Bottom row: The L

1 norms of the mobility M(h)
and the reciprocal of the mobility 1/M(h) are large, but remain bounded along the flow.

In Figure 4, we analyze properties of the numerical method, under the same
choices of parameters as in Figure 3. In the top row, we show the decrease in the
discrete TV norm kDhk1 in time along solutions of the equation, reflecting the gradient
flow structure of the equation. In the bottom row, we plot the L

1 norms of the mobility
M(h) and its reciprocal 1/M(h). A key assumption in our convergence result for the
PDHG method, Theorem 3.4, is that both remain bounded, uniformly in the spatial
discretization. We can see in the above simulations that, while these norms are very
large, they indeed remain bounded along the flow.

In Figure 5, we compare two di↵erent choices of mobility: equation (4.2) and a
modified mobility, replacing sgn(x) with tanh(10x). In both cases, we take ✏ = .04.
On one hand, the modified mobility has the benefit of drastically decreasing the L

1

norm of the mobility and its reciprocal: compare the plot on the right to the bottom
left plot of Figure 4. The method also requires fewer iterations to meet the stopping
criteria. On the other hand, the modified mobility allows for slightly more movement
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sgn(x) tan(10x)

Fig. 1. Choosing the function sgn(x) or tanh(x) in the mobility (4.2) leads to di↵erent behavior
as ✏ ! 0, Nx ! +1. Above, we consider the spatially discrete mobility for height profile h(x) =
sin(x). Left: For the original mobility, with sgn(x), even when ✏ ! 0 slowly as Nx ! +1, the
L
1 norm of the mobility diverges. Right: Approximating with tanh(10x) allows us to send ✏ ! 0

rapidly as Nx ! +1, while preserving a uniform bound on the L
1 norm of the mobility.

L
1 norm of the mobility to become unbounded as ✏ ! 0, Nx ! +1, going against the

assumption in our convergence result for the PDHG method, Theorem 3.4, which was
proved for fixed ✏ > 0. On the other hand, the tanh(10x) approximation allows us to
refine ✏ and Nx simultaneously, while keeping the L

1 norm of the mobility bounded.
A thorough analysis of these limits is related to the question of existence of solutions
to the crystal surface evolution equation, and we leave a detailed study to future work.
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5. Numerical Results. In this section, we present a range of numerical exam-
ples illustrating the performance of the proposed algorithm. In each test, we consider
the stopping criteria k(h(m+1)�h

(m)
, �

(m+1)��
(m))k < �, where we take the thresh-

old � = 5⇥ 10�6. Unless otherwise specified, the outer time step for the semi-implicit
scheme h

n is chosen to be ⌧ = T/10, where T is the final computational time, so
that Nt = 10. In order to ensure that the matrix inverse in the definition of h

(m+1),
equation (4.1), is well defined, we choose � su�ciently large so that ⌧

�
kADtDk < 1.

In the following examples, we choose � = 5 ⇥ 10�4
, � = 500 for all Nx. We consider

three choices of initial data, as shown in Figure 2.
In Figure 3, we display the dynamics of the crystal surface evolution equation for

each choice of initial data. We chose ✏ = 0.04, Nx = 200 in each of these calculations,
letting T = 10�2 in the case of the Sinusoidal and the Facet dynamics and T = 10�3

for the Jump dynamics. Near the maxima, flat facets expand outward like a free
boundary type solution, while the minimum is stationary, as predicted in [29].
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Fig. 3. Dynamics of crystal surface evolution equation for di↵erent choices of initial data.
Near maxima, flat facets form and expand outward, while minima remain stationary.
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Fig. 4. Top row: The total variation energy decreases in time along numerical solutions,
reflecting the underlying gradient flow structure. Bottom row: The L

1 norms of the mobility M(h)
and the reciprocal of the mobility 1/M(h) are large, but remain bounded along the flow.

In Figure 4, we analyze properties of the numerical method, under the same
choices of parameters as in Figure 3. In the top row, we show the decrease in the
discrete TV norm kDhk1 in time along solutions of the equation, reflecting the gradient
flow structure of the equation. In the bottom row, we plot the L

1 norms of the mobility
M(h) and its reciprocal 1/M(h). A key assumption in our convergence result for the
PDHG method, Theorem 3.4, is that both remain bounded, uniformly in the spatial
discretization. We can see in the above simulations that, while these norms are very
large, they indeed remain bounded along the flow.

In Figure 5, we compare two di↵erent choices of mobility: equation (4.2) and a
modified mobility, replacing sgn(x) with tanh(10x). In both cases, we take ✏ = .04.
On one hand, the modified mobility has the benefit of drastically decreasing the L

1

norm of the mobility and its reciprocal: compare the plot on the right to the bottom
left plot of Figure 4. The method also requires fewer iterations to meet the stopping
criteria. On the other hand, the modified mobility allows for slightly more movement

Observations: 
- facet formation at local maxima 
- pinning at local minima 
Nx = 200, Nt = 10, σ = 0.0005, λ = 500, ε =0.04

T = 0.001

T = 0.01 T = 0.01
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Fig. 3. Dynamics of crystal surface evolution equation for di↵erent choices of initial data.
Near maxima, flat facets form and expand outward, while minima remain stationary.
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Fig. 4. Top row: The total variation energy decreases in time along numerical solutions,
reflecting the underlying gradient flow structure. Bottom row: The L

1 norms of the mobility M(h)
and the reciprocal of the mobility 1/M(h) are large, but remain bounded along the flow.

In Figure 4, we analyze properties of the numerical method, under the same
choices of parameters as in Figure 3. In the top row, we show the decrease in the
discrete TV norm kDhk1 in time along solutions of the equation, reflecting the gradient
flow structure of the equation. In the bottom row, we plot the L

1 norms of the mobility
M(h) and its reciprocal 1/M(h). A key assumption in our convergence result for the
PDHG method, Theorem 3.4, is that both remain bounded, uniformly in the spatial
discretization. We can see in the above simulations that, while these norms are very
large, they indeed remain bounded along the flow.

In Figure 5, we compare two di↵erent choices of mobility: equation (4.2) and a
modified mobility, replacing sgn(x) with tanh(10x). In both cases, we take ✏ = .04.
On one hand, the modified mobility has the benefit of drastically decreasing the L

1

norm of the mobility and its reciprocal: compare the plot on the right to the bottom
left plot of Figure 4. The method also requires fewer iterations to meet the stopping
criteria. On the other hand, the modified mobility allows for slightly more movement
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sgn(x) tan(10x)

Fig. 1. Choosing the function sgn(x) or tanh(x) in the mobility (4.2) leads to di↵erent behavior
as ✏ ! 0, Nx ! +1. Above, we consider the spatially discrete mobility for height profile h(x) =
sin(x). Left: For the original mobility, with sgn(x), even when ✏ ! 0 slowly as Nx ! +1, the
L
1 norm of the mobility diverges. Right: Approximating with tanh(10x) allows us to send ✏ ! 0

rapidly as Nx ! +1, while preserving a uniform bound on the L
1 norm of the mobility.

L
1 norm of the mobility to become unbounded as ✏ ! 0, Nx ! +1, going against the

assumption in our convergence result for the PDHG method, Theorem 3.4, which was
proved for fixed ✏ > 0. On the other hand, the tanh(10x) approximation allows us to
refine ✏ and Nx simultaneously, while keeping the L

1 norm of the mobility bounded.
A thorough analysis of these limits is related to the question of existence of solutions
to the crystal surface evolution equation, and we leave a detailed study to future work.
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Fig. 2. Choices of initial data.

5. Numerical Results. In this section, we present a range of numerical exam-
ples illustrating the performance of the proposed algorithm. In each test, we consider
the stopping criteria k(h(m+1)�h

(m)
, �

(m+1)��
(m))k < �, where we take the thresh-

old � = 5⇥ 10�6. Unless otherwise specified, the outer time step for the semi-implicit
scheme h

n is chosen to be ⌧ = T/10, where T is the final computational time, so
that Nt = 10. In order to ensure that the matrix inverse in the definition of h

(m+1),
equation (4.1), is well defined, we choose � su�ciently large so that ⌧

�
kADtDk < 1.

In the following examples, we choose � = 5 ⇥ 10�4
, � = 500 for all Nx. We consider

three choices of initial data, as shown in Figure 2.
In Figure 3, we display the dynamics of the crystal surface evolution equation for

each choice of initial data. We chose ✏ = 0.04, Nx = 200 in each of these calculations,
letting T = 10�2 in the case of the Sinusoidal and the Facet dynamics and T = 10�3

for the Jump dynamics. Near the maxima, flat facets expand outward like a free
boundary type solution, while the minimum is stationary, as predicted in [29].
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Fig. 3. Dynamics of crystal surface evolution equation for di↵erent choices of initial data.
Near maxima, flat facets form and expand outward, while minima remain stationary.
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Fig. 4. Top row: The total variation energy decreases in time along numerical solutions,
reflecting the underlying gradient flow structure. Bottom row: The L

1 norms of the mobility M(h)
and the reciprocal of the mobility 1/M(h) are large, but remain bounded along the flow.

