

Gradient Flows in the Wasserstein Metric: From Discrete to Continuum via Regularization

Katy Craig University of California, Santa Barbara

joint with José Antonio Carrillo (Oxford), Francesco Patacchini (IFP Energies), Karthik Elamvazhuthi (UCLA), Matt Haberland (Cal Poly), Olga Turanova (Michigan State)

Stanford Operations Research Seminar, November 4th, 2020

Motivation

- Wasserstein gradient flows
- Particle methods (discrete \leftrightarrow continuum)
- Particle method + regularization = blob method for diffusive PDEs
- Numerics

PDEs and sampling/coverage algs

Consider a target distribution $\bar{\rho} \in \mathscr{P}(\mathbb{R}^d)$.

Sampling: How can we choose samples $\{\bar{x}_i\}_{i=1}^N \subseteq \mathbb{R}^d$, so that (with high probability), they accurately represent the desired target distribution?

Coverage: How can we program robots to move so that they distribute their locations $\{\bar{x}_i\}_{i=1}^N \subseteq \mathbb{R}^d$ according to $\bar{\rho}$ (deterministically)?

In both cases, we seek to approximate $\bar{\rho}$ by an empirical measure:

$$\bar{\rho}^N := \frac{1}{N} \sum_{i=1}^N \delta_{\bar{x}_i} \xrightarrow{N \to +\infty} \bar{\rho}$$

PDE's can inspire new ways to construct the empirical measure.

PDEs and sampling/coverage algs

Suppose $\bar{\rho} = e^{-V}$, for $V : \mathbb{R}^d \to \mathbb{R}$ convex.

Diffusion: $\partial_t \rho = \nabla \cdot \left(\rho \nabla \log \left(\rho / \bar{\rho} \right) \right) = \Delta \rho - \nabla \cdot \left(\rho \nabla \log \bar{\rho} \right)$	
$KL(\rho(t),\bar{\rho}) \leq e^{-\lambda t} KL(\rho(0),\bar{\rho}) \text{ [Villani 2008,], } KL(\mu,\nu) = \int \mu \log(\mu/\nu)$	
Particle method: $dX_{i} = \sqrt{2}dB_{i} - \nabla \log \bar{\rho}(X_{i})dt$ [Fo	Motivation for deg. diff:
$\frac{1}{N} N = \frac{N}{N} = $	Sampling: SVGD, chi-sq.
$\rho^N(t) := \frac{1}{N} \sum \delta_{X_i}(t) \xrightarrow{N \to +\infty} \rho(t)$	PDE: porous media,
i = 1	chemotaxis,
Degenerate diffusion: $\partial_t \rho = \nabla \cdot \left(\rho \nabla \left(\rho / \bar{\rho} \right) \right)$	<i>Coverage:</i> deterministic particle method
$KL(\rho(t), \bar{\rho}) \leq e^{-\lambda t} KL(\rho(0), \bar{\rho})$ [Matthes, et al. 200	<i>Optimization</i> : training neural network with single
Particle method: ?	hidden layer, RBF

- Motivation
- Wasserstein gradient flows
- Particle methods (discrete \leftrightarrow continuum)
- Particle method + regularization = blob method for diffusive PDEs
- Numerics

Gradient flows

• x(t) evolves in the direction of steepest descent of E, with respect to d • $x(t + \Delta t) \approx \min_{x} \frac{1}{2(\Delta t)} d^2(x, x(t)) + E(x(t))$ [De Giorgi '88] [JKO '98]

Gradient flow

prof. Mark. A. Peletier, PhD

Centre for Analysis, Scientific Computing, and Applications Department of Mathematics and Computer Science Institute for Complex Molecular Systems

> TUe Technische Universiteit Eindhoven University of Technology Where innovation starts

 $\frac{d}{dt}x(t) = -\nabla_d E(x(t))$

7

L² geodesic $\rho(t) = (1 - t)\rho_0 + t\rho_1$ $\rho(t)$ $\rho(t)$ ρ

1.0

 ${\cal V}$

Wasserstein gradient floChoices of K:
granular media:
$$K(x) = |x|^3$$

swarming: $K(x) = |x|^a/a - |x|^b/b$
chemotaxis: $K(x) = \log(|x|)$ **Diffusion:**
 $\partial_t \rho = \nabla \cdot \left(\rho \nabla \log \left(\rho/\bar{\rho}\right)\right), \quad E(\rho) = \int \rho \log(\bar{\rho}$ **Choices of K:**
granular media: $K(x) = |x|^a/a - |x|^b/b$
chemotaxis: $K(x) = \log(|x|)$ **Degenerate Diffusion:**
 $\partial_t \rho = \nabla \cdot \left(\rho \nabla \left(\rho/\bar{\rho}\right)\right), \quad E(\rho) = \int |\rho|^2/\bar{\rho} = x^{-1} (\sum_i x_i z_i + x_d) + \Phi(x, z) = \psi(|x - z|)$

Aggregation + Drift:

