

Gradient Flow in the Wasserstein Metric

Katy Craig
University of California, Santa Barbara

NIPS, Optimal Transport \& Machine Learning
December 9th, 2017

gradient flow in finite dimensions

A curve $x(t):[0, T] \rightarrow \mathbb{R}^{d}$ is the gradient flow of an energy $E: \mathbb{R}^{d} \rightarrow \mathbb{R}$ if

$$
\frac{d}{d t} x(t)=-\nabla E(x(t))
$$

- "x(t) evolves in the direction of steepest descent of E"
- initial value problem: given $x(0)$, find the gradient flow $x(t)$

Example:

metric

energy functional

gradient flow

$$
\left(\mathbb{R}^{d},|\cdot|\right) \quad E(x)=\frac{1}{2} x^{2} \quad \frac{d}{d t} x(t)=-x(t)
$$

Given $x(0) \in \mathbb{R}^{d}, x(t)=x(0) e^{-t}$ is unique solution of the gradient flow.

gradient flow in finite dimensions

Gradient flows often arise when solving optimization problems:

$$
\min _{x \in \mathbb{R}^{d}} E(x)
$$

Convexity of the energy determines stability and long time behavior.
Def: An energy E is λ-convex if $D^{2} E \geq \lambda I_{d \times d}$ or, equivalently, if

$$
E((1-t) x+t y) \leq(1-t) E(x)+t E(y)-t(1-t) \frac{\lambda}{2}|x-y|^{2}
$$

for all $x, y \in \mathbb{R}, t \in[0,1]$.

$$
f(x)=\frac{x^{2}}{2}, \lambda=1
$$

$$
f(x)=\sin (x), \lambda=-1
$$

gradient flow in finite dimensions

If $E(x)$ is λ-convex, then...

1) Stability: for any gradient flows $x(t)$ and $y(t)$,

$$
|x(t)-y(t)| \leq e^{-\lambda t}|x(0)-y(0)|
$$

2) Iong time behavior: if $\lambda>0$, there is a unique solution $\overline{\mathrm{x}}$ of $\min _{x \in \mathbb{R}^{d}} E(x)$ and any gradient flow $x(t)$ converges to \bar{x} as $t \rightarrow+\infty$:

$$
|x(t)-\bar{x}| \leq e^{-\lambda t}|x(0)-\bar{x}|
$$

gradient flow

Gradient flow

prof. Mark. A. Peletier, PhD

Centre for Analysis, Scientific Computing, and Applications Department of Mathematics and Computer Science Institute for Complex Molecular Systems

gradient flow

Gradient flow

prof. Mark. A. Peletier, PhD

Centre for Analysis, Scientific Computing, and Applications Department of Mathematics and Computer Science Institute for Complex Molecular Systems

gradient flow with different metrics

In general, given a complete metric space (X, d), a curve $x(t): \mathbb{R} \rightarrow X$ is the gradient flow of an energy $\mathrm{E}: \mathrm{X} \rightarrow \mathbb{R}$ if

$$
" \frac{d}{d t} x(t)=-\nabla_{X} E(x(t)) "
$$

Examples:

metric (X,d)
def of $\nabla \mathrm{x}$
formula for ∇_{X}

Euclidean

$\left(\mathbb{R}^{d},|\cdot|\right)$
$\langle\nabla E(x), v\rangle=\lim _{h \rightarrow 0} \frac{E(x+h v)-E(x)}{h}\langle$
$\nabla_{\mathbb{R}^{d}} E(x)=\nabla E(x)$

$$
E(x)=\frac{1}{2} x^{2}
$$

energy
gradient flow
L²
$\left(L^{2}\left(\mathbb{R}^{d}\right),\|\cdot\|_{L^{2}}\right)$

$$
\nabla_{L^{2}\left(\mathbb{R}^{d}\right)} E(f)=\frac{\partial E}{\partial f}
$$

$$
\frac{d}{d t} x(t)=-x(t)
$$

$$
\begin{aligned}
& E(f)=\frac{1}{2} \int|f|^{2} \\
& \frac{d}{d t} f(x, t)=-f(x, t)
\end{aligned}
$$

gradient flow with different metrics

In general, given a complete metric space (X, d), a curve $x(t): \mathbb{R} \rightarrow X$ is the gradient flow of an energy $\mathrm{E}: \mathrm{X} \rightarrow \mathbb{R}$ if

$$
" \frac{d}{d t} x(t)=-\nabla_{X} E(x(t)) "
$$

Examples:

metric (X,d)
def of $\nabla \mathrm{x}$
formula for ∇_{X}

Euclidean

$\left(\mathbb{R}^{d},|\cdot|\right)$
$\langle\nabla E(x), v\rangle=\lim _{h \rightarrow 0} \frac{E(x+h v)-E(x)}{h}$

$$
\langle\nabla E(f), g\rangle=\lim _{h \rightarrow 0} \frac{E(f+h g)-E(f)}{h}
$$