In Figure 4, we analyze properties of the numerical method, under the same
choices of parameters as in Figure 3. In the top row, we show the decrease in the
discrete TV norm kDhk1 in time along solutions of the equation, reflecting the gradient
flow structure of the equation. In the bottom row, we plot the L

1 norms of the mobility
M(h) and its reciprocal 1/M(h). A key assumption in our convergence result for the
PDHG method, Theorem 3.4, is that both remain bounded, uniformly in the spatial
discretization. We can see in the above simulations that, while these norms are very
large, they indeed remain bounded along the flow.

In Figure 5, we compare two di↵erent choices of mobility: equation (4.2) and a
modified mobility, replacing sgn(x) with tanh(10x). In both cases, we take ✏ = .04.
On one hand, the modified mobility has the benefit of drastically decreasing the L

1

norm of the mobility and its reciprocal: compare the plot on the right to the bottom
left plot of Figure 4. The method also requires fewer iterations to meet the stopping
criteria. On the other hand, the modified mobility allows for slightly more movement

Observations: 
- facet formation at local maxima 
- pinning at local minima 
Nx = 200, Nt = 10, σ = 0.0005, λ = 500, ε =0.04

T = 0.001

T = 0.01 T = 0.01
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Fig. 3. Dynamics of crystal surface evolution equation for di↵erent choices of initial data.
Near maxima, flat facets form and expand outward, while minima remain stationary.

Sinuoidal Jump Discontinuities Facet

0 0.002 0.004 0.006 0.008 0.01

Time

3.6

3.7

3.8

3.9

4

T
V

 N
o

rm

0 0.2 0.4 0.6 0.8 1

Time 10
-3

3.6

3.7

3.8

3.9

4

T
V

 N
o

rm

0 0.002 0.004 0.006 0.008 0.01

Time

1.92

1.94

1.96

1.98

2

T
V

 N
o

rm

0 0.002 0.004 0.006 0.008 0.01

Time

0

1

2

3

4

L
1
 N

o
rm

104

Mobility
Inverse Mobility

0 0.2 0.4 0.6 0.8 1

Time 10-3

0

1

2

3

4

L
1
 N

o
rm

104

Mobility
Inverse Mobility

0 0.002 0.004 0.006 0.008 0.01

Time

100

150

200

250

300

L
1
 N

o
rm

Mobility
Inverse Mobility

Fig. 4. Top row: The total variation energy decreases in time along numerical solutions,
reflecting the underlying gradient flow structure. Bottom row: The L

1 norms of the mobility M(h)
and the reciprocal of the mobility 1/M(h) are large, but remain bounded along the flow.

In Figure 4, we analyze properties of the numerical method, under the same
choices of parameters as in Figure 3. In the top row, we show the decrease in the
discrete TV norm kDhk1 in time along solutions of the equation, reflecting the gradient
flow structure of the equation. In the bottom row, we plot the L

1 norms of the mobility
M(h) and its reciprocal 1/M(h). A key assumption in our convergence result for the
PDHG method, Theorem 3.4, is that both remain bounded, uniformly in the spatial
discretization. We can see in the above simulations that, while these norms are very
large, they indeed remain bounded along the flow.

In Figure 5, we compare two di↵erent choices of mobility: equation (4.2) and a
modified mobility, replacing sgn(x) with tanh(10x). In both cases, we take ✏ = .04.
On one hand, the modified mobility has the benefit of drastically decreasing the L

1

norm of the mobility and its reciprocal: compare the plot on the right to the bottom
left plot of Figure 4. The method also requires fewer iterations to meet the stopping
criteria. On the other hand, the modified mobility allows for slightly more movement
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sgn(x) tan(10x)

Fig. 1. Choosing the function sgn(x) or tanh(x) in the mobility (4.2) leads to di↵erent behavior
as ✏ ! 0, Nx ! +1. Above, we consider the spatially discrete mobility for height profile h(x) =
sin(x). Left: For the original mobility, with sgn(x), even when ✏ ! 0 slowly as Nx ! +1, the
L
1 norm of the mobility diverges. Right: Approximating with tanh(10x) allows us to send ✏ ! 0

rapidly as Nx ! +1, while preserving a uniform bound on the L
1 norm of the mobility.

L
1 norm of the mobility to become unbounded as ✏ ! 0, Nx ! +1, going against the

assumption in our convergence result for the PDHG method, Theorem 3.4, which was
proved for fixed ✏ > 0. On the other hand, the tanh(10x) approximation allows us to
refine ✏ and Nx simultaneously, while keeping the L

1 norm of the mobility bounded.
A thorough analysis of these limits is related to the question of existence of solutions
to the crystal surface evolution equation, and we leave a detailed study to future work.
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Fig. 2. Choices of initial data.

5. Numerical Results. In this section, we present a range of numerical exam-
ples illustrating the performance of the proposed algorithm. In each test, we consider
the stopping criteria k(h(m+1)�h

(m)
, �

(m+1)��
(m))k < �, where we take the thresh-

old � = 5⇥ 10�6. Unless otherwise specified, the outer time step for the semi-implicit
scheme h

n is chosen to be ⌧ = T/10, where T is the final computational time, so
that Nt = 10. In order to ensure that the matrix inverse in the definition of h

(m+1),
equation (4.1), is well defined, we choose � su�ciently large so that ⌧

�
kADtDk < 1.

In the following examples, we choose � = 5 ⇥ 10�4
, � = 500 for all Nx. We consider

three choices of initial data, as shown in Figure 2.
In Figure 3, we display the dynamics of the crystal surface evolution equation for

each choice of initial data. We chose ✏ = 0.04, Nx = 200 in each of these calculations,
letting T = 10�2 in the case of the Sinusoidal and the Facet dynamics and T = 10�3

for the Jump dynamics. Near the maxima, flat facets expand outward like a free
boundary type solution, while the minimum is stationary, as predicted in [29].
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Fig. 3. Dynamics of crystal surface evolution equation for di↵erent choices of initial data.
Near maxima, flat facets form and expand outward, while minima remain stationary.
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Fig. 4. Top row: The total variation energy decreases in time along numerical solutions,
reflecting the underlying gradient flow structure. Bottom row: The L

1 norms of the mobility M(h)
and the reciprocal of the mobility 1/M(h) are large, but remain bounded along the flow.

In Figure 4, we analyze properties of the numerical method, under the same
choices of parameters as in Figure 3. In the top row, we show the decrease in the
discrete TV norm kDhk1 in time along solutions of the equation, reflecting the gradient
flow structure of the equation. In the bottom row, we plot the L

1 norms of the mobility
M(h) and its reciprocal 1/M(h). A key assumption in our convergence result for the
PDHG method, Theorem 3.4, is that both remain bounded, uniformly in the spatial
discretization. We can see in the above simulations that, while these norms are very
large, they indeed remain bounded along the flow.

In Figure 5, we compare two di↵erent choices of mobility: equation (4.2) and a
modified mobility, replacing sgn(x) with tanh(10x). In both cases, we take ✏ = .04.
On one hand, the modified mobility has the benefit of drastically decreasing the L

1

norm of the mobility and its reciprocal: compare the plot on the right to the bottom
left plot of Figure 4. The method also requires fewer iterations to meet the stopping
criteria. On the other hand, the modified mobility allows for slightly more movement

Observations: 
- facet formation at local maxima 
- pinning at local minima 
Nx = 200, Nt = 10, σ = 0.0005, λ = 500, ε =0.04

T = 0.001

T = 0.01 T = 0.01
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Fig. 3. Dynamics of crystal surface evolution equation for di↵erent choices of initial data.
Near maxima, flat facets form and expand outward, while minima remain stationary.
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Fig. 4. Top row: The total variation energy decreases in time along numerical solutions,
reflecting the underlying gradient flow structure. Bottom row: The L

1 norms of the mobility M(h)
and the reciprocal of the mobility 1/M(h) are large, but remain bounded along the flow.

In Figure 4, we analyze properties of the numerical method, under the same
choices of parameters as in Figure 3. In the top row, we show the decrease in the
discrete TV norm kDhk1 in time along solutions of the equation, reflecting the gradient
flow structure of the equation. In the bottom row, we plot the L

1 norms of the mobility
M(h) and its reciprocal 1/M(h). A key assumption in our convergence result for the
PDHG method, Theorem 3.4, is that both remain bounded, uniformly in the spatial
discretization. We can see in the above simulations that, while these norms are very
large, they indeed remain bounded along the flow.

In Figure 5, we compare two di↵erent choices of mobility: equation (4.2) and a
modified mobility, replacing sgn(x) with tanh(10x). In both cases, we take ✏ = .04.
On one hand, the modified mobility has the benefit of drastically decreasing the L

1

norm of the mobility and its reciprocal: compare the plot on the right to the bottom
left plot of Figure 4. The method also requires fewer iterations to meet the stopping
criteria. On the other hand, the modified mobility allows for slightly more movement
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sgn(x) tan(10x)

Fig. 1. Choosing the function sgn(x) or tanh(x) in the mobility (4.2) leads to di↵erent behavior
as ✏ ! 0, Nx ! +1. Above, we consider the spatially discrete mobility for height profile h(x) =
sin(x). Left: For the original mobility, with sgn(x), even when ✏ ! 0 slowly as Nx ! +1, the
L
1 norm of the mobility diverges. Right: Approximating with tanh(10x) allows us to send ✏ ! 0

rapidly as Nx ! +1, while preserving a uniform bound on the L
1 norm of the mobility.

