

A Proximal-Gradient Algorithm for Crystal Surface Evolution

Katy Craig
University of California, Santa Barbara
joint with J.-G. Liu (Duke), J Lu (Duke), J. Marzuola (UNC), and L. Wang (Minnesota)

Crystal surface evolution

- Evolution of a crystal near a fixed crystallographic plane of symmetry
- $h(x, t)=$ height of crystal; facets on crystal $=\{x: \nabla h(x, t)=0\}$
- [Marzuola, Weare '13]: continuum limit of kinetic Monte Carlo models

$$
E(h)=\frac{1}{p} \int|\nabla h|^{p}, p \geq 1 \quad \partial_{t} h=\Delta e^{-\Delta_{p} h}
$$

- $\mathrm{p}=2$, existence, uniqueness [Liu, Xu '16-‘17, Xu '18, Ambrose '19,...]
- $p=1$, numerics via microscopic SOS system [Marzuola, Weare '13] finite difference method [Liu, Lu, Margetis, Marzuola '17]

Our goal:

leverage (very formal) gradient flow structure to design new numerical method
crystal growth PDE

$$
\partial_{t} h=\Delta e^{-\Delta_{1} h}
$$

"gradient flow"

$$
\begin{aligned}
& \partial_{t} h+\nabla \cdot\left(M(h) \nabla \frac{\partial \mathcal{E}}{\partial h}\right)=0 \\
& M(h)=e^{-\Delta_{1} h}, \quad \mathcal{E}(h)=\|\nabla h\|_{1}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d}{d t} h(t)=-\nabla_{M} \mathcal{E}(h(t)) \\
& \nabla_{M} \mathcal{E}(h)=-\nabla \cdot\left(M(h) \nabla \frac{\partial \mathcal{E}}{\partial h}\right)
\end{aligned}
$$

Gradient flows
 $\frac{d}{d t} h(t)=-\nabla_{M} \mathcal{E}(h(t))$

- $h(t)$ evolves in the direction of steepest descent of \mathcal{E}, with respect to M
- ∇_{M} is induced by the underlying metric structure

Gradient flow

prof. Mark. A. Peletier, PhD

Centre for Analysis, Scientific Computing, and Applications Department of Mathematics and Computer Science Institute for Complex Molecular Systems

Gradient flows
 $\frac{d}{d t} h(t)=-\nabla_{M} \mathcal{E}(h(t))$

- $h(t)$ evolves in the direction of steepest descent of \mathcal{E}, with respect to M
- ∇_{M} is induced by the underlying metric structure

Gradient flow

prof. Mark. A. Peletier, PhD

Centre for Analysis, Scientific Computing, and Applications Department of Mathematics and Computer Science Institute for Complex Molecular Systems

Our goal:

leverage (very formal) gradient flow structure to design new numerical method
crystal growth PDE

$$
\partial_{t} h=\Delta e^{-\Delta_{1} h}
$$

"gradient flow"

$$
\begin{aligned}
& \partial_{t} h+\nabla \cdot\left(M(h) \nabla \frac{\partial \mathcal{E}}{\partial h}\right)=0 \\
& M(h)=e^{-\Delta_{1} h}, \quad \mathcal{E}(h)=\|\nabla h\|_{1}
\end{aligned}
$$

Examples:

- $\mathrm{M}(\mathrm{h})=1, \mathrm{H}^{-1}$ gradient flow
- $\mathrm{M}(\mathrm{h})=\mathrm{h}, \mathrm{W}_{2}$ gradient flow
- $\mathrm{M}(\mathrm{h})$ nonnegative, concave, weighted W_{2} gradient flow [Carrillo, Lisini, Savaré, Slepčev '09, Dolbeault, Nazaret, Savaré '09, Lisini, Matthew, Savaré '19,...]
- $M(h) \in \operatorname{Lin}\left(\mathbb{R}^{\mid \times d}, \mathbb{R}^{1} \times \mathrm{d}\right)$, gradient system [Liero, Mielke ' 13$]$