$\nabla_{\mathbb{R}^{d}} E(x)=\nabla E(x)$

$$
\nabla_{L^{2}\left(\mathbb{R}^{d}\right)} E(f)=\frac{\partial E}{\partial f}
$$

$$
E(x)=\frac{1}{2} x^{2}
$$

energy
gradient flow

$$
\left(L^{2}\left(\mathbb{R}^{d}\right),\|\cdot\|_{L^{2}}\right)
$$

$$
E(f)=\frac{1}{2} \int|\nabla f|^{2}
$$

$$
\frac{d}{d t} x(t)=-x(t)
$$

$$
\frac{d}{d t} f(x, t)=-f(x, t)
$$

gradient flow with different metrics

In general, given a complete metric space (X, d), a curve $x(t): \mathbb{R} \rightarrow X$ is the gradient flow of an energy $\mathrm{E}: \mathrm{X} \rightarrow \mathbb{R}$ if

$$
" \frac{d}{d t} x(t)=-\nabla_{X} E(x(t)) "
$$

Examples:

metric (X, d)
def of $\nabla \mathrm{x}$
formula for ∇_{X}

energy

gradient flow

Euclidean

$\left(\mathbb{R}^{d},|\cdot|\right)$
$\langle\nabla E(x), v\rangle=\lim _{h \rightarrow 0} \frac{E(x+h v)-E(x)}{h}\langle\nabla E(f), g\rangle=\lim _{h \rightarrow 0} \frac{E(f+h g)-E(f)}{h}$
$\nabla_{\mathbb{R}^{d}} E(x)=\nabla E(x)$

$$
\nabla_{L^{2}\left(\mathbb{R}^{d}\right)} E(f)=\frac{\partial E}{\partial f}
$$

$$
E(x)=\frac{1}{2} x^{2}
$$

$$
E(f)=\frac{1}{2} \int|\nabla f|^{2}
$$

$$
\frac{d}{d t} x(t)=-x(t)
$$

$$
\frac{d}{d t} f(x, t)=\Delta f(x, t)
$$

gradient flow with different metrics

finite difference approximation

$f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ approximated by $\left\{f_{i}\right\}_{i \in h \mathbb{Z}^{d}}$ approximate values of function

Examples:

metric (X,d)
def of ∇x
formula for ∇_{X}
$\nabla_{\mathbb{R}^{d}} E(x)=\nabla E(x)$
$E(x)=\frac{1}{2} x^{2}$
$\frac{d}{d t} x(t)=-x(t)$

$\left(L^{2}\left(\mathbb{R}^{d}\right),\|\cdot\|_{L^{2}}\right)$
$\langle\nabla E(x), v\rangle=\lim _{h \rightarrow 0} \frac{E(x+h v)-E(x)}{h}\langle\nabla E(f), g\rangle=\lim _{h \rightarrow 0} \frac{E(f+h g)-E(f)}{h}$
$\nabla_{L^{2}\left(\mathbb{R}^{d}\right)} E(f)=\frac{\partial E}{\partial f}$
$E(f)=\frac{1}{2} \int|\nabla f|^{2}$
$\frac{d}{d t} f(x, t)=\Delta f(x, t)$

gradient flow with different metrics

Examples:

metric (X,d)
def of ∇x
formula for ∇_{X}
energy
gradient flow
$\nabla_{\mathbb{R}^{d}} E(x)=\nabla E(x)$

$$
\begin{aligned}
& E(x)=\frac{1}{2} x^{2} \\
& \frac{d}{d t} x(t)=-x(t)
\end{aligned}
$$

W_{2}
$\left(\mathbb{R}^{d},|\cdot|\right)$
$\langle\nabla E(x), v\rangle=\lim _{h \rightarrow 0} \frac{E(x+h v)-E(x)}{h}$