L
1 norm of the mobility to become unbounded as ✏ ! 0, Nx ! +1, going against the

assumption in our convergence result for the PDHG method, Theorem 3.4, which was
proved for fixed ✏ > 0. On the other hand, the tanh(10x) approximation allows us to
refine ✏ and Nx simultaneously, while keeping the L

1 norm of the mobility bounded.
A thorough analysis of these limits is related to the question of existence of solutions
to the crystal surface evolution equation, and we leave a detailed study to future work.
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Fig. 2. Choices of initial data.

5. Numerical Results. In this section, we present a range of numerical exam-
ples illustrating the performance of the proposed algorithm. In each test, we consider
the stopping criteria k(h(m+1)�h

(m)
, �

(m+1)��
(m))k < �, where we take the thresh-

old � = 5⇥ 10�6. Unless otherwise specified, the outer time step for the semi-implicit
scheme h

n is chosen to be ⌧ = T/10, where T is the final computational time, so
that Nt = 10. In order to ensure that the matrix inverse in the definition of h

(m+1),
equation (4.1), is well defined, we choose � su�ciently large so that ⌧

�
kADtDk < 1.

In the following examples, we choose � = 5 ⇥ 10�4
, � = 500 for all Nx. We consider

three choices of initial data, as shown in Figure 2.
In Figure 3, we display the dynamics of the crystal surface evolution equation for

each choice of initial data. We chose ✏ = 0.04, Nx = 200 in each of these calculations,
letting T = 10�2 in the case of the Sinusoidal and the Facet dynamics and T = 10�3

for the Jump dynamics. Near the maxima, flat facets expand outward like a free
boundary type solution, while the minimum is stationary, as predicted in [29].
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Fig. 3. Dynamics of crystal surface evolution equation for di↵erent choices of initial data.
Near maxima, flat facets form and expand outward, while minima remain stationary.
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Fig. 4. Top row: The total variation energy decreases in time along numerical solutions,
reflecting the underlying gradient flow structure. Bottom row: The L

1 norms of the mobility M(h)
and the reciprocal of the mobility 1/M(h) are large, but remain bounded along the flow.

In Figure 4, we analyze properties of the numerical method, under the same
choices of parameters as in Figure 3. In the top row, we show the decrease in the
discrete TV norm kDhk1 in time along solutions of the equation, reflecting the gradient
flow structure of the equation. In the bottom row, we plot the L

1 norms of the mobility
M(h) and its reciprocal 1/M(h). A key assumption in our convergence result for the
PDHG method, Theorem 3.4, is that both remain bounded, uniformly in the spatial
discretization. We can see in the above simulations that, while these norms are very
large, they indeed remain bounded along the flow.

In Figure 5, we compare two di↵erent choices of mobility: equation (4.2) and a
modified mobility, replacing sgn(x) with tanh(10x). In both cases, we take ✏ = .04.
On one hand, the modified mobility has the benefit of drastically decreasing the L

1

norm of the mobility and its reciprocal: compare the plot on the right to the bottom
left plot of Figure 4. The method also requires fewer iterations to meet the stopping
criteria. On the other hand, the modified mobility allows for slightly more movement

Observations: 
- facet formation at local maxima 
- pinning at local minima 
Nx = 200, Nt = 10, σ = 0.0005, λ = 500, ε =0.04

T = 0.001

T = 0.01 T = 0.01
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Fig. 3. Dynamics of crystal surface evolution equation for di↵erent choices of initial data.
Near maxima, flat facets form and expand outward, while minima remain stationary.
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Fig. 4. Top row: The total variation energy decreases in time along numerical solutions,
reflecting the underlying gradient flow structure. Bottom row: The L

1 norms of the mobility M(h)
and the reciprocal of the mobility 1/M(h) are large, but remain bounded along the flow.

In Figure 4, we analyze properties of the numerical method, under the same
choices of parameters as in Figure 3. In the top row, we show the decrease in the
discrete TV norm kDhk1 in time along solutions of the equation, reflecting the gradient
flow structure of the equation. In the bottom row, we plot the L

1 norms of the mobility
M(h) and its reciprocal 1/M(h). A key assumption in our convergence result for the
PDHG method, Theorem 3.4, is that both remain bounded, uniformly in the spatial
discretization. We can see in the above simulations that, while these norms are very
large, they indeed remain bounded along the flow.

In Figure 5, we compare two di↵erent choices of mobility: equation (4.2) and a
modified mobility, replacing sgn(x) with tanh(10x). In both cases, we take ✏ = .04.
On one hand, the modified mobility has the benefit of drastically decreasing the L

1

norm of the mobility and its reciprocal: compare the plot on the right to the bottom
left plot of Figure 4. The method also requires fewer iterations to meet the stopping
criteria. On the other hand, the modified mobility allows for slightly more movement
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Fig. 3. Dynamics of crystal surface evolution equation for di↵erent choices of initial data.
Near maxima, flat facets form and expand outward, while minima remain stationary.
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In Figure 4, we analyze properties of the numerical method, under the same
choices of parameters as in Figure 3. In the top row, we show the decrease in the
discrete TV norm kDhk1 in time along solutions of the equation, reflecting the gradient
flow structure of the equation. In the bottom row, we plot the L

1 norms of the mobility
M(h) and its reciprocal 1/M(h). A key assumption in our convergence result for the
PDHG method, Theorem 3.4, is that both remain bounded, uniformly in the spatial
discretization. We can see in the above simulations that, while these norms are very
large, they indeed remain bounded along the flow.

In Figure 5, we compare two di↵erent choices of mobility: equation (4.2) and a
modified mobility, replacing sgn(x) with tanh(10x). In both cases, we take ✏ = .04.
On one hand, the modified mobility has the benefit of drastically decreasing the L

1

norm of the mobility and its reciprocal: compare the plot on the right to the bottom
left plot of Figure 4. The method also requires fewer iterations to meet the stopping
criteria. On the other hand, the modified mobility allows for slightly more movement
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Observations: 
- Error vs Nx: slightly sublinear convergence (low spatial regularity)  
- Error vs Nt: first order (semi-implicit Euler) 
- Internal time steps vs Nt: importance of selecting correct Hilbert space 

sinusoidal, (Nx = 200), (Nt = 10), σ = 0.0005, λ = 500, ε =0.05, T = 10-4
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Fig. 5. We compare the dynamics of the mobility given by equation (4.2) with a modified
mobility, in which sgn(x) is replaced by tanh(10x). While the original mobility more accurately
prevents facet formation at the local minimum, the modified mobility leads has smaller L

1 norm and
requires fewer iterations to converge.

and facet formation at the minimum, which goes against the predicted dynamics of
the original equation: compare the plot on the left with the plot in the middle.
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1 error vs. external time step. Right: Comparison of number of time steps required to

meet stopping criteria for either Ḣ
1 or L

2 penalization. We observe superior performance for the
Ḣ

1 penalization, especially as the spatial grid is refined.

Finally, in Figure 6, we analyze the rate of convergence of our method. We con-
sider sinusoidal initial data with the modified mobility, replacing sgn(x) with tan(10x),
✏ = .05 and T = 10�4. On the left, we examine how the relative L

1 error depends
on the number of spatial gridpoints Nx for a fixed temporal discretization, Nt = 10.
For Nx = 16, 32, 64, 128, 256, 512, we plot kh(Nx) � h(2Nx)kL1 . We observe slightly
sublinear convergence, in line with the low spatial regularity of our solutions.

In the middle plot, we examine how the relative L
1 error scales with the external

time step, used to define the semi-implicit scheme h
n via ⌧ = T/Nt, for a fixed spatial

discretization Nx = 256. For Nt = 5, 10, 20, 40, 80, we plot kh(Nt) � h(2Nt)kL1 . We
observe approximately first order convergence, in agreement with the interpretation
of our scheme as a semi-implicit version of the minimizing movements scheme, which
can be thought of as a generalized Euler method.

In the right plot, we illustrate the importance of the choice of norms in our PDHG
algorithm, as explained in Remark 3.2. At the fully discrete level, existing work [9]
ensures that the PDHG algorithm would converge, even if the norm penalization in
the definition of h

(m+1) was changed from a Ḣ
1 norm to a L

2 norm. At the level of
Algorithm 4.1, this would amount to modifying the computation of h

(m+1) as follows:

h
(m+1) =

✓
I +

�

⌧
A�1(·� h

n)

◆�1 ⇣
h
(m) � �Dt

�
(m)

⌘
.(5.1)
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By the Gibbs-Thomson relation [24, 25, 33, 39] (which is related to an ideal gas law
approximation), the corresponding local-equilibrium density of adatoms is formally
%s = %

0 exp[µs/(kBT )], where %
0 is a constant reference density [19,44], T is a temper-

ature, and kB is the Boltzmann constant. An application of Fick’s law then predicts
that the flux is

J = �Ds r%s = �Ds%
0re

µs/(kBT )
,

where Ds is the surface di↵usion constant [33]. In this way, we obtain the hydrody-
namic equation

@th + r · J = 0.