Aggregation + Drift:

$$\partial_t \rho = \nabla \cdot (\rho \nabla (K^* \rho)) + \nabla \cdot (\rho \nabla V), \quad E(\rho) = \frac{1}{2} \int (K^* \rho) \rho + \int V \rho$$

Training dynamics of 2-layer neural networks: [MMN '18] [RVE '18] [CB '18]...

$$E(\rho) = \frac{1}{2} \iint \left[\int \Phi(x, z) d\rho(x) - f_0(z) \right|^2 d\nu = \int (\psi * \rho)^2 d\nu$$

= $\frac{1}{2} \iint \int \Phi(x, z) \Phi(y, z) d\nu(z) d\rho(x) d\rho(y) - \int \int \Phi(x, z) f_0(z) d\nu(z) d\rho(x) + C$
K(x,y)

- Motivation
- Wasserstein gradient flows
- Particle methods (discrete ↔ continuum)
- Particle method + regularization = blob method for diffusive PDEs
- Numerics

Wasserstein gradient flows

Diffusion:

$$\partial_t \rho = \nabla \cdot \left(\rho \nabla \log \left(\rho / \bar{\rho} \right) \right), \quad E(\rho) = \int \rho \log(\bar{\rho} / \rho) = KL(\rho, \bar{\rho})$$

Degenerate Diffusion:

$$\partial_t \rho = \nabla \cdot \left(\rho \nabla \left(\rho / \bar{\rho} \right) \right), \quad E(\rho) = \int |\rho|^2 / \bar{\rho} = \chi^2(\rho, \bar{\rho})$$

Aggregation + Drift:

$$\partial_t \rho = \nabla \cdot (\rho \nabla (K^* \rho)) + \nabla \cdot (\rho \nabla V), \quad E(\rho) = \frac{1}{2} \int (K^* \rho) \rho + \int V \rho$$

All W₂ gradient flows are solutions of **continuity equations**
$$\partial_t \rho + \nabla \cdot (\rho v[\rho]) = 0, \quad v[\rho] = -\nabla \frac{\partial E}{\partial \rho}$$

Particle methods

Consider a continuity equation with a uniformly Lipschitz continuous velocity $v[\rho] : \mathbb{R}^d \to \overset{\mathbb{R}^d}{\underset{\rho(x,0)}{\overset{\partial_t \rho}{\overset{\partial_t \rho}{\overset$ 1. Approximate initial data: $\rho_0^N = \frac{1}{N} \sum_{i=1}^N \delta_{x_i}$ particle method lifts Evolve the locations: $\rho^{N(t)} = \frac{1}{N} \sum_{i=1}^{N} \delta_{x_{i}(t)}$ Solutions of ODEs into PDE framework $\frac{d}{dt} x_{i}(t) = v[\rho^{N}(t)](x_{i}(t)) \iff \partial_{t}\rho^{N} + \nabla \cdot (\rho^{N}v[\rho^{N}]) = 0$ solutions of ODEs into 2. Evolve the locations: W₂ GF perspective gives tools for proving Since $v[\rho]$ unif Lipschitz, $W_2(\rho^N(t), \rho(t)) \le e^{\|\nabla v\|_{\infty}t} W_2(\rho_0^N, \rho_0) \xrightarrow{N \to +\infty} 0$ $\begin{array}{c} \text{gives tools for proven of } V[\rho] \text{ unif Lipschitz} \end{array}$ 3. Since $\nu[\rho]$ unif Lipschitz,

Benefits of particle methods: deterministic, positivity preserving, adaptive, energy decreasing,... but what about v not unif Lipschitz?

Wasserstein gradient flows

Diffusion:

$$\partial_t \rho = \nabla \cdot \left(\rho \nabla \log \left(\rho / \bar{\rho} \right) \right), \quad E(\rho) = \int \rho \log(\bar{\rho} / \rho) = KL(\rho, \bar{\rho})$$

Degenerate Diffusion:
 $\partial_t \rho = \nabla \cdot \left(\rho \nabla \log \left(\rho / \bar{\rho} \right) \right), \quad E(\rho) = \int \rho \log(\bar{\rho} / \rho) = KL(\rho, \bar{\rho})$

$$\partial_t \rho = \nabla \cdot \left(\rho \nabla \left(\rho / \bar{\rho} \right) \right), \quad E(\rho) = \int |\rho|^2 / \bar{\rho} = \chi^2(\rho, \bar{\rho})$$

Aggregation + Drift:

$$\partial_t \rho = \nabla \cdot (\rho \nabla (K^* \rho)) + \nabla \cdot (\rho \nabla V), \quad E(\rho) = \frac{1}{2} \int (K^* \rho) \rho + \int V \rho$$

Lipschitz for K, V smooth

How can we use a particle method for aggregation equations to get a particle method for degenerate diffusion?