Euclidean

$\left(\mathcal{P}_{2}\left(\mathbb{R}^{d}\right), W_{2}\right)$
$\nabla_{W_{2}} E(\rho)=-\nabla \cdot\left(\rho \nabla \frac{\partial E}{\partial \rho}\right)$
$E(\rho)=\frac{1}{2} \int x^{2} \rho(x) d x$
$\frac{d}{d t} \rho(x, t)=\nabla \cdot(x \rho(x, t))$

gradient flow with different metrics

$$
\langle\nabla E(\mu),-\nabla \cdot(\xi \mu)\rangle_{\operatorname{Tan}_{\mu} \mathcal{P}_{2}\left(\mathbb{R}^{\mathrm{d}}\right)}=\lim _{h \rightarrow 0} \frac{E((\mathrm{id}+h \xi) \# \mu)-E(\mu)}{h}
$$

Examples:

metric (X,d)
def of ∇x
formula for ∇_{X}
$\nabla_{\mathbb{R}^{d}} E(x)=\nabla E(x)$

$$
\begin{aligned}
& E(x)=\frac{1}{2} x^{2} \\
& \frac{d}{d t} x(t)=-x(t)
\end{aligned}
$$

energy
gradient flow

Euclidean

$\left(\mathbb{R}^{d},|\cdot|\right)$
$\langle\nabla E(x), v\rangle=\lim _{h \rightarrow 0} \frac{E(x+h v)-E(x)}{h}$

W_{2}

$\left(\mathcal{P}_{2}\left(\mathbb{R}^{d}\right), W_{2}\right)$
$\nabla_{W_{2}} E(\rho)=-\nabla \cdot\left(\rho \nabla \frac{\partial E}{\partial \rho}\right)$
$E(\rho)=\frac{1}{2} \int x^{2} \rho(x) d x$
$\frac{d}{d t} \rho(x, t)=\nabla \cdot(x \rho(x, t))$

gradient flow with different metrics

Examples:

metric (X,d)
def of ∇x
formula for ∇_{X}
energy
gradient flow
$\nabla_{\mathbb{R}^{d}} E(x)=\nabla E(x)$

$$
\begin{aligned}
& E(x)=\frac{1}{2} x^{2} \\
& \frac{d}{d t} x(t)=-x(t)
\end{aligned}
$$

W_{2}
$\left(\mathbb{R}^{d},|\cdot|\right)$
$\langle\nabla E(x), v\rangle=\lim _{h \rightarrow 0} \frac{E(x+h v)-E(x)}{h}$

Euclidean

$\left(\mathcal{P}_{2}\left(\mathbb{R}^{d}\right), W_{2}\right)$
$\nabla_{W_{2}} E(\rho)=-\nabla \cdot\left(\rho \nabla \frac{\partial E}{\partial \rho}\right)$
$E(\rho)=\frac{1}{2} \int x^{2} \rho(x) d x$
$\frac{d}{d t} \rho(x, t)=\nabla \cdot(x \rho(x, t))$

gradient flow with different metrics

Examples:

metric (X,d)
def of ∇x
formula for ∇_{X}
$\nabla_{\mathbb{R}^{d}} E(x)=\nabla E(x)$

$$
\begin{aligned}
& E(x)=\frac{1}{2} x^{2} \\
& \frac{d}{d t} x(t)=-x(t)
\end{aligned}
$$

$\left(\mathbb{R}^{d},|\cdot|\right)$
$\langle\nabla E(x), v\rangle=\lim _{h \rightarrow 0} \frac{E(x+h v)-E(x)}{h}$
energy
gradient flow

Euclidean

W_{2}
$\nabla_{W_{2}} E(\rho)=-\nabla \cdot\left(\rho \nabla \frac{\partial E}{\partial \rho}\right)$
$E(\rho)=\int \rho(x) \log (\rho(x)) d x$
$\frac{d}{d t} \rho(x, t)=\nabla \cdot(x \rho(x, t))$

gradient flow with different metrics

Examples:

metric (X,d)
def of ∇x
formula for ∇_{X}
energy
gradient flow
$\nabla_{\mathbb{R}^{d}} E(x)=\nabla E(x)$

$$
\begin{aligned}
& E(x)=\frac{1}{2} x^{2} \\
& \frac{d}{d t} x(t)=-x(t)
\end{aligned}
$$

$\left(\mathbb{R}^{d},|\cdot|\right)$
$\langle\nabla E(x), v\rangle=\lim _{h \rightarrow 0} \frac{E(x+h v)-E(x)}{h}$