Normalizing all constants to be one by rescaling in space and time, we formally arrive
at the following PDE for the evolution of the crystal surface height:

@th = �e
��1h .(1.2)

A thorough derivation of (1.2) from microscopic dynamics can be found in [29].
Away from facets, this equation is consistent with the continuum limit of the

Burton-Cabrera-Frank (BCF) theory for moving steps in 2+1 dimensions [4, 33]. See
also [3] for a numerical study of 1d facet dynamics. This equation also relates to a
family of Kinetic Monte Carlo models of crystal surface relaxation, including both
the solid-on-solid (SOS) and discrete Gaussian models, in which the 1-Laplacian is
replaced by a p-Laplacian, p � 1 [12,25,34].

Note that, even in one dimension and for h(x, t) is smooth, the 1-Laplacian �1h

is a linear combination of positive and negative Dirac masses, so e
��1h is not well-

defined. Consequently, equation (1.2) must be interpreted in a generalized sense.
One avenue considered in previous work is to take a first order approximation of the
exponential in the Gibbs-Thomson relation, replacing e

x with 1 + x, which leads to
the H

�1 total variation flow studied by Giga, et. al., [13–15,22,37]

@th = �(��1h) .(1.3)

A limitation of this approach is that it treats local maxima and minima of h sym-
metrically, in contrast to the original equation (1.2), which causes local maxima to
form expanding facets, while local minima remain stationary. Ultimately, determin-
ing an appropriate notion of weak solution for equation (1.2) and proving existence
of solutions remains a challenging open problem.

In spite of these gaps in the underlying theory of the crystal surface evolution
equation, we seek to develop a computationally e�cient numerical method for accurate
simulation of its solutions, while respecting the inherent asymmetry between facet
formation at local maxima and pinning at local minima. Recent work by the middle
three authors and Margetis [29] and the fourth author and Weare [34], numerically
explored the crystal surface evolution equation, using various regularizations. On one
hand, these simulations compared well with existing microscopic models and respected
the di↵erent dynamics at local maxima and minima. On the other hand, they were
not motivated by a strong notion of convergence to the macrosopic PDE dynamics,
and due to the inherent sti↵ness of the model, were only e↵ective on coarse spatial
grids, with serious numerical convergence issues arising on fine grids, even in one
dimension.

crystal growth PDE
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Consequently, under su�cient regularity of the energy functional E and under the
assumption that the mobility remains integrable and nonnegative along the flow,
H

�1
h

(Td) gradient flows correspond to solutions of the conservative PDE (1.4),

@th = �r
H

�1
h

E(h) () @th + �h

@E

@h
= 0 () @th + r ·

✓
M(h)r@E

@h

◆
= 0.(2.5)

2.2. Semi-implicit scheme for H
�1
h

gradient flows. We now describe a semi-
implicit analogue of the classical minimizing movement scheme to discretize our H

�1
h

gradient flows in time: given h
n 2 L

1
M

\ H
�1
hn , solve

(2.6) h
n+1 2 arg min

h2H
�1
hn

E(h) +
1

2⌧
kh � h

nk2
H

�1
hn

.

In the particular case M(h) = h + 1, h � �1, H
�1
h

gradient flows are 2-Wasserstein
gradient flows, and the above method can be interpreted as a semi-implicit variant of
the Jordan Kinderlehrer Otto (JKO) scheme [21], in which the Wasserstein distance is
approximated by the corresponding weighted H

�1 norm at the previous time step [5].
We begin by showing that, as long as the energy E is convex, lower semicontinuous,

and has compact sublevels with respect to an appropriate topology and E(hn) < +1,
then there exists a unique solution to this semi-implicit scheme.

Proposition 2.3. Fix h
n 2 L

1
M

\ H
�1
hn and consider an energy E : H

�1
hn !

R [ {+1}. Suppose E is convex and that there exists a topology � so that E and

H
�1
hn are both lower semicontinuous with respect to � and the sublevel sets of E are

relatively �-compact in H
�1
hn . Then, if E(hn) < +1, there exists a unique h

n+1
so

that

h
n+1 2 arg min

h2H
�1
hn

�(h), for �(h) := E(h) +
1

2⌧
kh � h

nk2
H

�1
hn

.(2.7)

Remark 2.4. Our assumption that h
n 2 L

1
M

, or equivalently, that the mobility
M(hn) is integrable and nonnegative, is necessary for the weighted Hilbert spaces to
be well-defined. Analogous requirements on the mobility have arisen in recent work
by Cancés, Gallouët, and Todeschi [5], in which they consider a fully-implicit time
discretization, in the special case that M(h) = h + 1 and h > �1.

Remark 2.5. We choose to introduce the additional topology � in Proposition 2.3
due to the fact that, in general, the topology induced by H

�1
hn

may not be strong
enough to ensure lower semicontinuity of the energy. In particular, this is the case for
the exponential mobility and total variation energy we consider in the next section.

Proof of Proposition 2.3. First, we consider existence. Since �(hn) = E(hn) <

+1,
inf

h2H
�1
hn (T)

�(h) < +1,

and we may choose a minimizing sequence h
k 2 H

�1
hn (T) so that limk!+1 �(hk) =

infh �(h). Since �(h) � E(h), {hk} belongs to a sublevel set of E , so up to a sub-
sequence, there exists h̄ so that h

k ��! h̄ 2 H
�1
h

. By lower semicontinuity of E and
k · k

H
�1
hn (T) with respect to �, lim infk!+1 �(hk) = �(h̄). Thus, h̄ is a solution of

(2.6), so a solution exists.

“gradient flow”

M✏(h) = e�'✏⇤�1h, E(h) = krhk1
<latexit sha1_base64="yWDDg2B7D2UbXK2CTs32ldgJG28="></latexit>

hn+1 = argmin
h
E(h) + 1

2⌧
kh� hnk2

H
�1
hn

<latexit sha1_base64="1hrIvbIJ3FoWA/hqxKe9ieJKXz8=">AAACQHicbZBNaxsxEIa16UdSpx9Oe+xlqAmkhJhdN5BcCiGlkGMCdRzw2susrPWKSNpF0gaMop/WS35Cbz3nkkNL6bWnyI4PbdIXBC/vzDCaJ68FNzaOv0crjx4/ebq69qy1/vzFy1ftjdenpmo0ZX1aiUqf5WiY4Ir1LbeCndWaocwFG+Tnn+b1wQXThlfqi53VbCRxqnjBKdoQZe1BOXZqO/HwEVyqJaCeSq58VkIq0ZYUhfvst8r3sA1poZG6xLsepBYbD+llCTtQjlV6Oe5l7mjsdhKfuRB4n7U7cTdeCB6aZGk6ZKnjrP0tnVS0kUxZKtCYYRLXduRQW04F8620MaxGeo5TNgxWoWRm5BYAPGyGZAJFpcNTFhbp3xMOpTEzmYfO+VXmfm0e/q82bGyxP3Jc1Y1lit4tKhoBtoI5TZhwzagVs2CQah7+CrTEwMkG5q0AIbl/8kNz2usmH7rxyW7n4HCJY428Je/IFknIHjkgR+SY9AklX8k1+UF+RlfRTfQr+n3XuhItZ96QfxT9uQXIa66/</latexit>
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The PDHG algorithm [9, equation 11] is then given as follows:

h
(m+1) = arg min

h2L1,
R
h=0

1

2⌧
kh � h

(0)k2
H

�1

h
(0)

+

Z
rh · �(m) +

1

2�
kh � h

(m)k2
Ḣ1(3.5)

h̄
(m+1) = 2h

(m+1) � h
(m)(3.6)

�
(m+1) = arg max

�2L1
�F

⇤(�) +

Z
rh̄

(m+1) · � � 1

2�
k� � �

(m)k22,(3.7)

where �, � > 0 are given parameters. We note that the second step is an extrapolation,
while the other two steps are optimization sub-problems in h and �, respectively.

The PDHG iterations are easier to compute than our original minimization prob-
lem (3.1), since their optimizers are characterized by the Euler-Lagrange equations:

h
(m+1) =

✓
�� � �

⌧
��1

hn (·� h
n)

◆�1 ⇣
��h

(m) + �r · �(m)
⌘

(3.8)

h̄
(m+1) = 2h

(m+1) � h
(m)(3.9)

�
(m+1) = (id +�@F

⇤)�1(�(m) + �rh̄
(m+1)) ,(3.10)

where

(id +�@F
⇤)�1(u(x)) = min(|u(x)|, 1) sgn(u(x)).

These have several benefits over the Euler-Lagrange equation for the semi-implicit
scheme (1.8), which in the case of the total variation energy is given by

h
n+1 = (��1

hn + ⌧�1)
�1

�
��1

hn h
n
�
.

First, our method allows us to avoid inverting the 1-Laplacian, which would require
further regularizations. Second, our approach preserves the decrease of the TV energy
at the discrete time level: see Remark 3.1 and Figure 4 below. Third, as predicted
in our main convergence theorem, Theorem 3.4, we are able to choose � large to ease
inversion of �h: see Figure 6 below.

Remark 3.1 (interpretation as proximal point algorithm). In the special case
that � = �, the PDHG method can be characterized as a proximal point algorithm
on the product space Ḣ

1(T) ⇥ L
2(T)d, endowed with the norm k · kL := kL1/2 · k2 for

L =


�� �r·
��r id

�
.