Weighted H-1 GF perspective

Suppose $M(h) \in L^{1}\left(\mathbb{T}^{d}\right)$ is nonnegative. Define $\Delta_{h} v=\nabla \cdot(M(h) \nabla v)$

- Weighted Hilbert space: $\|v\|_{H_{h}^{1}}^{2}=\int_{\mathbb{T}^{d}} M(h)|\nabla v|^{2}=-\int_{\mathbb{T}^{d}} v \Delta_{h} v$
- Dual space: $\|\psi\|_{H_{h}^{-1}}^{2}=-\int_{\mathbb{T}^{d}} \psi \Delta_{h}^{-1} \psi$
- Subdifferential $\partial_{H_{h}^{-1}} \mathcal{E}$, gradient $\nabla_{H_{h}^{-1}} \mathcal{E}$

To go from here to a well-defined gradient flow, need to overcome obstacles:

- time derivative of $\mathrm{h}(\mathrm{t})$ with respect to $\|\cdot\|_{H_{h(t)}^{-1}}$
- $M(h(t))$ needs to remain integrable and nonnegative along the flow.

Then,

$\partial_{t} h=-\nabla_{H_{h}^{-1}} \mathcal{E}(h) \Longleftrightarrow \partial_{t} h+\Delta_{h} \frac{\partial E}{\partial h}=0 \Longleftrightarrow \partial_{t} h+\nabla \cdot\left(M(h) \nabla \frac{\partial E}{\partial h}\right)=0$

Weighted H-1 GF \rightarrow Numerical Method

$$
\begin{aligned}
& \text { "gradient flow" } \\
& \partial_{t} h=-\nabla_{H_{h}^{-1}} \mathcal{E}(h) \\
& M(h)=e^{-\Delta_{1} h}, \quad \mathcal{E}(h)=\|\nabla h\|_{1}
\end{aligned}
$$

Weighted H-1 GF \rightarrow Numerical Method

$$
\begin{aligned}
& \text { "gradient flow" } \\
& \partial_{t} h=-\nabla_{H_{h}^{-1}} \mathcal{E}(h) \\
& M(h)=e^{-\Delta_{1} h}, \quad \mathcal{E}(h)=\|\nabla h\|_{1}
\end{aligned}
$$

- how to interpret mobility?

Weighted H-1 GF \rightarrow Numerical Method

$$
\begin{aligned}
& \text { "gradient flow" } \\
& \partial_{t} h=-\nabla_{H_{h}^{-1}} \mathcal{E}(h) \\
& M(h)=e^{-\Delta_{1} h}, \quad \mathcal{E}(h)=\|\nabla h\|_{1}
\end{aligned}
$$

- how to interpret mobility?
- how to discretize in time?

Weighted H-1 GF \rightarrow Numerical Method

$$
\begin{aligned}
& \text { "gradient flow" } \\
& \partial_{t} h=-\nabla_{H_{h}^{-1}} \mathcal{E}(h) \\
& M(h)=e^{-\Delta_{1} h}, \quad \mathcal{E}(h)=\|\nabla h\|_{1}
\end{aligned}
$$

- how to interpret mobility?
- how to discretize in time?
- how to discretize in space?

Weighted H-1 GF -> Numerical Method

$$
\begin{aligned}
& \text { "gradient flow" } \\
& \partial_{t} h=-\nabla_{H_{h}^{-1}} \mathcal{E}(h) \\
& M(h)=e^{-\Delta_{1} h}, \quad \mathcal{E}(h)=\|\nabla h\|_{1}
\end{aligned}
$$

- how to interpret mobility?
- how to discretize in time?
- how to discretize in space?

