

A Proximal-Gradient Algorithm

Crystal surface evolution

- Evolution of a crystal near a fixed crystallographic plane of symmetry
- $h(x,t) = height of crystal; facets on crystal = { x: <math>\nabla h(x,t) = 0$ }
- [Marzuola, Weare '13]: continuum limit of kinetic Monte Carlo models $E(h) = \frac{1}{p} \int |\nabla h|^p, \ p \ge 1 \qquad \partial_t h = \Delta e^{-\Delta_p h}$
- p=2, existence, uniqueness [Liu, Xu '16-'17, Xu '18, Ambrose '19,...]
- p=1, numerics via microscopic SOS system [Marzuola, Weare '13] finite difference method [Liu, Lu, Margetis, Marzuola '17]

Our goal:

leverage (very formal) gradient flow structure to design new numerical method

crystal growth PDE

$$\partial_t h = \Delta e^{-\Delta_1 h}$$

"gradient flow"

$$\partial_t h + \nabla \cdot \left(M(h) \nabla \frac{\partial \mathcal{E}}{\partial h} \right) = 0$$

$$M(h) = e^{-\Delta_1 h}, \quad \mathcal{E}(h) = \|\nabla h\|_1$$

$$\frac{d}{dt} h(t) = -\nabla_M \mathcal{E}(h(t))$$

$$\nabla_M \mathcal{E}(h) = -\nabla \cdot \left(M(h) \nabla \frac{\partial \mathcal{E}}{\partial h} \right)$$

Gradient flows

- h(t) evolves in the direction of steepest descent of \mathcal{E} , with respect to M
- ∇_{M} is induced by the underlying metric structure

Gradient flow

prof. Mark. A. Peletier, PhD

Centre for Analysis, Scientific Computing, and Applications Department of Mathematics and Computer Science Institute for Complex Molecular Systems

> TUe Technische Universiteit Eindhoven University of Technology Where innovation starts

 $\frac{d}{dt}h(t) = -\nabla_M \mathcal{E}(h(t))$

Gradient flows

- h(t) evolves in the direction of steepest descent of \mathcal{E} , with respect to M
- ∇_{M} is induced by the underlying metric structure

Gradient flow

prof. Mark. A. Peletier, PhD

Centre for Analysis, Scientific Computing, and Applications Department of Mathematics and Computer Science Institute for Complex Molecular Systems

> TUe Technische Universiteit Eindhoven University of Technology Where innovation starts

 $\frac{d}{dt}h(t) = -\nabla_M \mathcal{E}(h(t))$

Our goal:

leverage (very formal) gradient flow structure to design new numerical method

crystal growth PDE

$$\partial_t h = \Delta e^{-\Delta_1 h}$$

"gradient flow"

$$\partial_t h + \nabla \cdot \left(M(h) \nabla \frac{\partial \mathcal{E}}{\partial h} \right) = 0$$
$$M(h) = e^{-\Delta_1 h}, \quad \mathcal{E}(h) = \|\nabla h\|_1$$

Examples:

- M(h) = 1, H^{-1} gradient flow
- M(h) = h, W_2 gradient flow
- M(h) nonnegative, concave, weighted W₂ gradient flow
 [Carrillo, Lisini, Savaré, Slepčev '09, Dolbeault, Nazaret, Savaré '09, Lisini, Matthew, Savaré '19,...]
- $M(h) \in Lin(\mathbb{R}^{I \times d}, \mathbb{R}^{I \times d})$, gradient system [Liero, Mielke '13]

Our mobility falls well outside existing, rigorous theory of GF structure.

Weighted H⁻¹ GF perspective

[Otto '01, Giga, Giga '10, ...]