For further details in a slightly simpler case see, for example, He and Yuan [18].

Remark 3.2 (choice of norms). It is essential to the convergence of the PDHG
algorithm that we use a Ḣ

1 norm penalization in our definition of h
(m+1), instead of an

L
2 penalization, as in our definition of �

(m+1). As observed by Jacobs, Léger, Li, and
Osher [20], this choice of norms ensures that the gradient operator r : Ḣ

1 ! (L2)d

is bounded, so Chambolle and Pock’s estimate of the partial primal dual gap applies:
see equations (3.27) and (3.28) in the proof of our main theorem.

Remark 3.3 (extension to the standard Laplacian). It is possible to extend the
above algorithm to the case of crystal evolution equations with alternative surface
energy interactions. In particular, when �1 is replaced by � = �2 (see e.g. [1,
11, 12, 16, 30–32]), one would replace F

⇤(�) with F
⇤(�) = �k�k21. In this case,

(I + �@F
⇤)�1(u) = u/kuk2. On the other hand, for general �p, p 6= 1, 2, there is no

explicit formula for this operator (the proximal map).

h(m+1) =
⇣ ⌧
�
�hn�+ id

⌘�1 ⇣ ⌧
�
�hn�h(m) � ⌧�hnr · �(m) + hn

⌘

<latexit sha1_base64="HfT7g9OEqTuLpQ1dsW+EJnzsGis="></latexit>
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By the Gibbs-Thomson relation [24, 25, 33, 39] (which is related to an ideal gas law
approximation), the corresponding local-equilibrium density of adatoms is formally
%s = %

0 exp[µs/(kBT )], where %
0 is a constant reference density [19,44], T is a temper-

ature, and kB is the Boltzmann constant. An application of Fick’s law then predicts
that the flux is

J = �Ds r%s = �Ds%
0re

µs/(kBT )
,

where Ds is the surface di↵usion constant [33]. In this way, we obtain the hydrody-
namic equation

@th + r · J = 0.

Normalizing all constants to be one by rescaling in space and time, we formally arrive
at the following PDE for the evolution of the crystal surface height:

@th = �e
��1h .(1.2)

A thorough derivation of (1.2) from microscopic dynamics can be found in [29].
Away from facets, this equation is consistent with the continuum limit of the

Burton-Cabrera-Frank (BCF) theory for moving steps in 2+1 dimensions [4, 33]. See
also [3] for a numerical study of 1d facet dynamics. This equation also relates to a
family of Kinetic Monte Carlo models of crystal surface relaxation, including both
the solid-on-solid (SOS) and discrete Gaussian models, in which the 1-Laplacian is
replaced by a p-Laplacian, p � 1 [12,25,34].

Note that, even in one dimension and for h(x, t) is smooth, the 1-Laplacian �1h

is a linear combination of positive and negative Dirac masses, so e
��1h is not well-

defined. Consequently, equation (1.2) must be interpreted in a generalized sense.
One avenue considered in previous work is to take a first order approximation of the
exponential in the Gibbs-Thomson relation, replacing e

x with 1 + x, which leads to
the H

�1 total variation flow studied by Giga, et. al., [13–15,22,37]

@th = �(��1h) .(1.3)

A limitation of this approach is that it treats local maxima and minima of h sym-
metrically, in contrast to the original equation (1.2), which causes local maxima to
form expanding facets, while local minima remain stationary. Ultimately, determin-
ing an appropriate notion of weak solution for equation (1.2) and proving existence
of solutions remains a challenging open problem.

In spite of these gaps in the underlying theory of the crystal surface evolution
equation, we seek to develop a computationally e�cient numerical method for accurate
simulation of its solutions, while respecting the inherent asymmetry between facet
formation at local maxima and pinning at local minima. Recent work by the middle
three authors and Margetis [29] and the fourth author and Weare [34], numerically
explored the crystal surface evolution equation, using various regularizations. On one
hand, these simulations compared well with existing microscopic models and respected
the di↵erent dynamics at local maxima and minima. On the other hand, they were
not motivated by a strong notion of convergence to the macrosopic PDE dynamics,
and due to the inherent sti↵ness of the model, were only e↵ective on coarse spatial
grids, with serious numerical convergence issues arising on fine grids, even in one
dimension.
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Consequently, under su�cient regularity of the energy functional E and under the
assumption that the mobility remains integrable and nonnegative along the flow,
H

�1
h

(Td) gradient flows correspond to solutions of the conservative PDE (1.4),

@th = �r
H

�1
h

E(h) () @th + �h

@E

@h
= 0 () @th + r ·

✓
M(h)r@E

@h

◆
= 0.(2.5)

2.2. Semi-implicit scheme for H
�1
h

gradient flows. We now describe a semi-
implicit analogue of the classical minimizing movement scheme to discretize our H

�1
h

gradient flows in time: given h
n 2 L

1
M

\ H
�1
hn , solve

(2.6) h
n+1 2 arg min

h2H
�1
hn

E(h) +
1

2⌧
kh � h

nk2
H

�1
hn

.

In the particular case M(h) = h + 1, h � �1, H
�1
h

gradient flows are 2-Wasserstein
gradient flows, and the above method can be interpreted as a semi-implicit variant of
the Jordan Kinderlehrer Otto (JKO) scheme [21], in which the Wasserstein distance is
approximated by the corresponding weighted H

�1 norm at the previous time step [5].
We begin by showing that, as long as the energy E is convex, lower semicontinuous,

and has compact sublevels with respect to an appropriate topology and E(hn) < +1,
then there exists a unique solution to this semi-implicit scheme.

Proposition 2.3. Fix h
n 2 L

1
M

\ H
�1
hn and consider an energy E : H

�1
hn !

R [ {+1}. Suppose E is convex and that there exists a topology � so that E and

H
�1
hn are both lower semicontinuous with respect to � and the sublevel sets of E are

relatively �-compact in H
�1
hn . Then, if E(hn) < +1, there exists a unique h

n+1
so

that

h
n+1 2 arg min

h2H
�1
hn

�(h), for �(h) := E(h) +
1

2⌧
kh � h

nk2
H

�1
hn

.(2.7)

Remark 2.4. Our assumption that h
n 2 L

1
M

, or equivalently, that the mobility
M(hn) is integrable and nonnegative, is necessary for the weighted Hilbert spaces to
be well-defined. Analogous requirements on the mobility have arisen in recent work
by Cancés, Gallouët, and Todeschi [5], in which they consider a fully-implicit time
discretization, in the special case that M(h) = h + 1 and h > �1.

Remark 2.5. We choose to introduce the additional topology � in Proposition 2.3
due to the fact that, in general, the topology induced by H

�1
hn

may not be strong
enough to ensure lower semicontinuity of the energy. In particular, this is the case for
the exponential mobility and total variation energy we consider in the next section.

Proof of Proposition 2.3. First, we consider existence. Since �(hn) = E(hn) <

+1,
inf

h2H
�1
hn (T)

�(h) < +1,

and we may choose a minimizing sequence h
k 2 H

�1
hn (T) so that limk!+1 �(hk) =

infh �(h). Since �(h) � E(h), {hk} belongs to a sublevel set of E , so up to a sub-
sequence, there exists h̄ so that h

k ��! h̄ 2 H
�1
h

. By lower semicontinuity of E and
k · k

H
�1
hn (T) with respect to �, lim infk!+1 �(hk) = �(h̄). Thus, h̄ is a solution of

(2.6), so a solution exists.

“gradient flow”

M✏(h) = e�'✏⇤�1h, E(h) = krhk1
<latexit sha1_base64="yWDDg2B7D2UbXK2CTs32ldgJG28=">AAACP3icbVBNSyNBFOxxdTdGd82uRy+NQdBlN8zownoRgh/gRVAwUUjH4U3nxWns6Rm6e4Qwm3+2F/+CN69ePCji1ZudD8Svgoai6hX9XkWZFMb6/pU38Wly6vOX0nR5Zvbrt7nK9x9Nk+aaY4OnMtXHERiUQmHDCivxONMISSTxKDrbGvhH56iNSNWh7WXYTuBUia7gYJ0UVpp7IcPMCJmq5XiFblA8KX6zc9BZLJ4d+pOybZQWwoDGffqLUZaAjTnIYqc/irF/TEEkgcaOhkFYqfo1fwj6ngRjUiVj7IeVS9ZJeZ6gslyCMa3Az2y7AG0Fl9gvs9xgBvwMTrHlqIIETbsY3t+nS07p0G6q3VOWDtWXiQISY3pJ5CYHe5u33kD8yGvltrveLoTKcouKjz7q5pLalA7KpB2hkVvZcwS4Fm5XymPQwK2rvOxKCN6e/J40V2vBWs0/+FOtb47rKJEFskiWSUD+kjrZJfukQTj5T67JLbnzLrwb7957GI1OeOPMPHkF7/EJR/CtPw==</latexit>