Euclidean

W_{2}
$\nabla_{W_{2}} E(\rho)=-\nabla \cdot\left(\rho \nabla \frac{\partial E}{\partial \rho}\right)$
$\left(\mathcal{P}_{2}\left(\mathbb{R}^{d}\right), W_{2}\right)$
$E(\rho)=\int \rho(x) \log (\rho(x)) d x$
$\frac{d}{d t} \rho(x, t)=\Delta \rho(x, t)$

gradient flow with different metrics

particle approximation

 $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ approximated by $\sum_{i=1}^{N} \delta_{x_{i}} m_{i}$ approximate mass of function
Examples:

metric (X, d)
def of $\nabla \mathbf{x}$
formula for ∇_{X}
$\nabla_{\mathbb{R}^{d}} E(x)=\nabla E(x)$

$$
\begin{aligned}
& E(x)=\frac{1}{2} x^{2} \\
& \frac{d}{d t} x(t)=-x(t)
\end{aligned}
$$

$\left(\mathcal{P}_{2}\left(\mathbb{R}^{d}\right), W_{2}\right)$
$\nabla_{W_{2}} E(\rho)=-\nabla \cdot\left(\rho \nabla \frac{\partial E}{\partial \rho}\right)$

$$
E(\rho)=\int \rho(x) \log (\rho(x)) d x
$$

$$
\frac{d}{d t} \rho(x, t)=\Delta \rho(x, t)
$$

interpolating with different metrics

The same dichotomy between values of a function and mass of a function is also present in the geodesics.

Def: A constant speed geodesic between two points ρ_{0} and ρ_{1} in a metric space (X, d) is any curve $\rho:[0,1] \rightarrow X$ s.t.

$$
\rho(0)=\rho_{0}, \rho(1)=\rho_{1}, d(\rho(t), \rho(s))=|t-s| d\left(\rho_{0}, \rho_{1}\right)
$$

$$
\begin{gathered}
\mathrm{W}_{2} \text { geodesic } \\
\rho(t)=\left((1-t) \operatorname{id}+t T_{\rho_{0}}^{\rho_{1}}\right) \# \rho_{0}
\end{gathered}
$$

interpolating with different metrics

The same dichotomy between values of a function and mass of a function is also present in the geodesics.

Def: A constant speed geodesic between two points ρ_{0} and ρ_{1} in a metric space (X, d) is any curve $\rho:[0,1] \rightarrow X$ s.t.

$$
\rho(0)=\rho_{0}, \rho(1)=\rho_{1}, d(\rho(t), \rho(s))=|t-s| d\left(\rho_{0}, \rho_{1}\right)
$$

$$
\begin{gathered}
\mathrm{W}_{2} \text { geodesic } \\
\rho(t)=\left((1-t) \operatorname{id}+t T_{\rho_{0}}^{\rho_{1}}\right) \# \rho_{0}
\end{gathered}
$$

interpolating with different metrics

The same dichotomy between values of a function and mass of a function is also present in the geodesics.

Def: A constant speed geodesic between two points ρ_{0} and ρ_{1} in a metric space (X, d) is any curve $\rho:[0,1] \rightarrow X$ s.t.

$$
\rho(0)=\rho_{0}, \rho(1)=\rho_{1}, d(\rho(t), \rho(s))=|t-s| d\left(\rho_{0}, \rho_{1}\right)
$$

$$
\begin{gathered}
\mathrm{W}_{2} \text { geodesic } \\
\rho(t)=\left((1-t) \operatorname{id}+t T_{\rho_{0}}^{\rho_{1}}\right) \# \rho_{0}
\end{gathered}
$$

gradient flow in the Wasserstein metric

Examples:

energy functional

gradient flow

$$
\begin{array}{l|l}
E(\rho)=\int \rho \log \rho & \frac{d}{d t} \rho=\Delta \rho \\
E(\rho)=\frac{1}{m-1} \int \rho^{m} & \frac{d}{d t} \rho=\Delta \rho^{m} \\
E(\rho)=\int V \rho & \frac{d}{d t} \rho=\nabla \cdot(\nabla V \rho) \\
E(\rho)=\int(K * \rho) \rho & \frac{d}{d t} \rho=\nabla \cdot(\nabla(K * \rho) \rho)
\end{array}
$$