Suppose $M(h) \in L^1(\mathbb{T}^d)$ is nonnegative. Define $\Delta_h v = \nabla \cdot (M(h) \nabla v)$

- Weighted Hilbert space: $\|v\|_{H^1_h}^2 = \int_{\mathbb{T}^d} M(h) |\nabla v|^2 = \int_{\mathbb{T}^d} v \Delta_h v$
- Dual space: $\|\psi\|_{H_h^{-1}}^2 = -\int_{\mathbb{T}^d} \psi \Delta_h^{-1} \psi$
- \bullet Subdifferential $\partial_{H_h^{-1}} \mathcal{E}$, gradient $\nabla_{H_h^{-1}} \mathcal{E}$

To go from here to a well-defined gradient flow, need to overcome obstacles:

- time derivative of h(t) with respect to $\|\cdot\|_{H^{-1}_{h(t)}}$
- M(h(t)) needs to remain integrable and nonnegative along the flow.

Then,

$$\partial_t h = -\nabla_{H_h^{-1}} \mathcal{E}(h) \iff \partial_t h + \Delta_h \frac{\partial E}{\partial h} = 0 \iff \partial_t h + \nabla \cdot \left(M(h) \nabla \frac{\partial E}{\partial h} \right) = 0$$

$$\partial_t h = -\nabla_{H_h^{-1}} \mathcal{E}(h)$$
$$M(h) = e^{-\Delta_1 h}, \quad \mathcal{E}(h) = \|\nabla h\|_1$$

"gradient flow"

$$\partial_t h = -\nabla_{H_h^{-1}} \mathcal{E}(h)$$
$$M(h) = e^{-\Delta_1 h}, \quad \mathcal{E}(h) = \|\nabla h\|_1$$

• how to interpret mobility?

$$\partial_t h = -\nabla_{H_h^{-1}} \mathcal{E}(h)$$
$$M(h) = e^{-\Delta_1 h}, \quad \mathcal{E}(h) = \|\nabla h\|_1$$

- how to interpret mobility?
- how to discretize in time?

$$\partial_t h = -\nabla_{H_h^{-1}} \mathcal{E}(h)$$
$$M(h) = e^{-\Delta_1 h}, \quad \mathcal{E}(h) = \|\nabla h\|_1$$

- how to interpret mobility?
- how to discretize in time?
- how to discretize in space?

$$\partial_t h = -\nabla_{H_h^{-1}} \mathcal{E}(h)$$
$$M(h) = e^{-\Delta_1 h}, \quad \mathcal{E}(h) = \|\nabla h\|_1$$

- how to interpret mobility?
- how to discretize in time?
- how to discretize in space?

"gradient flow"

$$\partial_t h = -\nabla_{H_h^{-1}} \mathcal{E}(h)$$
$$M(h) = e^{-\Delta_1 h}, \quad \mathcal{E}(h) = \|\nabla h\|_1$$

- how to interpret mobility?
- how to discretize in time?
- how to discretize in space?

- the mobility $M(h) = e^{-\Delta_1 h}$ doesn't make sense, even for d=1

$$\Delta_1 h = \nabla \cdot \left(\frac{\nabla h}{|\nabla h|}\right) = \nabla \cdot \operatorname{sgn}(\nabla h)$$

"gradient flow"

$$\partial_t h = -\nabla_{H_h^{-1}} \mathcal{E}(h)$$
$$M(h) = e^{-\Delta_1 h}, \quad \mathcal{E}(h) = \|\nabla h\|_1$$

- how to interpret mobility?
- how to discretize in time?
- how to discretize in space?
- the mobility $M(h) = e^{-\Delta_1 h}$ doesn't make sense, even for d=1
- previous work considered linearization of exponential [Giga, Giga '10,...]

$$e^x \approx 1 + x, \quad M(h) \approx 1 - \Delta_1 h$$

- we consider mollified mobility, which respects asymmetry of curvature

$$\varphi \in C_c^{\infty}(\mathbb{T}^d), \ \varphi \ge 0, \ \int_{\mathbb{T}^d} \varphi = 1, \ \varphi_{\epsilon}(x) := \varphi(x/\epsilon)/\epsilon^d,$$
$$M_{\epsilon}(h) := e^{-\varphi_{\epsilon} * \Delta_1 h}$$