hn+1 = argmin
h
E(h) + 1

2⌧
kh� hnk2

H
�1
hn

<latexit sha1_base64="1hrIvbIJ3FoWA/hqxKe9ieJKXz8=">AAACQHicbZBNaxsxEIa16UdSpx9Oe+xlqAmkhJhdN5BcCiGlkGMCdRzw2susrPWKSNpF0gaMop/WS35Cbz3nkkNL6bWnyI4PbdIXBC/vzDCaJ68FNzaOv0crjx4/ebq69qy1/vzFy1ftjdenpmo0ZX1aiUqf5WiY4Ir1LbeCndWaocwFG+Tnn+b1wQXThlfqi53VbCRxqnjBKdoQZe1BOXZqO/HwEVyqJaCeSq58VkIq0ZYUhfvst8r3sA1poZG6xLsepBYbD+llCTtQjlV6Oe5l7mjsdhKfuRB4n7U7cTdeCB6aZGk6ZKnjrP0tnVS0kUxZKtCYYRLXduRQW04F8620MaxGeo5TNgxWoWRm5BYAPGyGZAJFpcNTFhbp3xMOpTEzmYfO+VXmfm0e/q82bGyxP3Jc1Y1lit4tKhoBtoI5TZhwzagVs2CQah7+CrTEwMkG5q0AIbl/8kNz2usmH7rxyW7n4HCJY428Je/IFknIHjkgR+SY9AklX8k1+UF+RlfRTfQr+n3XuhItZ96QfxT9uQXIa66/</latexit>
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The PDHG algorithm [9, equation 11] is then given as follows:

h
(m+1) = arg min

h2L1,
R
h=0

1

2⌧
kh � h

(0)k2
H

�1

h
(0)

+

Z
rh · �(m) +

1

2�
kh � h

(m)k2
Ḣ1(3.5)

h̄
(m+1) = 2h

(m+1) � h
(m)(3.6)

�
(m+1) = arg max

�2L1
�F

⇤(�) +

Z
rh̄

(m+1) · � � 1

2�
k� � �

(m)k22,(3.7)

where �, � > 0 are given parameters. We note that the second step is an extrapolation,
while the other two steps are optimization sub-problems in h and �, respectively.

The PDHG iterations are easier to compute than our original minimization prob-
lem (3.1), since their optimizers are characterized by the Euler-Lagrange equations:

h
(m+1) =

✓
�� � �

⌧
��1

hn (·� h
n)

◆�1 ⇣
��h

(m) + �r · �(m)
⌘

(3.8)

h̄
(m+1) = 2h

(m+1) � h
(m)(3.9)

�
(m+1) = (id +�@F

⇤)�1(�(m) + �rh̄
(m+1)) ,(3.10)

where

(id +�@F
⇤)�1(u(x)) = min(|u(x)|, 1) sgn(u(x)).

These have several benefits over the Euler-Lagrange equation for the semi-implicit
scheme (1.8), which in the case of the total variation energy is given by

h
n+1 = (��1

hn + ⌧�1)
�1

�
��1

hn h
n
�
.

First, our method allows us to avoid inverting the 1-Laplacian, which would require
further regularizations. Second, our approach preserves the decrease of the TV energy
at the discrete time level: see Remark 3.1 and Figure 4 below. Third, as predicted
in our main convergence theorem, Theorem 3.4, we are able to choose � large to ease
inversion of �h: see Figure 6 below.

Remark 3.1 (interpretation as proximal point algorithm). In the special case
that � = �, the PDHG method can be characterized as a proximal point algorithm
on the product space Ḣ

1(T) ⇥ L
2(T)d, endowed with the norm k · kL := kL1/2 · k2 for

L =


�� �r·
��r id

�
.

For further details in a slightly simpler case see, for example, He and Yuan [18].

Remark 3.2 (choice of norms). It is essential to the convergence of the PDHG
algorithm that we use a Ḣ

1 norm penalization in our definition of h
(m+1), instead of an

L
2 penalization, as in our definition of �

(m+1). As observed by Jacobs, Léger, Li, and
Osher [20], this choice of norms ensures that the gradient operator r : Ḣ

1 ! (L2)d

is bounded, so Chambolle and Pock’s estimate of the partial primal dual gap applies:
see equations (3.27) and (3.28) in the proof of our main theorem.

Remark 3.3 (extension to the standard Laplacian). It is possible to extend the
above algorithm to the case of crystal evolution equations with alternative surface
energy interactions. In particular, when �1 is replaced by � = �2 (see e.g. [1,
11, 12, 16, 30–32]), one would replace F

⇤(�) with F
⇤(�) = �k�k21. In this case,

(I + �@F
⇤)�1(u) = u/kuk2. On the other hand, for general �p, p 6= 1, 2, there is no

explicit formula for this operator (the proximal map).

h(m+1) =
⇣ ⌧
�
�hn�+ id

⌘�1 ⇣ ⌧
�
�hn�h(m) � ⌧�hnr · �(m) + hn

⌘

<latexit sha1_base64="HfT7g9OEqTuLpQ1dsW+EJnzsGis="></latexit>

Today: Convergence of PDHG, 
E TV energy, gen M(h), d=1
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By the Gibbs-Thomson relation [24, 25, 33, 39] (which is related to an ideal gas law
approximation), the corresponding local-equilibrium density of adatoms is formally
%s = %

0 exp[µs/(kBT )], where %
0 is a constant reference density [19,44], T is a temper-

ature, and kB is the Boltzmann constant. An application of Fick’s law then predicts
that the flux is

J = �Ds r%s = �Ds%
0re

µs/(kBT )
,

where Ds is the surface di↵usion constant [33]. In this way, we obtain the hydrody-
namic equation

@th + r · J = 0.

Normalizing all constants to be one by rescaling in space and time, we formally arrive
at the following PDE for the evolution of the crystal surface height:

@th = �e
��1h .(1.2)

A thorough derivation of (1.2) from microscopic dynamics can be found in [29].
Away from facets, this equation is consistent with the continuum limit of the

Burton-Cabrera-Frank (BCF) theory for moving steps in 2+1 dimensions [4, 33]. See
also [3] for a numerical study of 1d facet dynamics. This equation also relates to a
family of Kinetic Monte Carlo models of crystal surface relaxation, including both
the solid-on-solid (SOS) and discrete Gaussian models, in which the 1-Laplacian is
replaced by a p-Laplacian, p � 1 [12,25,34].

Note that, even in one dimension and for h(x, t) is smooth, the 1-Laplacian �1h

is a linear combination of positive and negative Dirac masses, so e
��1h is not well-

defined. Consequently, equation (1.2) must be interpreted in a generalized sense.
One avenue considered in previous work is to take a first order approximation of the
exponential in the Gibbs-Thomson relation, replacing e

x with 1 + x, which leads to
the H

�1 total variation flow studied by Giga, et. al., [13–15,22,37]

@th = �(��1h) .(1.3)

A limitation of this approach is that it treats local maxima and minima of h sym-
metrically, in contrast to the original equation (1.2), which causes local maxima to
form expanding facets, while local minima remain stationary. Ultimately, determin-
ing an appropriate notion of weak solution for equation (1.2) and proving existence
of solutions remains a challenging open problem.

In spite of these gaps in the underlying theory of the crystal surface evolution
equation, we seek to develop a computationally e�cient numerical method for accurate
simulation of its solutions, while respecting the inherent asymmetry between facet
formation at local maxima and pinning at local minima. Recent work by the middle
three authors and Margetis [29] and the fourth author and Weare [34], numerically
explored the crystal surface evolution equation, using various regularizations. On one
hand, these simulations compared well with existing microscopic models and respected
the di↵erent dynamics at local maxima and minima. On the other hand, they were
not motivated by a strong notion of convergence to the macrosopic PDE dynamics,
and due to the inherent sti↵ness of the model, were only e↵ective on coarse spatial
grids, with serious numerical convergence issues arising on fine grids, even in one
dimension.
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Consequently, under su�cient regularity of the energy functional E and under the
assumption that the mobility remains integrable and nonnegative along the flow,
H

�1
h

(Td) gradient flows correspond to solutions of the conservative PDE (1.4),

@th = �r
H

�1
h

E(h) () @th + �h

@E

@h
= 0 () @th + r ·

✓
M(h)r@E

@h

◆
= 0.(2.5)

2.2. Semi-implicit scheme for H
�1
h

gradient flows. We now describe a semi-
implicit analogue of the classical minimizing movement scheme to discretize our H

�1
h

gradient flows in time: given h
n 2 L

1
M

\ H
�1
hn , solve

(2.6) h
n+1 2 arg min

h2H
�1
hn

E(h) +
1

2⌧
kh � h

nk2
H

�1
hn

.

In the particular case M(h) = h + 1, h � �1, H
�1
h

gradient flows are 2-Wasserstein
gradient flows, and the above method can be interpreted as a semi-implicit variant of
the Jordan Kinderlehrer Otto (JKO) scheme [21], in which the Wasserstein distance is
approximated by the corresponding weighted H

�1 norm at the previous time step [5].
We begin by showing that, as long as the energy E is convex, lower semicontinuous,

and has compact sublevels with respect to an appropriate topology and E(hn) < +1,
then there exists a unique solution to this semi-implicit scheme.

Proposition 2.3. Fix h
n 2 L

1
M

\ H
�1
hn and consider an energy E : H

�1
hn !

