
Gradient Flow in the Wasserstein Metric
Katy Craig 
University of California, Santa Barbara 

NIPS, Optimal Transport & Machine Learning 
December 9th, 2017

Position -0.5 0.0 0.5

Ti
m

e

0

1

2

3



Example:  

Given x(0) ∈ ℝd, x(t) = x(0)e-t is unique solution of the gradient flow.

A curve x(t): [0,T ] → ℝd is the gradient flow of an energy E: ℝd → ℝ if 

• “x(t) evolves in the direction of steepest descent of E” 
• initial value problem: given x(0), find the gradient flow x(t)

gradient flow in finite dimensions
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metric energy functional gradient flow

(Rd, | · |)
E(x) =

1

2
x

2 d

dt

x(t) = �x(t)

d

dt

x(t) = �rE(x(t))



Def: An energy E is λ-convex if                        or, equivalently, if 

for all x,y ∈ ℝ, t ∈ [0,1].

gradient flow in finite dimensions
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D2E � �Id⇥d

E((1� t)x+ ty)  (1� t)E(x) + tE(y)�t(1� t)
�

2
|x� y|2

Gradient flows often arise when solving optimization problems: 
min
x2Rd

E(x)

Convexity of the energy determines stability and long time behavior.

f(x) =
x

2

2
, � = 1 f(x) = sin(x), � = �1



gradient flow in finite dimensions
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If E(x) is λ-convex, then… 

1) Stability: for any gradient flows x(t) and y(t), 

2) long time behavior: if λ>0, there is a unique solution x̅ of               
and any gradient flow x(t) converges to x̅ as t → +∞:

|x(t)� x̄|  e

��t |x(0)� x̄|

|x(t)� y(t)|  e

��t |x(0)� y(0)|

min
x2Rd

E(x)



gradient flow
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d

dt

x(t) = �rXE(x(t))

In general, given a complete metric space (X,d), a curve x(t): ℝ → X is the 
gradient flow of an energy E: X → ℝ if

gradient flow with different metrics

metric (X,d)

 def of ∇X 

formula for  ∇X 

energy

gradient flow

E(x) =
1

2
x

2

(Rd, | · |)

d

dt

x(t) = �x(t)

(L2(Rd), k · kL2)

rRdE(x) = rE(x) rL2(Rd)E(f) =
@E

@f
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rX

hrE(x), vi = lim
h!0

E(x+ hv)� E(x)

h

hrE(f), gi = lim
h!0

E(f + hg)� E(f)

h

Examples:          Euclidean L2
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finite difference approximation 

                  approximated by                 
approximate values of function
f : Rd ! R {fi}i2hZd

gradient flow with different metrics
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(P2(Rd),W2)

rW2E(⇢) = �r ·
✓
⇢r@E
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interpolating with different metrics
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L2 geodesic

The same dichotomy between values of a function and mass of a 
function is also present in the geodesics.
Def: A constant speed geodesic between two points ρ0 and ρ1 in a 
metric space (X,d) is any curve ρ:[0,1]→X s.t.

⇢(0) = ⇢0, ⇢(1) = ⇢1, d(⇢(t), ⇢(s)) = |t� s|d(⇢0, ⇢1)

⇢(t) = (1� t)⇢0 + t⇢1

W2 geodesic
⇢(t) = ((1� t)id + tT ⇢1

⇢0
)#⇢0
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gradient flow in the Wasserstein metric
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energy functional gradient flow

E(⇢) =

Z
⇢ log ⇢

d

dt
⇢ = �⇢
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m� 1

Z
⇢m d

dt
⇢ = �⇢m

E(⇢) =

Z
(K ⇤ ⇢)⇢

E(⇢) =

Z
V ⇢

All Wasserstein gradient flows are of the form

d

dt
⇢ = r · (r(K ⇤ ⇢)⇢)

d

dt
⇢ = r · (rV ⇢)

continuity equation

d

dt
⇢+r · (v⇢) = 0
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aggregation, drift, and degenerate diffusion: 

interaction kernels:                                             degenerate diffusion: 
• granular media: K(x) = |x|3                                                    

• swarming: K(x) = |x|ᵃ/a - |x|ᵇ/b, -d<b<a 

• chemotaxis:
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gradient flow in the Wasserstein metric

| {z }
self interaction

|{z}
diffusion

K(x) =

(
1
2⇡ log |x| if d = 2,

Cd|x|2�d
otherwise.

�⇢m = r · (m⇢m�1

| {z }
D

r⇢)•  

d

dt
⇢ = r · ((rK ⇤ ⇢)⇢) +r · (rV ⇢) +�⇢m K,V : Rd ! R, and m � 1

drift
|{z}

E(⇢) =
1

2

Z
K ⇤ ⇢d⇢+

Z
V d⇢+

1

m� 1

Z
⇢m

| {z } |{z} |{z}



biological chemotaxis 
a colony of slime mold [Gregor, et. al]

13



biological chemotaxis 
a colony of slime mold [Gregor, et. al]

13



K(x) = |x|

aggregation, drift, and degenerate diffusion: 
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K(x) = |x|3/3
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Particle methods

JKO scheme 
• Pros: reduces simulating grad flow to solving a sequence of optimization 

problems involving W2 distance; leverages state of the art W2 solvers. 
• Cons: current methods lose convexity/stability properties of gradient flow 

Finite volume methods, finite element methods… 
• Pros: adapts numerical approaches inspired by classical fluid mechanics 

to gradient flow setting 
• Cons: current methods lose convexity/stability properties of gradient flow 

Without stability, we can’t prove general results on convergence.
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numerical simulation of W2 grad flow 



A general recipe for a particle methods: 
(1) approximate ρ₀(x) as a sum of Dirac masses on a grid of spacing h 

(2) evolve the locations of the Dirac masses by 

(3)                                     is a gradient flow of the original energy;               

it inherits all convexity/stability properties, hence                            

particle methods
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d

dt

xi(t) = v(xi(t), t) 8i

⇢N (x, t) ! ⇢(x, t)

Goal: Approximate a solution to
d

dt

⇢(x, t) +r · (v(x, t)⇢(x, t)) = 0

⇢

N

(x, t) =
NX

i=1

�

xi(t)mi

⇢0 ⇡
NX

i=1

�
ximi

Assume: v(x,t) comes from a Wasserstein gradient flow and is “nice”



but what about when v(x,t) is not “nice”?