Weighted H-1 GF -> Numerical Method

"gradient flow"
$\partial_{t} h=-\nabla_{H_{h}^{-1}} \mathcal{E}(h)$
$M(h)=e^{-\Delta_{1} h}, \quad \mathcal{E}(h)=\|\nabla h\|_{1}$

- how to interpret mobility?
- how to discretize in time?
- how to discretize in space?
- the mobility $M(h)=e^{-\Delta_{1} h}$ doesn't make sense, even for $\mathrm{d}=1$
$\Delta_{1} h=\nabla \cdot\left(\frac{\nabla h}{|\nabla h|}\right)=\nabla \cdot \operatorname{sgn}(\nabla h)$

Weighted H-1 GF -> Numerical Method

"gradient flow"
$\partial_{t} h=-\nabla_{H_{h}^{-1}} \mathcal{E}(h)$
$M(h)=e^{-\Delta_{1} h}, \quad \mathcal{E}(h)=\|\nabla h\|_{1}$

- how to interpret mobility?
- how to discretize in time?
- how to discretize in space?
- the mobility $M(h)=e^{-\Delta_{1} h}$ doesn't make sense, even for $\mathrm{d}=1$
- previous work considered linearization of exponential [Giga, Giga '10,...]

$$
e^{x} \approx 1+x, \quad M(h) \approx 1-\Delta_{1} h
$$

- we consider mollified mobility, which respects asymmetry of curvature

$$
\begin{gathered}
\varphi \in C_{c}^{\infty}\left(\mathbb{T}^{d}\right), \varphi \geq 0, \int_{\mathbb{T}^{d}} \varphi=1, \varphi_{\epsilon}(x):=\varphi(x / \epsilon) / \epsilon^{d} \\
M_{\epsilon}(h):=e^{-\varphi_{\epsilon} * \Delta_{1} h}
\end{gathered}
$$

Weighted H-1 GF -> Numerical Method

- the mobility $M(h)=e^{-\Delta_{1} h}$ doesn't ma/
, even for $\mathrm{d}=1$
- previous work considered linearization of sntial [Giga, Giga '10,...]

$$
e^{x} \approx 1+x, \quad M(h) \approx 1-\Delta_{1} h
$$

- we consider mollified mobility, which respects asymmetry of curvature

$$
\begin{gathered}
\varphi \in C_{c}^{\infty}\left(\mathbb{T}^{d}\right), \varphi \geq 0, \int_{\mathbb{T}^{d}} \varphi=1, \varphi_{\epsilon}(x):=\varphi(x / \epsilon) / \epsilon^{d} \\
M_{\epsilon}(h):=e^{-\varphi_{\epsilon} * \Delta_{1} h}
\end{gathered}
$$

Weighted H-1 GF -> Numerical Method

$$
\begin{aligned}
& \text { "gradient flow" } \\
& \partial_{t} h=-\nabla_{H_{h}^{-1}} \mathcal{E}(h) \\
& M_{\epsilon}(h)=e^{-\varphi_{\epsilon} * \Delta_{1} h}, \mathcal{E}(h)=\|\nabla h\|_{1}
\end{aligned}
$$

- how to interpret mobility?
- how to discretize in time?
- how to discretize in space?

Weighted H-1 GF -> Numerical Method

"gradient flow"

$$
\begin{aligned}
& \partial_{t} h=-\nabla_{H_{h}^{-1}} \mathcal{E}(h) \\
& M_{\epsilon}(h)=e^{-\varphi_{\epsilon} * \Delta_{1} h}, \mathcal{E}(h)=\|\nabla h\|_{1}
\end{aligned}
$$

- how to interpret mobility?
- how to discretize in time?
- how to discretize in space?
- we consider a semi-implicit scheme (c.f. [Murphy, Walkington '19] for PME)

$$
\begin{aligned}
& h^{n+1} \in \underset{h}{\arg \min } \mathcal{E}(h)+\frac{1}{2 \tau}\left\|h-h^{n}\right\|_{H_{h^{n}}^{-1}}^{2} \\
& \frac{h^{n+1}-h^{n}}{\tau}=-\nabla \cdot\left(M\left(h^{n}\right) \nabla \frac{\partial \mathcal{E}}{\partial h^{n+1}}\right)
\end{aligned}
$$