R [ {+1}. Suppose E is convex and that there exists a topology � so that E and

H
�1
hn are both lower semicontinuous with respect to � and the sublevel sets of E are

relatively �-compact in H
�1
hn . Then, if E(hn) < +1, there exists a unique h

n+1
so

that

h
n+1 2 arg min

h2H
�1
hn

�(h), for �(h) := E(h) +
1

2⌧
kh � h

nk2
H

�1
hn

.(2.7)

Remark 2.4. Our assumption that h
n 2 L

1
M

, or equivalently, that the mobility
M(hn) is integrable and nonnegative, is necessary for the weighted Hilbert spaces to
be well-defined. Analogous requirements on the mobility have arisen in recent work
by Cancés, Gallouët, and Todeschi [5], in which they consider a fully-implicit time
discretization, in the special case that M(h) = h + 1 and h > �1.

Remark 2.5. We choose to introduce the additional topology � in Proposition 2.3
due to the fact that, in general, the topology induced by H

�1
hn

may not be strong
enough to ensure lower semicontinuity of the energy. In particular, this is the case for
the exponential mobility and total variation energy we consider in the next section.

Proof of Proposition 2.3. First, we consider existence. Since �(hn) = E(hn) <

+1,
inf

h2H
�1
hn (T)

�(h) < +1,

and we may choose a minimizing sequence h
k 2 H

�1
hn (T) so that limk!+1 �(hk) =

infh �(h). Since �(h) � E(h), {hk} belongs to a sublevel set of E , so up to a sub-
sequence, there exists h̄ so that h

k ��! h̄ 2 H
�1
h

. By lower semicontinuity of E and
k · k

H
�1
hn (T) with respect to �, lim infk!+1 �(hk) = �(h̄). Thus, h̄ is a solution of

(2.6), so a solution exists.

“gradient flow”

M✏(h) = e�'✏⇤�1h, E(h) = krhk1
<latexit sha1_base64="yWDDg2B7D2UbXK2CTs32ldgJG28="></latexit>

hn+1 = argmin
h
E(h) + 1

2⌧
kh� hnk2

H
�1
hn

<latexit sha1_base64="1hrIvbIJ3FoWA/hqxKe9ieJKXz8=">AAACQHicbZBNaxsxEIa16UdSpx9Oe+xlqAmkhJhdN5BcCiGlkGMCdRzw2susrPWKSNpF0gaMop/WS35Cbz3nkkNL6bWnyI4PbdIXBC/vzDCaJ68FNzaOv0crjx4/ebq69qy1/vzFy1ftjdenpmo0ZX1aiUqf5WiY4Ir1LbeCndWaocwFG+Tnn+b1wQXThlfqi53VbCRxqnjBKdoQZe1BOXZqO/HwEVyqJaCeSq58VkIq0ZYUhfvst8r3sA1poZG6xLsepBYbD+llCTtQjlV6Oe5l7mjsdhKfuRB4n7U7cTdeCB6aZGk6ZKnjrP0tnVS0kUxZKtCYYRLXduRQW04F8620MaxGeo5TNgxWoWRm5BYAPGyGZAJFpcNTFhbp3xMOpTEzmYfO+VXmfm0e/q82bGyxP3Jc1Y1lit4tKhoBtoI5TZhwzagVs2CQah7+CrTEwMkG5q0AIbl/8kNz2usmH7rxyW7n4HCJY428Je/IFknIHjkgR+SY9AklX8k1+UF+RlfRTfQr+n3XuhItZ96QfxT9uQXIa66/</latexit>
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The PDHG algorithm [9, equation 11] is then given as follows:

h
(m+1) = arg min

h2L1,
R
h=0

1

2⌧
kh � h

(0)k2
H

�1

h
(0)

+

Z
rh · �(m) +

1

2�
kh � h

(m)k2
Ḣ1(3.5)

h̄
(m+1) = 2h

(m+1) � h
(m)(3.6)

�
(m+1) = arg max

�2L1
�F

⇤(�) +

Z
rh̄

(m+1) · � � 1

2�
k� � �

(m)k22,(3.7)

where �, � > 0 are given parameters. We note that the second step is an extrapolation,
while the other two steps are optimization sub-problems in h and �, respectively.

The PDHG iterations are easier to compute than our original minimization prob-
lem (3.1), since their optimizers are characterized by the Euler-Lagrange equations:

h
(m+1) =

✓
�� � �

⌧
��1

hn (·� h
n)

◆�1 ⇣
��h

(m) + �r · �(m)
⌘

(3.8)

h̄
(m+1) = 2h

(m+1) � h
(m)(3.9)

�
(m+1) = (id +�@F

⇤)�1(�(m) + �rh̄
(m+1)) ,(3.10)

where

(id +�@F
⇤)�1(u(x)) = min(|u(x)|, 1) sgn(u(x)).

These have several benefits over the Euler-Lagrange equation for the semi-implicit
scheme (1.8), which in the case of the total variation energy is given by

h
n+1 = (��1

hn + ⌧�1)
�1

�
��1

hn h
n
�
.

First, our method allows us to avoid inverting the 1-Laplacian, which would require
further regularizations. Second, our approach preserves the decrease of the TV energy
at the discrete time level: see Remark 3.1 and Figure 4 below. Third, as predicted
in our main convergence theorem, Theorem 3.4, we are able to choose � large to ease
inversion of �h: see Figure 6 below.

Remark 3.1 (interpretation as proximal point algorithm). In the special case
that � = �, the PDHG method can be characterized as a proximal point algorithm
on the product space Ḣ

1(T) ⇥ L
2(T)d, endowed with the norm k · kL := kL1/2 · k2 for

L =


�� �r·
��r id

�
.

For further details in a slightly simpler case see, for example, He and Yuan [18].

Remark 3.2 (choice of norms). It is essential to the convergence of the PDHG
algorithm that we use a Ḣ

1 norm penalization in our definition of h
(m+1), instead of an

L
2 penalization, as in our definition of �

(m+1). As observed by Jacobs, Léger, Li, and
Osher [20], this choice of norms ensures that the gradient operator r : Ḣ

1 ! (L2)d

is bounded, so Chambolle and Pock’s estimate of the partial primal dual gap applies:
see equations (3.27) and (3.28) in the proof of our main theorem.

Remark 3.3 (extension to the standard Laplacian). It is possible to extend the
above algorithm to the case of crystal evolution equations with alternative surface
energy interactions. In particular, when �1 is replaced by � = �2 (see e.g. [1,
11, 12, 16, 30–32]), one would replace F

⇤(�) with F
⇤(�) = �k�k21. In this case,

(I + �@F
⇤)�1(u) = u/kuk2. On the other hand, for general �p, p 6= 1, 2, there is no

explicit formula for this operator (the proximal map).

h(m+1) =
⇣ ⌧
�
�hn�+ id

⌘�1 ⇣ ⌧
�
�hn�h(m) � ⌧�hnr · �(m) + hn

⌘

<latexit sha1_base64="HfT7g9OEqTuLpQ1dsW+EJnzsGis="></latexit>

Today: Convergence of PDHG, 
E TV energy, gen M(h), d=1
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By the Gibbs-Thomson relation [24, 25, 33, 39] (which is related to an ideal gas law
approximation), the corresponding local-equilibrium density of adatoms is formally
%s = %

0 exp[µs/(kBT )], where %
0 is a constant reference density [19,44], T is a temper-

ature, and kB is the Boltzmann constant. An application of Fick’s law then predicts
that the flux is

J = �Ds r%s = �Ds%
0re

µs/(kBT )
,

where Ds is the surface di↵usion constant [33]. In this way, we obtain the hydrody-
namic equation

@th + r · J = 0.

Normalizing all constants to be one by rescaling in space and time, we formally arrive
at the following PDE for the evolution of the crystal surface height:

@th = �e
��1h .(1.2)

A thorough derivation of (1.2) from microscopic dynamics can be found in [29].
Away from facets, this equation is consistent with the continuum limit of the

Burton-Cabrera-Frank (BCF) theory for moving steps in 2+1 dimensions [4, 33]. See
also [3] for a numerical study of 1d facet dynamics. This equation also relates to a
family of Kinetic Monte Carlo models of crystal surface relaxation, including both
the solid-on-solid (SOS) and discrete Gaussian models, in which the 1-Laplacian is
replaced by a p-Laplacian, p � 1 [12,25,34].

Note that, even in one dimension and for h(x, t) is smooth, the 1-Laplacian �1h

is a linear combination of positive and negative Dirac masses, so e
��1h is not well-

defined. Consequently, equation (1.2) must be interpreted in a generalized sense.
One avenue considered in previous work is to take a first order approximation of the
exponential in the Gibbs-Thomson relation, replacing e

x with 1 + x, which leads to
the H

�1 total variation flow studied by Giga, et. al., [13–15,22,37]

@th = �(��1h) .(1.3)

A limitation of this approach is that it treats local maxima and minima of h sym-
metrically, in contrast to the original equation (1.2), which causes local maxima to
form expanding facets, while local minima remain stationary. Ultimately, determin-
ing an appropriate notion of weak solution for equation (1.2) and proving existence
of solutions remains a challenging open problem.