All Wasserstein gradient flows are of the form

$$
\frac{d}{d t} \rho+\nabla \cdot(v \rho)=0
$$

gradient flow in the Wasserstein metric

Examples:

energy functional

gradient flow

$E(\rho)=\int \rho \log \rho$	$\frac{d}{d t} \rho=\Delta \rho$	$v=-\frac{\nabla \rho}{\rho}$
$E(\rho)=\frac{1}{m-1} \int \rho^{m}$	$\frac{d}{d t} \rho=\Delta \rho^{m}$	$\frac{d}{d t} \rho=\nabla \cdot(\nabla V \rho)$
$E(\rho)=\int V \rho$	$\frac{d}{d t} \rho=\nabla \cdot(\nabla(K * \rho) \rho)$	
$E(\rho)=\int(K * \rho) \rho$		

All Wasserstein gradient flows are of the form

$$
\frac{d}{d t} \rho+\nabla \cdot(v \rho)=0
$$

gradient flow in the Wasserstein metric

Examples:

energy functional

gradient flow

$E(\rho)=\int \rho \log \rho$	$\frac{d}{d t} \rho=\Delta \rho$	$v=-\frac{\nabla \rho}{\rho}$
$E(\rho)=\frac{1}{m-1} \int \rho^{m}$	$\frac{d}{d t} \rho=\Delta \rho^{m}$	$v=-m \rho^{m-2} \nabla \rho$
$E(\rho)=\int V \rho$	$\frac{d}{d t} \rho=\nabla \cdot(\nabla V \rho)$	$\frac{d}{d t} \rho=\nabla \cdot(\nabla(K * \rho) \rho)$
$E(\rho)=\int(K * \rho) \rho$		

All Wasserstein gradient flows are of the form

$$
\frac{d}{d t} \rho+\nabla \cdot(v \rho)=0
$$

gradient flow in the Wasserstein metric

Examples:

energy functional

gradient flow

$E(\rho)=\int \rho \log \rho$	$\frac{d}{d t} \rho=\Delta \rho$	$v=-\frac{\nabla \rho}{\rho}$
$E(\rho)=\frac{1}{m-1} \int \rho^{m}$	$\frac{d}{d t} \rho=\Delta \rho^{m}$	$v=-m \rho^{m-2} \nabla \rho$
$E(\rho)=\int V \rho$	$\frac{d}{d t} \rho=\nabla \cdot(\nabla V \rho)$	$v=-\nabla V$
$E(\rho)=\int(K * \rho) \rho$	$\frac{d}{d t} \rho=\nabla \cdot(\nabla(K * \rho) \rho)$	

All Wasserstein gradient flows are of the form

$$
\frac{d}{d t} \rho+\nabla \cdot(v \rho)=0
$$

gradient flow in the Wasserstein metric

Examples:

energy functional

gradient flow

$$
\begin{array}{l|l|l|}
E(\rho)=\int \rho \log \rho & \frac{d}{d t} \rho=\Delta \rho & v=-\frac{\nabla \rho}{\rho} \\
\hline E(\rho)=\frac{1}{m-1} \int \rho^{m} & \frac{d}{d t} \rho=\Delta \rho^{m} & v=-m \rho^{m-2} \nabla \rho \\
\hline E(\rho)=\int V \rho & \frac{d}{d t} \rho=\nabla \cdot(\nabla V \rho) & v=-\nabla V \\
\hline E(\rho)=\int(K * \rho) \rho & \frac{d}{d t} \rho=\nabla \cdot(\nabla(K * \rho) \rho) & v=-\nabla(K * \rho) \\
\hline
\end{array}
$$

All Wasserstein gradient flows are of the form

$$
\frac{d}{d t} \rho+\nabla \cdot(v \rho)=0
$$

gradient flow in the Wasserstein metric

Examples:

energy functional

gradient flow

$$
\begin{array}{l|l|l|}
E(\rho)=\int \rho \log \rho & \frac{d}{d t} \rho=\Delta \rho & v=-\frac{\nabla \rho}{\rho} \\
\hline E(\rho)=\frac{1}{m-1} \int \rho^{m} & \frac{d}{d t} \rho=\Delta \rho^{m} & v=-m \rho^{m-2} \nabla \rho \\
\hline E(\rho)=\int V \rho & \frac{d}{d t} \rho=\nabla \cdot(\nabla V \rho) & v=-\nabla V \\
\hline E(\rho)=\int(K * \rho) \rho & \frac{d}{d t} \rho=\nabla \cdot(\nabla(K * \rho) \rho) & v=-\nabla(K * \rho) \\
\hline
\end{array}
$$