- for the TV energy E, if $h^{n} \in D(E)$ and $M\left(h^{n}\right)$ is integrable and nonnegative, there exists a unique solution h^{n+1} to our semi-implicit scheme

Weighted H-1 GF -> Numerical Method

"gradient flow"

$$
\begin{aligned}
& \partial_{t} h=-\nabla_{H_{h}^{-1}} \mathcal{E}(h) \\
& M_{\epsilon}(h)=e^{-\varphi_{\epsilon} * \Delta_{1} h}, \mathcal{E}(h)=\|\nabla h\|_{1}
\end{aligned}
$$

- how to interpret mobility?
- how to discretize in time?
- how to discretize in space?
- we consider a semi-implicit scheme (c.f. [Murphy, Walkington '19] for PME)

$$
\begin{aligned}
& h^{n+1} \in \underset{h}{\arg \min } \mathcal{E}(h)+\frac{1}{2 \tau}\left\|h-h^{n}\right\|_{H_{h^{n}}^{-1}}^{2} \\
& \frac{h^{n+1}-h^{n}}{\tau}=-\nabla \cdot\left(M\left(h^{n}\right) \nabla \frac{\partial \mathcal{E}}{\partial h^{n+1}}\right) \quad \frac{\partial E}{\partial h}=-\Delta_{1} h
\end{aligned}
$$

- for the TV energy E, if $h^{n} \in D(E)$ and $M\left(h^{n}\right)$ is integrable and nonnegative, there exists a unique solution h^{n+1} to our semi-implicit scheme

Weighted H-1 GF -> Numerical Method

$$
\begin{aligned}
& \text { "gradient flow" } \\
& \partial_{t} h=-\nabla_{H_{h}^{-1}} \mathcal{E}(h) \\
& M_{\epsilon}(h)=e^{-\varphi_{\epsilon} * \Delta_{1} h}, \mathcal{E}(h)=\|\nabla h\|_{1}
\end{aligned}
$$

- how to interpret mobility?
- how to discretize in time?
- how to discretize in space?

Weighted H-1 GF -> Numerical Method

"gradient flow"

$$
\begin{aligned}
& \partial_{t} h=-\nabla_{H_{h}^{-1}} \mathcal{E}(h) \\
& M_{\epsilon}(h)=e^{-\varphi_{\epsilon} * \Delta_{1} h}, \mathcal{E}(h)=\|\nabla h\|_{1}
\end{aligned}
$$

- how to interpret mobility?
- how to discretize in time?
- how to discretize in space?
- we want to solve

$$
h^{n+1} \in \underset{h}{\arg \min } \underbrace{\mathcal{E}(h)+\frac{1}{2 \tau}\left\|h-h^{n}\right\|_{H_{h^{n}}^{-1}}^{2}}_{\|\nabla h\|_{1}+\frac{1}{2 \tau}\left\|h-h^{n}\right\|_{H_{h^{n}}^{-1}}^{2}}=f(K h)+g(h)
$$

$f: \mathcal{Z} \rightarrow \mathbb{R}$ convex, $g: \mathcal{H} \rightarrow \mathbb{R}$ convex, $K: \mathcal{H} \rightarrow \mathcal{Z}$ bounded, linear

- primal-dual algorithm! (c.f. [Laborde, Benamou, Carlier '16], [Carrillo, C., Wang, Wei '19],...)
- what is the role of the Hilbert spaces \mathcal{Z}, \mathcal{H} ?

Weighted H-1 GF -> Numerical Method

"gradient flow"

$$
\begin{aligned}
& \partial_{t} h=-\nabla_{H_{h}^{-1}} \mathcal{E}(h) \\
& M_{\epsilon}(h)=e^{-\varphi_{\epsilon} * \Delta_{1} h}, \mathcal{E}(h)=\|\nabla h\|_{1}
\end{aligned}
$$

- how to interpret mobility?
- how to discretize in time?
- how to discretize in space?
- we want to solve
Which Hillbert space?