- we consider mollified mobility, which respects asymmetry of curvature

$$\varphi \in C_c^{\infty}(\mathbb{T}^d), \ \varphi \ge 0, \ \int_{\mathbb{T}^d} \varphi = 1, \ \varphi_{\epsilon}(x) := \varphi(x/\epsilon)/\epsilon^d,$$
$$M_{\epsilon}(h) := e^{-\varphi_{\epsilon} * \Delta_1 h}$$

$$\partial_t h = -\nabla_{H_h^{-1}} \mathcal{E}(h)$$
$$M_{\epsilon}(h) = e^{-\varphi_{\epsilon} * \Delta_1 h}, \ \mathcal{E}(h) = \|\nabla h\|_1$$

- how to interpret mobility?
- how to discretize in time?
- how to discretize in space?

"gradient flow"

$$\partial_t h = -\nabla_{H_h^{-1}} \mathcal{E}(h)$$

$$M_{\epsilon}(h) = e^{-\varphi_{\epsilon} * \Delta_1 h}, \ \mathcal{E}(h) = \|\nabla h\|_1$$

- how to interpret mobility?
- how to discretize in time?
- how to discretize in space?
- we consider a semi-implicit scheme (c.f. [Murphy, Walkington '19] for PME)

$$h^{n+1} \in \arg\min_{h} \mathcal{E}(h) + \frac{1}{2\tau} \|h - h^{n}\|_{H^{-1}_{h^{n}}}^{2}.$$
$$\frac{h^{n+1} - h^{n}}{\tau} = -\nabla \cdot \left(M(h^{n})\nabla \frac{\partial \mathcal{E}}{\partial h^{n+1}}\right)$$

- for the TV energy E, if $h^n \in D(E)$ and $M(h^n)$ is integrable and nonnegative, there exists a unique solution h^{n+1} to our semi-implicit scheme

"gradient flow"

$$\partial_t h = -\nabla_{H_h^{-1}} \mathcal{E}(h)$$

$$M_{\epsilon}(h) = e^{-\varphi_{\epsilon} * \Delta_1 h}, \ \mathcal{E}(h) = \|\nabla h\|_1$$

- how to interpret mobility?
- how to discretize in time?
- how to discretize in space?
- we consider a semi-implicit scheme (c.f. [Murphy, Walkington '19] for PME)

$$h^{n+1} \in \underset{h}{\operatorname{arg\,min}} \mathcal{E}(h) + \frac{1}{2\tau} \|h - h^n\|_{H_{h^n}}^2.$$

$$\frac{h^{n+1} - h^n}{\tau} = -\nabla \cdot \left(M(h^n) \nabla \frac{\partial \mathcal{E}}{\partial h^{n+1}} \right) \qquad \frac{\partial E}{\partial h} = -\Delta_1 h$$

 for the TV energy E, if hⁿ ∈ D(E) and M(hⁿ) is integrable and nonnegative, there exists a unique solution hⁿ⁺¹ to our semi-implicit scheme

$$\partial_t h = -\nabla_{H_h^{-1}} \mathcal{E}(h)$$
$$M_{\epsilon}(h) = e^{-\varphi_{\epsilon} * \Delta_1 h}, \ \mathcal{E}(h) = \|\nabla h\|_1$$

- how to interpret mobility?
- how to discretize in time?
- how to discretize in space?

"gradient flow"

$$\partial_t h = -\nabla_{H_h^{-1}} \mathcal{E}(h)$$
$$M_{\epsilon}(h) = e^{-\varphi_{\epsilon} * \Delta_1 h}, \ \mathcal{E}(h) = \|\nabla h\|_1$$

- how to interpret mobility?
- how to discretize in time?
- how to discretize in space?

- we want to solve

$$h^{n+1} \in \underset{h}{\operatorname{arg\,min}} \underbrace{\mathcal{E}(h) + \frac{1}{2\tau} \|h - h^n\|_{H_{h^n}}^2}_{\|\nabla h\|_1 + \frac{1}{2\tau} \|h - h^n\|_{H_{h^n}}^2} = f(Kh) + g(h)$$

 $f: \mathcal{Z} \to \mathbb{R}$ convex, $g: \mathcal{H} \to \mathbb{R}$ convex, $K: \mathcal{H} \to \mathcal{Z}$ bounded, linear

- primal-dual algorithm! (c.f. [Laborde, Benamou, Carlier '16], [Carrillo, C., Wang, Wei '19],...)
- what is the role of the Hilbert spaces \mathcal{Z}, \mathcal{H} ?