Benefits of particle methods: 

(1) positivity preserving 

(2) inherently adaptive 

(3) energy decreasing 

(4) preserves convexity/stability properties of gradient flow at discrete level

particle methods
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Goal: Approximate a solution to
d

dt

⇢(x, t) +r · (v(x, t)⇢(x, t)) = 0



aggregation, drift, and degenerate diffusion:

v(x,t) is often not nice

20

d

dt
⇢ = r · ((rK ⇤ ⇢)⇢) +r · (rV ⇢) +�⇢m K,V : Rd ! R, and m � 1

v = rK ⇤ ⇢+rV +m⇢m�2r⇢

v(x,t)

• Diffusion term is worst: particles do not remain particles 

• But even the interaction term can slow down convergence if it has a 
strong singularity at the origin…



“Blob Method”: regularize the velocity field to make it nice!
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“Blob Method”: regularize the velocity field to make it nice!

aggregation, drift, and degenerate diffusion:

v(x,t) is often not nice
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d

dt
⇢ = r · ((rK ⇤ ⇢)⇢) +r · (rV ⇢) +�⇢m K,V : Rd ! R, and m � 1

v = rK ⇤ ⇢+rV +m⇢m�2r⇢

v(x,t)

• Diffusion term is worst: particles do not remain particles 

• But even the interaction term can slow down convergence if it has a 
strong singularity at the origin…



A regularized particle method: 
(0) regularize the interaction kernel via convolution with a mollifier 

(1) approximate ρ₀(x) as a sum of Dirac masses on a grid of spacing h 

(2) evolve the locations of the Dirac masses by 

(3)                                     is a gradient flow of the regularized energy

particle methods
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Goal: Approximate a solution to
d

dt

⇢(x, t) +r · (v(x, t)⇢(x, t)) = 0

a blob method for aggregation
d

dt
⇢ = r · ((rK ⇤ ⇢)⇢) v = rK ⇤ ⇢

⇢0 ⇡
NX

i=1

�
ximi

⇢

N

(x, t) =
NX

i=1

�

xi(t)mi

E✏(⇢) =

Z
(K✏ ⇤ ⇢)⇢

K✏(x) = K ⇤ '✏(x), '✏(x) = '(x/✏)/✏d



a blob method for aggregation
Theorem [C., Bertozzi 2014]: If ε = hq, 0<q<1, the blob method 
converges as h →0 .

22

two dimensions, aggregation
K(x) = log |x|/2π K(x) = |x|2/2 K(x) = |x|3/3

Position -0.5 0.0 0.5

Ti
m

e

0

1

2

3

• finite vs infinite time collapse
• delta function vs delta ring h = 0.04, q = 0.9, m = 4
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aggregation, drift, and diffusion:

• Adding a drift term is straightforward: just do a particle method with 

• How can we add diffusion? 

• Previous work: stochastic [Liu, Yang 2017], [Huang, Liu 2015], 
deterministic [Carrillo, Huang, Patacchini, Wolansky 2016] 

• Our idea: regularize by convolution with a mollifier.

aggregation + ?
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d

dt
⇢ = r · ((rK ⇤ ⇢)⇢) +r · (rV ⇢) +�⇢m K,V : Rd ! R, and m � 1

v = rK✏ ⇤ ⇢+rV



Solutions of diffusion equation are gradient flows of 

Let’s consider gradient flows of

• Previous work (m=2):[Lions, Mas-Gallic 2000], [P.E. Jabin, in progress] 

• For ε > 0, particles remain particles, so can do a particle method for 

  
       a blob method for diffusion.

a blob method for degenerate diffusion

24

diffusion equation:
d

dt
⇢ = �⇢m m � 1

E(⇢) =
1

m� 1

Z
⇢m

E✏(⇢) =
1

m� 1

Z
(⇢ ⇤ '✏)

m�1⇢

v = r'✏ ⇤
�
('✏ ⇤ ⇢)m�2⇢

�
+ ('✏ ⇤ ⇢)m�2(r'✏ ⇤ ⇢)

=)
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a blob method for degenerate diffusion
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Theorem [Carrillo, C., Patacchini 2017]: Consider 

 As ε→0, 
• For all m ≥ 1, Eε Γ-converge to E. 

• For m = 2 and initial data with bounded entropy, gradient flows of Eε 
converge to gradient flows of E. 

• For m ≥ 2 and particle initial data with ε = hq, 0<q<1, if a priori 
estimates hold, gradient flows of Eε converge to gradient flows of E.

E✏(⇢) =

Z
(K ⇤ ⇢)⇢+

Z
V ⇢+

1

m� 1

Z
(⇢ ⇤ '✏)

m�1⇢



numerics: Keller-Segel (d=2)
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subcritical mass critical mass supercritical mass
Evolution of Density

Evolution of Second Moment
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subcritical mass critical mass supercritical mass
Evolution of Density

Evolution of Second Moment



Future work
• Convergence for 1 ≤ m < 2? 

• Quantitative estimates for m ≥ 2? 

• Utility in related fluids and kinetic equations? 



Thank you!