1) $\mathcal{Z}=\mathcal{H}=L^{2}\left(\mathbb{R}^{d}\right)$		
2) $\mathcal{Z}=L^{2}\left(\mathbb{R}^{d}\right), \quad \mathcal{H}=\dot{H}^{1}\left(\mathbb{R}^{d}\right)$	$\\|_{H_{h^{n}}^{-1}}^{2}$	
$\\|_{H_{h^{n}}^{-1}}^{2}$		$=f(K h)+g(h)$

$f: \mathcal{Z} \rightarrow \mathbb{R}$ c $g: \mathcal{H} \rightarrow \mathbb{R}$ convex, $K: \mathcal{H} \rightarrow \mathcal{Z}$ bounded, linear

- primal-dual algortin (c.f. [Laborde, Benamou, Carier '16], [Carrillo, C., Wang, Wei '19],...)
- what is the role of the Hilbert spaces \mathcal{Z}, \mathcal{H} ?

Which Hilbert space?

$$
\begin{aligned}
& \text { 1) } \mathcal{Z}=\mathcal{H}=L^{2}\left(\mathbb{R}^{d}\right) \\
& \text { 2) } \mathcal{Z}=L^{2}\left(\mathbb{R}^{d}\right), \quad \mathcal{H}=\dot{H}^{1}\left(\mathbb{R}^{d}\right)
\end{aligned}
$$

- [Jacobs, Léger, Li, Osher '19]
- Consider gradient descent of a smooth, convex function w/ unique min u_{*}.

$$
F(u)=f(K u)+g(u)
$$

- Convergence rate:

$$
F\left(u_{n}\right) \leq F\left(u^{*}\right)+2 L_{\mathcal{H}} \frac{\left\|u^{*}-u_{0}\right\|_{\mathcal{H}}^{2}}{n+4}
$$

Which Hilbert space?

1) $\mathcal{Z}=\mathcal{H}=L^{2}\left(\mathbb{R}^{d}\right)$ 2) $\mathcal{Z}=L^{2}\left(\mathbb{R}^{d}\right), \quad \mathcal{H}=\dot{H}^{1}\left(\mathbb{R}^{d}\right)$

- [Jacobs, Léger, Li, Osher '19]
- Consider gradient descent of a smooth, convex function $w /$ unique $\min u_{*}$.

$$
F(u)=f(K u)+g(u)
$$

- Convergence rate:

$$
F\left(u_{n}\right) \leq F\left(u^{*}\right)+2 L_{\mathcal{H}} \frac{\left\|u^{*}-u_{0}\right\|_{\mathcal{H}}^{2}}{n+4}
$$

- Nesterov:

$$
\begin{aligned}
F\left(u_{n}\right) & \leq \min _{u}\left[F(u)+4 L_{\mathcal{H}} \frac{\left\|u-u_{0}\right\|_{\mathcal{H}}^{2}}{(n+2)^{2}}\right] \\
& \leq \min _{\left\|u-u_{0}\right\|_{\mathcal{H}} \leq R}\left[F(u)+4 L_{\mathcal{H}} \frac{\left\|u-u_{0}\right\|_{\mathcal{H}}^{2}}{(n+2)^{2}}\right] \\
& \leq F\left(u_{*}\right)+4 L_{\mathcal{H}} \frac{R^{2}}{(n+2)^{2}}+\underbrace{\min _{\left\|u-u_{0}\right\|_{\mathcal{H}} \leq R} F(u)-F\left(u_{*}\right)}_{\delta_{F}(R)}
\end{aligned}
$$

Thus, one can get around $\left\|u_{*}-u_{0}\right\|_{\mathcal{H}}=+\infty$, as long as $\delta_{F}(R) \rightarrow 0$.

Which Hilbert space?