"gradient flow"

$$\partial_t h = -\nabla_{H_h^{-1}} \mathcal{E}(h)$$
$$M_{\epsilon}(h) = e^{-\varphi_{\epsilon} * \Delta_1 h}, \ \mathcal{E}(h) = \|\nabla h\|_1$$

- how to interpret mobility?
- how to discretize in time?
- how to discretize in space?

- we want to solve

- primal-dual algoritmed (c.f. [Laborde, Benamou, Carlier '16], [Carrillo, C., Wang, Wei '19],...)

- what is the role of the Hilbert spaces \mathcal{Z},\mathcal{H} ?

Which Hilbert space?

1)
$$\mathcal{Z} = \mathcal{H} = L^2(\mathbb{R}^d)$$

2) $\mathcal{Z} = L^2(\mathbb{R}^d)$, $\mathcal{H} = \dot{H}^1(\mathbb{R}^d)$

- [Jacobs, Léger, Li, Osher '19]
- Consider gradient descent of a smooth, convex function w/ unique min u_* .

$$F(u) = f(Ku) + g(u)$$

• Convergence rate: $F(u_n) \leq F(u^*) + 2L_{\mathcal{H}} \frac{\|u^* - u_0\|_{\mathcal{H}}^2}{n+4}$

Which Hilbert space?

1)
$$\mathcal{Z} = \mathcal{H} = L^2(\mathbb{R}^d)$$

2) $\mathcal{Z} = L^2(\mathbb{R}^d)$, $\mathcal{H} = \dot{H}^1(\mathbb{R}^d)$

- [Jacobs, Léger, Li, Osher '19]
- Consider gradient descent of a smooth, convex function w/ unique min u_* .

$$F(u) = f(Ku) + g(u)$$

• Convergence rate: $F(u_n) \leq F(u^*) + 2L_{\mathcal{H}} \frac{\|u^* - u_0\|_{\mathcal{H}}^2}{n+4}$

• Nesterov:

$$F(u_n) \leq \min_{u} \left[F(u) + 4L_{\mathcal{H}} \frac{\|u - u_0\|_{\mathcal{H}}^2}{(n+2)^2} \right]$$

$$\leq \min_{\|u - u_0\|_{\mathcal{H}} \leq R} \left[F(u) + 4L_{\mathcal{H}} \frac{\|u - u_0\|_{\mathcal{H}}^2}{(n+2)^2} \right]$$

$$\leq F(u_*) + 4L_{\mathcal{H}} \frac{R^2}{(n+2)^2} + \underbrace{\min_{\|u - u_0\|_{\mathcal{H}} \leq R} F(u) - F(u_*)}_{\delta_F(R)}$$
Thus, one can get around $\|u_* - u_0\|_{\mathcal{H}} = +\infty$, as long as $\delta_F(R) \to 0$.

Which Hilbert space?

1)
$$\mathcal{Z} = \mathcal{H} = L^2(\mathbb{R}^d)$$

2) $\mathcal{Z} = L^2(\mathbb{R}^d)$, $\mathcal{H} = \dot{H}^1(\mathbb{R}^d)$

- [Jacobs, Léger, Li, Osher '19]
- Analogous result holds for Chambolle-Pock's PDHG method (nonsmooth):

$$u_{n+1} = \underset{u \in \mathcal{H}}{\arg\min} \ g(u) + (u, K^T \bar{p}_n)_{\mathcal{H}} + \frac{1}{2\lambda} \|u - u_n\|_{\mathcal{H}}^2,$$
$$p_{n+1} = \underset{p \in \mathcal{Z}}{\arg\max} - f^*(p) + (K u_{n+1}, p)_{\mathcal{Z}} - \frac{1}{2\sigma} \|(p - p_n)\|_{\mathcal{Z}}^2,$$