Regularize

- Motivation
- Wasserstein gradient flows
- Particle methods (discrete ↔ continuum)
- Particle method + regularization = blob method for diffusion
- Numerics

Blob method for diffusion

Degenerate Diffusion: $\partial_t \rho = \nabla \cdot \left(\rho \nabla \left(\rho / \bar{\rho} \right) \right), \quad E(\rho) = \begin{bmatrix} E(\rho) = \int (\psi^* \rho)^2 \nu - 2 \int \psi^* (f_0 \nu) \rho \\ \underbrace{ \psi^* (f_0 \nu) \rho}_{t} \end{bmatrix}$ **Approximation of Degenerate Diffusion:** $\partial_t \rho = \nabla \cdot \left(\rho \nabla \varphi_{\epsilon}^* \left(\varphi_{\epsilon}^* \rho / \bar{\rho} \right) \right), \quad E_{\epsilon}(\rho) = \left| \left| \varphi_{\epsilon}^* \rho \right|^2 / \bar{\rho} \right|$ This particle method is precisely the dynamics of **Theorem** (C., Elamvazhuthi, Haberland, Turanova, training a neural network The velocity $v_{\epsilon}[\rho] = -\nabla \varphi_{\epsilon} * (\varphi_{\epsilon} * \rho/\bar{\rho})$ is $C_{R}\epsilon^{-1}$ with a single hidden layer, with RBF activation satisfying supp $\rho \subseteq B_R(0)$. function.

Consequently, the particle method is well-posed:

$$\frac{d}{dt}x_i(t) = -\nabla\varphi_{\epsilon} * \left(\varphi_{\epsilon} * \rho^N(t)/\bar{\rho}\right) = -\nabla\varphi_{\epsilon} * \left(\frac{1}{N}\sum_{i=1}^N\varphi_{\epsilon}(x_i(t) - x_j(t))/\bar{\rho}(x_i(t))\right)$$

and, for fixed $\epsilon > 0$, as $N \to +\infty$, this converges to the GF of E_{ϵ} .

What happens as $N \rightarrow + \infty$ and $\epsilon \rightarrow 0$?

Convergence of blob method

Previous work: $\bar{\rho} = 1$

- [Oelschläger '98]: conv. of particle method to smooth, positive solutions
- [Lions, Mas-Gallic 2000]: convergence of bounded entropy solutions as $\epsilon \to 0$ (particles not allowed) $\int_{\rho(t)\log\rho(t) < +\infty} \rho(t)\log\rho(t) < +\infty$
- [Carrillo, C., Patacchini 2017]: convergence of bounded entropy solns; allow additional GF terms (aggregation, drift,...), $\partial_t \rho = \Delta \rho^m, m \ge 1$.
- [Javanmard, Mondelli, Montanari 2019]: convergence of particle method to smooth, strictly positive solns; allow additional GF terms (2 layer NN)

Theorem (C., Elamvazhuthi, Haberland, Turanova, in prep.): Suppose • $\bar{\rho} \in C^2(\mathbb{R}^d), \bar{\rho} > 0$ • $W(\alpha^N, \alpha) = \alpha(\alpha^{-\frac{1}{d+2}})$ for α with bounded entropy and out support

•
$$W_2(\rho_0^N, \rho_0) = o(e^{-\overline{e^{d+2}}})$$
 for ρ_0 with bounded entropy and cpt support
Then $\rho^N(t) \xrightarrow{N \to +\infty} \rho(t)$ for all $t \in [0,T]$.

Implications

Sampling: Spatially discrete, deterministic particle method for sampling according to chi-squared divergence (c.f. [Chewi, et. al. '20]

PDE: Provably convergent numerical method for diffusive gradient flows with low regularity (merely bounded entropy)

Coverage: Deterministic particle method well-suited to robotics

Optimization:

- Particle method equivalent to training dynamics for neural networks with a singular hidden layer, RBF activation.
- Our result identifies limiting dynamics in the over parametrized regime $(N \rightarrow +\infty)$ as variance of the RBF decreases to zero ($\epsilon \rightarrow 0$), $\nu \neq 1$.
- Limiting dynamics are *convex* GF for ν log-convex and $f_0\nu$ concave.

$$E(\rho) = \int (\psi * \rho)^2 \nu - 2 \int \underbrace{\psi * (f_0 \nu)\rho}_V$$

- Motivation:
 - Diffusive PDEs and sampling/coverage algorithms
 - Training dynamics for neural networks with a single hidden layer
- Wasserstein gradient flows
- Particle methods (discrete \leftrightarrow continuum)
- Particle method + regularization = blob method for diffusive PDEs
- Numerics

Numerics

$$\rho_{\epsilon}(x,t) = \frac{1}{N} \sum_{i=1}^{N} \varphi_{\epsilon}(x - x_{i}(t)) = \varphi_{\epsilon} * \rho^{N}(t)$$

Numerical results: sampling

Numerics

 $\bar{\rho} = 1$

 $\epsilon = h^{.95}$

$$\rho_{\epsilon}(x,t) = \frac{1}{N} \sum_{i=1}^{N} \varphi_{\epsilon}(x - x_{i}(t)) = \varphi_{\epsilon} * \rho^{N}(t)$$

Open questions

- Quantitative rate of convergence depending on N and ϵ ?
- Can better choice of RBF lead to faster rates of convergence? Help fight against curse of dimensionality?
- Can random batch method [Jin, Li, Liu '20] lower computational cost from $O(N^2)$ while preserving long-time behavior?