1) $\mathcal{Z}=\mathcal{H}=L^{2}\left(\mathbb{R}^{d}\right)$ 2) $\mathcal{Z}=L^{2}\left(\mathbb{R}^{d}\right), \quad \mathcal{H}=\dot{H}^{1}\left(\mathbb{R}^{d}\right)$

- [Jacobs, Léger, Li, Osher '19]
- Analogous result holds for Chambolle-Pock's PDHG method (nonsmooth):

$$
\begin{gathered}
u_{n+1}=\underset{u \in \mathcal{H}}{\arg \min } g(u)+\left(u, K^{T} \bar{p}_{n}\right)_{\mathcal{H}}+\frac{1}{2 \lambda}\left\|u-u_{n}\right\|_{\mathcal{H}}^{2}, \\
p_{n+1}=\underset{p \in \mathcal{Z}}{\arg \max }-f^{*}(p)+\left(K u_{n+1}, p\right)_{\mathcal{Z}}-\frac{1}{2 \sigma}\left\|\left(p-p_{n}\right)\right\|_{\mathcal{Z}}^{2}, \\
\bar{p}_{n+1}=2 p_{n+1}-p_{n} .
\end{gathered}
$$

for $u^{N}=\frac{1}{N} \sum_{n=1}^{N} u_{n}$ and $\lambda \sigma\left\|K^{T} K\right\|_{\mathcal{H}}^{2}<1$, we have

$$
F\left(u_{N}\right) \leq F\left(u_{*}\right)+C \frac{R}{N}+\underbrace{\min _{\left\|u-u_{0}\right\|_{\mathcal{H}} \leq R} F(u)-F\left(u_{*}\right)}_{\delta_{F}(R)}
$$

Numerical method for crystal evolution

- Outer time iteration:

$$
h^{n+1}=\operatorname{argmin}_{h} \mathcal{E}(h)+\frac{1}{2 \tau}\left\|h-h^{n}\right\|_{H_{h^{n}}^{-1}}^{2}
$$

- Inner time iteration: for $\lambda \sigma<1$,
\(\left.\begin{array}{ll}h^{(m+1)}=\left(\frac{\tau}{\lambda} \Delta_{h^{n}} \Delta+\mathrm{id}\right)^{-1}\left(\frac{\tau}{\lambda} \Delta_{h^{n}} \Delta h^{(m)}-\tau \Delta_{h^{n}} \nabla \cdot \phi^{(m)}+h^{n}\right)

\bar{h}^{(m+1)}=h^{(m+1)}-h^{(m)} \& \begin{array}{l}\phi^{(m+1)}=\left(\mathrm{id}+\sigma \partial F^{*}\right)^{-1}\left(\phi^{(m)}+\sigma \nabla \bar{h}^{(m+1)}\right),

\left(\mathrm{id}+\sigma \partial F^{*}\right)^{-1}(u(x))=\min (|u(x)|, 1) \operatorname{sgn}(u(x)) .\end{array}\end{array}\right\}\)| discretize |
| :--- |
| via finite |
| difference |
| method |

Numerical method for crystal evolution

- Outer time iteration:

$$
h^{n+1}=\operatorname{argmin}_{h} \mathcal{E}(h)+\frac{1}{2 \tau}\left\|h-h^{n}\right\|_{H_{h^{n}}^{-1}}^{2}
$$

- Inner time iteration: for $\lambda \sigma<1$,

$$
\begin{array}{ll}
h^{(m+1)}=\left(\frac{\tau}{\lambda} \Delta_{h^{n}} \Delta+\mathrm{id}\right)^{-1}\left(\frac{\tau}{\lambda} \Delta_{h^{n}} \Delta h^{(m)}-\tau \Delta_{h^{n}} \nabla \cdot \phi^{(m)}+h^{n}\right) \\
\bar{h}^{(m+1)}=2 h^{(m+1)}-h^{(m)} \\
\phi^{(m+1)}=\left(\mathrm{id}+\sigma \partial F^{*}\right)^{-1}\left(\phi^{(m)}+\sigma \nabla \bar{h}^{(m+1)}\right), \\
\left(\mathrm{id}+\sigma \partial F^{*}\right)^{-1}(u(x))=\min (|u(x)|, 1) \operatorname{sgn}(u(x)) .
\end{array} \quad \begin{aligned}
& \text { discretize } \\
& \text { via finite } \\
& \text { difference } \\
& \text { method }
\end{aligned}
$$