$$\bar{p}_{n+1} = 2p_{n+1} - p_n.$$

for $u^N = \frac{1}{N} \sum_{n=1}^N u_n$ and $\lambda \sigma \| K^T K \|_{\mathcal{H}}^2 < 1$, we have

$$F(u_N) \le F(u_*) + C\frac{R}{N} + \underbrace{\min_{\|u-u_0\|_{\mathcal{H}} \le R} F(u) - F(u_*)}_{\delta_F(R)}$$

Numerical method for crystal evolution

• Outer time iteration:

$$h^{n+1} = \operatorname{argmin}_{h} \mathcal{E}(h) + \frac{1}{2\tau} \|h - h^{n}\|_{H^{-1}_{h^{n}}}^{2}$$

• Inner time iteration: for $\lambda \sigma < 1$,

$$h^{(m+1)} = \left(\frac{\tau}{\lambda}\Delta_{h^n}\Delta + \mathrm{id}\right)^{-1} \left(\frac{\tau}{\lambda}\Delta_{h^n}\Delta h^{(m)} - \tau\Delta_{h^n}\nabla\cdot\phi^{(m)} + h^n\right)$$
$$\bar{h}^{(m+1)} = 2h^{(m+1)} - h^{(m)}$$
$$\phi^{(m+1)} = (\mathrm{id} + \sigma\partial F^*)^{-1}(\phi^{(m)} + \sigma\nabla\bar{h}^{(m+1)}) ,$$

 $(\mathrm{id} + \sigma \partial F^*)^{-1}(u(x)) = \min(|u(x)|, 1) \operatorname{sgn}(u(x)).$

discretize via finite difference method

Numerical method for crystal evolution

• Outer time iteration:

$$h^{n+1} = \operatorname{argmin}_{h} \mathcal{E}(h) + \frac{1}{2\tau} \|h - h^{n}\|_{H^{-1}_{h^{n}}}^{2}$$

• Inner time iteration: for $\lambda \sigma < 1$,

$$h^{(m+1)} = \left(\frac{\tau}{\lambda}\Delta_{h^n}\Delta + \mathrm{id}\right)^{-1} \left(\frac{\tau}{\lambda}\Delta_{h^n}\Delta h^{(m)} - \tau\Delta_{h^n}\nabla\cdot\phi^{(m)} + h^n\right)$$

$$\bar{h}^{(m+1)} = 2h^{(m+1)} - h^{(m)}$$

$$\phi^{(m+1)} = (\mathrm{id} + \sigma\partial F^*)^{-1}(\phi^{(m)} + \sigma\nabla\bar{h}^{(m+1)}),$$

discretize via finite difference method

$(\mathrm{id} + \sigma \partial F^*)^{-1}(u(x)) = \min(|u(x)|, 1) \operatorname{sgn}(u(x)).$

Benefits:

- avoids inverting 1-Laplacian
- freedom to choose λ large helps with computation of h^(m+1)

Convergence of PDHG

Theorem: [CMLLW '20] Let d=1. Suppose the PDHG algorithm is initialized with

$$h^{(0)} = h^n, \phi^{(0)} = 0,$$

Then for all δ >0, there exist \tilde{M} , λ , σ , so that

 $F(h^{(M)}) - F(h^{n+1}) \le \delta, \quad \forall M \ge \tilde{M}, \quad F(h) = \mathcal{E}(h) + \frac{1}{2\tau} \|h - h^n\|_{H^{-1}_{h^n}}^2$

Convergence of PDHG

Theorem: [CMLLW '20] Let d=1. Suppose the PDHG algorithm is initialized with

$$h^{(0)} = h^n, \phi^{(0)} = 0,$$

Then for all δ >0, there exist \tilde{M} , λ , σ , so that

$$F(h^{(M)}) - F(h^{n+1}) \le \delta, \quad \forall M \ge \tilde{M}, \quad F(h) = \mathcal{E}(h) + \frac{1}{2\tau} \|h - h^n\|_{H_{h^n}}^2$$