In spite of these gaps in the underlying theory of the crystal surface evolution
equation, we seek to develop a computationally e�cient numerical method for accurate
simulation of its solutions, while respecting the inherent asymmetry between facet
formation at local maxima and pinning at local minima. Recent work by the middle
three authors and Margetis [29] and the fourth author and Weare [34], numerically
explored the crystal surface evolution equation, using various regularizations. On one
hand, these simulations compared well with existing microscopic models and respected
the di↵erent dynamics at local maxima and minima. On the other hand, they were
not motivated by a strong notion of convergence to the macrosopic PDE dynamics,
and due to the inherent sti↵ness of the model, were only e↵ective on coarse spatial
grids, with serious numerical convergence issues arising on fine grids, even in one
dimension.
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Consequently, under su�cient regularity of the energy functional E and under the
assumption that the mobility remains integrable and nonnegative along the flow,
H

�1
h

(Td) gradient flows correspond to solutions of the conservative PDE (1.4),

@th = �r
H

�1
h

E(h) () @th + �h

@E

@h
= 0 () @th + r ·

✓
M(h)r@E

@h

◆
= 0.(2.5)

2.2. Semi-implicit scheme for H
�1
h

gradient flows. We now describe a semi-
implicit analogue of the classical minimizing movement scheme to discretize our H

�1
h

gradient flows in time: given h
n 2 L

1
M

\ H
�1
hn , solve

(2.6) h
n+1 2 arg min

h2H
�1
hn

E(h) +
1

2⌧
kh � h

nk2
H

�1
hn

.

In the particular case M(h) = h + 1, h � �1, H
�1
h

gradient flows are 2-Wasserstein
gradient flows, and the above method can be interpreted as a semi-implicit variant of
the Jordan Kinderlehrer Otto (JKO) scheme [21], in which the Wasserstein distance is
approximated by the corresponding weighted H

�1 norm at the previous time step [5].
We begin by showing that, as long as the energy E is convex, lower semicontinuous,

and has compact sublevels with respect to an appropriate topology and E(hn) < +1,
then there exists a unique solution to this semi-implicit scheme.

Proposition 2.3. Fix h
n 2 L

1
M

\ H
�1
hn and consider an energy E : H

�1
hn !

R [ {+1}. Suppose E is convex and that there exists a topology � so that E and

H
�1
hn are both lower semicontinuous with respect to � and the sublevel sets of E are

relatively �-compact in H
�1
hn . Then, if E(hn) < +1, there exists a unique h

n+1
so

that

h
n+1 2 arg min

h2H
�1
hn

�(h), for �(h) := E(h) +
1

2⌧
kh � h

nk2
H

�1
hn

.(2.7)

Remark 2.4. Our assumption that h
n 2 L

1
M

, or equivalently, that the mobility
M(hn) is integrable and nonnegative, is necessary for the weighted Hilbert spaces to
be well-defined. Analogous requirements on the mobility have arisen in recent work
by Cancés, Gallouët, and Todeschi [5], in which they consider a fully-implicit time
discretization, in the special case that M(h) = h + 1 and h > �1.

Remark 2.5. We choose to introduce the additional topology � in Proposition 2.3
due to the fact that, in general, the topology induced by H

�1
hn

may not be strong
enough to ensure lower semicontinuity of the energy. In particular, this is the case for
the exponential mobility and total variation energy we consider in the next section.

Proof of Proposition 2.3. First, we consider existence. Since �(hn) = E(hn) <

+1,
inf

h2H
�1
hn (T)

�(h) < +1,

and we may choose a minimizing sequence h
k 2 H

�1
hn (T) so that limk!+1 �(hk) =

infh �(h). Since �(h) � E(h), {hk} belongs to a sublevel set of E , so up to a sub-
sequence, there exists h̄ so that h

k ��! h̄ 2 H
�1
h

. By lower semicontinuity of E and
k · k

H
�1
hn (T) with respect to �, lim infk!+1 �(hk) = �(h̄). Thus, h̄ is a solution of

(2.6), so a solution exists.

“gradient flow”

M✏(h) = e�'✏⇤�1h, E(h) = krhk1
<latexit sha1_base64="yWDDg2B7D2UbXK2CTs32ldgJG28="></latexit>

hn+1 = argmin
h
E(h) + 1

2⌧
kh� hnk2

H
�1
hn

<latexit sha1_base64="1hrIvbIJ3FoWA/hqxKe9ieJKXz8=">AAACQHicbZBNaxsxEIa16UdSpx9Oe+xlqAmkhJhdN5BcCiGlkGMCdRzw2susrPWKSNpF0gaMop/WS35Cbz3nkkNL6bWnyI4PbdIXBC/vzDCaJ68FNzaOv0crjx4/ebq69qy1/vzFy1ftjdenpmo0ZX1aiUqf5WiY4Ir1LbeCndWaocwFG+Tnn+b1wQXThlfqi53VbCRxqnjBKdoQZe1BOXZqO/HwEVyqJaCeSq58VkIq0ZYUhfvst8r3sA1poZG6xLsepBYbD+llCTtQjlV6Oe5l7mjsdhKfuRB4n7U7cTdeCB6aZGk6ZKnjrP0tnVS0kUxZKtCYYRLXduRQW04F8620MaxGeo5TNgxWoWRm5BYAPGyGZAJFpcNTFhbp3xMOpTEzmYfO+VXmfm0e/q82bGyxP3Jc1Y1lit4tKhoBtoI5TZhwzagVs2CQah7+CrTEwMkG5q0AIbl/8kNz2usmH7rxyW7n4HCJY428Je/IFknIHjkgR+SY9AklX8k1+UF+RlfRTfQr+n3XuhItZ96QfxT9uQXIa66/</latexit>
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The PDHG algorithm [9, equation 11] is then given as follows:

h
(m+1) = arg min

h2L1,
R
h=0

1

2⌧
kh � h

(0)k2
H

�1

h
(0)

+

Z
rh · �(m) +

1

2�
kh � h

(m)k2
Ḣ1(3.5)

h̄
(m+1) = 2h

(m+1) � h
(m)(3.6)

�
(m+1) = arg max

�2L1
�F

⇤(�) +

Z
rh̄

(m+1) · � � 1

2�
k� � �

(m)k22,(3.7)

where �, � > 0 are given parameters. We note that the second step is an extrapolation,
while the other two steps are optimization sub-problems in h and �, respectively.

The PDHG iterations are easier to compute than our original minimization prob-
lem (3.1), since their optimizers are characterized by the Euler-Lagrange equations:

h
(m+1) =

✓
�� � �

⌧
��1

hn (·� h
n)

◆�1 ⇣
��h

(m) + �r · �(m)
⌘

(3.8)

h̄
(m+1) = 2h

(m+1) � h
(m)(3.9)

�
(m+1) = (id +�@F

⇤)�1(�(m) + �rh̄
(m+1)) ,(3.10)

where

(id +�@F
⇤)�1(u(x)) = min(|u(x)|, 1) sgn(u(x)).

These have several benefits over the Euler-Lagrange equation for the semi-implicit
scheme (1.8), which in the case of the total variation energy is given by

h
n+1 = (��1

hn + ⌧�1)
�1

�
��1

hn h
n
�
.

First, our method allows us to avoid inverting the 1-Laplacian, which would require
further regularizations. Second, our approach preserves the decrease of the TV energy
at the discrete time level: see Remark 3.1 and Figure 4 below. Third, as predicted
in our main convergence theorem, Theorem 3.4, we are able to choose � large to ease
inversion of �h: see Figure 6 below.

Remark 3.1 (interpretation as proximal point algorithm). In the special case
that � = �, the PDHG method can be characterized as a proximal point algorithm
on the product space Ḣ

1(T) ⇥ L
2(T)d, endowed with the norm k · kL := kL1/2 · k2 for

L =


�� �r·
��r id

�
.

For further details in a slightly simpler case see, for example, He and Yuan [18].

Remark 3.2 (choice of norms). It is essential to the convergence of the PDHG
algorithm that we use a Ḣ

1 norm penalization in our definition of h
(m+1), instead of an

L
2 penalization, as in our definition of �

(m+1). As observed by Jacobs, Léger, Li, and
Osher [20], this choice of norms ensures that the gradient operator r : Ḣ

1 ! (L2)d

is bounded, so Chambolle and Pock’s estimate of the partial primal dual gap applies:
see equations (3.27) and (3.28) in the proof of our main theorem.

Remark 3.3 (extension to the standard Laplacian). It is possible to extend the
above algorithm to the case of crystal evolution equations with alternative surface
energy interactions. In particular, when �1 is replaced by � = �2 (see e.g. [1,
11, 12, 16, 30–32]), one would replace F

⇤(�) with F
⇤(�) = �k�k21. In this case,

(I + �@F
⇤)�1(u) = u/kuk2. On the other hand, for general �p, p 6= 1, 2, there is no

explicit formula for this operator (the proximal map).

h(m+1) =
⇣ ⌧
�
�hn�+ id

⌘�1 ⇣ ⌧
�
�hn�h(m) � ⌧�hnr · �(m) + hn

⌘
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Today: Convergence of PDHG, 
E TV energy, gen M(h), d=1

- Convergence as τ → 0? 
- Convergence as τ,ε →0?

- Appropriate notion of  
weak solution? 

- Better time discretization/GF 
formulation to prove 
existence of wider class of 
weak solutions? numerics?



Thank you!