Benefits:

- avoids inverting 1-Laplacian
- freedom to choose λ large helps with computation of $h^{(m+1)}$

Convergence of PDHG

Theorem: [CMLLW '20] Let $d=1$. Suppose the PDHG algorithm is initialized with

$$
h^{(0)}=h^{n}, \phi^{(0)}=0,
$$

Then for all $\delta>0$, there exist $\tilde{M}, \lambda, \sigma$, so that

$$
F\left(h^{(M)}\right)-F\left(h^{n+1}\right) \leq \delta, \quad \forall M \geq \tilde{M}, \quad F(h)=\mathcal{E}(h)+\frac{1}{2 \tau}\left\|h-h^{n}\right\|_{H_{h n}^{-1}}^{2}
$$

Convergence of PDHG

Theorem: [CMLLW '20] Let $d=1$. Suppose the PDHG algorithm is initialized with

$$
h^{(0)}=h^{n}, \phi^{(0)}=0,
$$

Then for all $\delta>0$, there exist $\tilde{M}, \lambda, \sigma$, so that

$$
F\left(h^{(M)}\right)-F\left(h^{n+1}\right) \leq \delta, \quad \forall M \geq \tilde{M}, \quad F(h)=\mathcal{E}(h)+\frac{1}{2 \tau}\left\|h-h^{n}\right\|_{H_{h^{n}}^{-1}}^{2}
$$

Remarks:

- Extends to general $M(h)$ provided that $M\left(h^{n}\right)$ and $1 / M\left(h^{n+1}\right)$ integrable [c.f. Cancés, Gallouët, and Todeschi '19]
- We require $\mathrm{d}=1$ to conclude $\left\|h^{n}\right\|_{\infty} \leq \mathcal{E}\left(h^{n}\right)<+\infty$. Higher integrability of $1 / \mathrm{M}\left(h^{n+1}\right)$ would be required to weaken this assumption.
- If one has $\nabla h^{n} \in B V$, quantitative estimates: $\tilde{M} \sim \delta^{-2}, \lambda \sim \delta^{-1}, \sigma \sim \delta$
- Key step: $\delta_{F}(R)=\min _{\left\|h^{n}-h\right\|_{\dot{H}^{1}} \leq R} F(h)-F\left(h^{n+1}\right) \xrightarrow{R \rightarrow+\infty} 0$

Numerical Results: dynamics

Numerical Results: dynamics

Numerical Results: dynamics

Numerical Results: dynamics

Numerical Results: dynamics

Sinuoidal

Observations:

- facet formation at local maxima
- pinning at local minima
$N x=200, N t=10, \sigma=0.0005, \lambda=500, \varepsilon=0.04$

Jump Discontinuities

Facet

Numerical Results: energy decrease

Numerical Results: convergence

Observations:

- Error vs Nx: slightly sublinear convergence (low spatial regularity)
- Error vs Nt: first order (semi-implicit Euler)
- Internal time steps vs Nt: importance of selecting correct Hilbert space
sinusoidal, $(N x=200),(N t=10), \sigma=0.0005, \lambda=500, \varepsilon=0.05, T=10^{-4}$