Remarks:

- Extends to general M(h) provided that M(hⁿ) and 1/M(hⁿ⁺¹) integrable [c.f. Cancés, Gallouët, and Todeschi '19]
- We require d=1 to conclude $||h^n||_{\infty} \leq \mathcal{E}(h^n) < +\infty$. Higher integrability of 1/M(hⁿ⁺¹) would be required to weaken this assumption.
- If one has $\nabla h^n \in BV$, quantitative estimates: $\tilde{M} \sim \delta^{-2}$, $\lambda \sim \delta^{-1}$, $\sigma \sim \delta$

- Key step:
$$\delta_F(R) = \min_{\|h^n - h\|_{\dot{H}^1} \le R} F(h) - F(h^{n+1}) \xrightarrow{R \to +\infty} 0$$

Observations:

- facet formation at local maxima
- pinning at local minima

Nx = 200, Nt = 10, σ = 0.0005, λ = 500, ϵ =0.04

Observations:

- facet formation at local maxima
- pinning at local minima

Nx = 200, Nt = 10, σ = 0.0005, λ = 500, ϵ =0.04

Observations:

- facet formation at local maxima
- pinning at local minima

Nx = 200, Nt = 10, σ = 0.0005, λ = 500, ϵ =0.04

Observations:

- facet formation at local maxima
- pinning at local minima

Nx = 200, Nt = 10, σ = 0.0005, λ = 500, ϵ =0.04

Observations:

- facet formation at local maxima
- pinning at local minima

Nx = 200, Nt = 10, σ = 0.0005, λ = 500, ϵ =0.04

Numerical Desultar an area desuces

Numerical Results: convergence

Observations:

- Error vs Nx: slightly sublinear convergence (low spatial regularity)
- Error vs Nt: first order (semi-implicit Euler)
- Internal time steps vs Nt: importance of selecting correct Hilbert space

sinusoidal, (Nx = 200), (Nt = 10), σ = 0.0005, λ = 500, ϵ =0.05, T = 10⁻⁴

Today: Convergence of PDHG, E TV energy, gen M(h), d=1

- Convergence as $\tau \rightarrow 0$?
- Convergence as $\tau, \varepsilon \rightarrow 0$?

Today: Convergence of PDHG, E TV energy, gen M(h), d=1

crystal growth PDE

$$\partial_t h = \Delta e^{-\Delta_1 h} - \dots$$

- Appropriate notion of weak solution?
- Better time discretization/GF formulation to prove existence of wider class of weak solutions? numerics?

discrete time scheme

$$h^{n+1} = \operatorname{argmin}_{h} \mathcal{E}(h) + \frac{1}{2\tau} \|h - h^{n}\|_{H^{-1}_{h^{n}}}^{2}$$

- Convergence as $\tau \rightarrow 0$?
- Convergence as $\tau, \varepsilon \rightarrow 0$?

"gradient flow"

$$\partial_t h = -\nabla_{H_h^{-1}} \mathcal{E}(h)$$
$$M_{\epsilon}(h) = e^{-\varphi_{\epsilon} * \Delta_1 h}, \ \mathcal{E}(h) = \|\nabla h\|_1$$

PDHG scheme

$$h^{(m+1)} = \left(\frac{\tau}{\lambda}\Delta_{h^n}\Delta + \mathrm{id}\right)^{-1} \left(\frac{\tau}{\lambda}\Delta_{h^n}\Delta h^{(m)} - \tau\Delta_{h^n}\nabla\cdot\phi^{(m)} + h^n\right)$$

$$\bar{h}^{(m+1)} = 2h^{(m+1)} - h^{(m)}$$

$$\phi^{(m+1)} = (\mathrm{id} + \sigma\partial F^*)^{-1}(\phi^{(m)} + \sigma\nabla\bar{h}^{(m+1)}) ,$$

Today: Convergence of PDHG, E TV energy, gen M(h), d=1