Open questions

crystal growth PDE

$$
\partial_{t} h=\Delta e^{-\Delta_{1} h}
$$

"gradient flow"
$\partial_{t} h=-\nabla_{H_{h}^{-1}} \mathcal{E}(h)$

$$
M_{\epsilon}(h)=e^{-\varphi_{\epsilon} * \Delta_{1} h}, \mathcal{E}(h)=\|\nabla h\|_{1}
$$

discrete time scheme

$h^{n+1}=\operatorname{argmin}_{h} \mathcal{E}(h)+\frac{1}{2 \tau}\left\|h-h^{n}\right\|_{H_{h^{n}}^{-1}}^{2}$

$$
\begin{aligned}
& h^{(m+1)}=\left(\frac{\tau}{\lambda} \Delta_{h^{n}} \Delta+\mathrm{id}\right)^{-1}\left(\frac{\tau}{\lambda} \Delta_{h^{n}} \Delta h^{(m)}-\tau \Delta_{h^{n}} \nabla \cdot \phi^{(m)}+h^{n}\right) \\
& \bar{h}^{(m+1)}=h^{(m+1)}-h^{(m)} \\
& \phi^{(m+1)}=\left(\mathrm{id}+\sigma \partial F^{*}\right)^{-1}\left(\phi^{(m)}+\sigma \nabla \bar{h}^{(m+1)}\right)
\end{aligned}
$$

Open questions

crystal growth PDE

$$
\partial_{t} h=\Delta e^{-\Delta_{1} h}
$$

"gradient flow"

$$
\partial_{t} h=-\nabla_{H_{h}^{-1}} \mathcal{E}(h)
$$

$$
M_{\epsilon}(h)=e^{-\varphi_{\epsilon} * \Delta_{1} h}, \mathcal{E}(h)=\|\nabla h\|_{1}
$$

discrete time scheme

$h^{n+1}=\operatorname{argmin}_{h} \mathcal{E}(h)+\frac{1}{2 \tau}\left\|h-h^{n}\right\|_{H_{h n}^{-1}}^{2}$
\rightarrow

$$
\begin{aligned}
& h^{(m+1)}=\left(\frac{\tau}{\lambda} \Delta_{h^{n}} \Delta+\mathrm{id}\right)^{-1}\left(\frac{\tau}{\lambda} \Delta_{h^{n}} \Delta h^{(m)}-\tau \Delta_{h^{n}} \nabla \cdot \phi^{(m)}+h^{n}\right) \\
& \bar{h}^{(m+1)}=2 h^{(m+1)}-h^{(m)} \\
& \phi^{(m+1)}=\left(\mathrm{id}+\sigma \partial F^{*}\right)^{-1}\left(\phi^{(m)}+\sigma \nabla \bar{h}^{(m+1)}\right),
\end{aligned}
$$

Today: Convergence of PDHG, E TV energy, gen $M(h), d=1$

Open questions

crystal growth PDE

$$
\partial_{t} h=\Delta e^{-\Delta_{1} h}
$$

"gradient flow"

$$
\partial_{t} h=-\nabla_{H_{h}^{-1}} \mathcal{E}(h)
$$

$$
M_{\epsilon}(h)=e^{-\varphi_{\epsilon} * \Delta_{1} h}, \mathcal{E}(h)=\|\nabla h\|_{1}
$$

$$
h^{n+1}=\operatorname{argmin}_{h} \mathcal{E}(h)+\frac{1}{2 \tau}\left\|h-h^{n}\right\|_{H_{h^{n}}^{-1}}^{2}
$$

- Convergence as $\tau \rightarrow 0$?
- Convergence as $\tau, \varepsilon \rightarrow 0$?

Today: Convergence of PDHG, E TV energy, gen $M(h), d=1$

Open questions

crystal growth PDE

$$
\partial_{t} h=\Delta e^{-\Delta_{1} h}
$$

- Appropriate notion of

"gradient flow"

$$
\partial_{t} h=-\nabla_{H_{h}^{-1}} \mathcal{E}(h)
$$

$$
M_{\epsilon}(h)=e^{-\varphi_{\epsilon} * \Delta_{1} h}, \mathcal{E}(h)=\|\nabla h\|_{1}
$$ weak solution?

- Better time discretization/GF formulation to prove existence of wider class of weak solutions? numerics?
discrete time scheme

- Convergence as $\tau \rightarrow 0$?
- Convergence as $\tau, \varepsilon \rightarrow 0$?

Today: Convergence of PDHG, E TV energy, gen $M(h), d=1$

Thank you!