All Wasserstein gradient flows are of the form

$$
\frac{d}{d t} \rho+\nabla \cdot(v \rho)=0
$$

$$
v=-\nabla \frac{\partial E}{\partial \rho}
$$

gradient flow in the Wasserstein metric

aggregation, drift, and degenerate diffusion:

$$
\begin{aligned}
& \frac{d}{d t} \rho=\nabla \cdot((\underbrace{\nabla K * \rho) \rho)}_{\text {self interaction }}+\nabla \cdot \overbrace{\underbrace{(\nabla V \rho)}+\underbrace{(\nabla i f t} \underbrace{\text { d }}_{\text {diffusion }}}^{E(\rho)=\frac{1}{2} \int K * \rho d \rho+\int V d \rho+\frac{1}{m-1} \int \rho^{m}}
\end{aligned}
$$

interaction kernels:

- granular media: $K(x)=|x|^{3}$
- swarming: $K(x)=|x|^{\mathrm{a}} / \mathrm{a}-|\mathrm{x}|^{\mathrm{b}} / \mathrm{b},-\mathrm{d}<\mathrm{b}<a$
degenerate diffusion:
- $\Delta \rho^{m}=\nabla \cdot(\underbrace{m \rho^{m-1}}_{D} \nabla \rho)$
- chemotaxis: $K(x)= \begin{cases}\frac{1}{2 \pi} \log |x| & \text { if } d=2, \\ C_{d}|x|^{2-d} & \text { otherwise. }\end{cases}$

biological chemotaxis

a colony of slime mold [Gregor, et. al]

biological chemotaxis

a colony of slime mold [Gregor, et. al]

gradient flow in the Wasserstein metric

aggregation, drift, and degenerate diffusion:

$$
\frac{d}{d t} \rho=\nabla \cdot((\nabla K * \rho) \rho)+\nabla \cdot(\nabla V \rho)+\Delta \rho^{m}
$$

$$
K(x)=|x|
$$

$$
K(x)=|x|^{3} / 3
$$

gradient flow in the Wasserstein metric

aggregation, drift, and degenerate diffusion:

$$
\frac{d}{d t} \rho=\nabla \cdot((\nabla K * \rho) \rho)
$$

$$
K(x)=|x|
$$

$$
K(x)=|x|^{3} / 3
$$

gradient flow in the Wasserstein metric

aggregation, drift, and degenerate diffusion:

$$
\frac{d}{d t} \rho=\nabla \cdot((\nabla K * \rho) \rho)
$$

$$
K(x)=|x|
$$

$$
K(x)=|x|^{3} / 3
$$

gradient flow in the Wasserstein metric

aggregation, drift, and degenerate diffusion:

$$
\frac{d}{d t} \rho=\nabla \cdot((\nabla K * \rho) \rho)
$$

$$
K(x)=|x|
$$

$$
K(x)=|x|^{3} / 3
$$

gradient flow in the Wasserstein metric

aggregation, drift, and degenerate diffusion:

$$
\frac{d}{d t} \rho=\nabla \cdot((\nabla K * \rho) \rho)
$$

$$
K(x)=|x|^{3} / 3
$$

gradient flow in the Wasserstein metric

aggregation, drift, and degenerate diffusion:

$$
\frac{d}{d t} \rho=\nabla \cdot((\nabla K * \rho) \rho)
$$

$$
K(x)=|x|^{3} / 3
$$

gradient flow in the Wasserstein metric

aggregation, drift, and degenerate diffusion:

$$
\frac{d}{d t} \rho=\nabla \cdot((\nabla K * \rho) \rho)
$$

$$
K(x)=|x|^{3} / 3-|x|
$$

$$
K(x)=|x|^{3} / 3
$$

gradient flow in the Wasserstein metric

aggregation, drift, and degenerate diffusion:

$$
\frac{d}{d t} \rho=\nabla \cdot((\nabla K * \rho) \rho)
$$

$$
K(x)=|x|^{3} / 3-|x|
$$

$$
K(x)=|x|^{3} / 3
$$

gradient flow in the Wasserstein metric

aggregation, drift, and degenerate diffusion:

$$
\frac{d}{d t} \rho=\nabla \cdot((\nabla K * \rho) \rho)+\nabla \cdot(\nabla V \rho)
$$

$$
K(x)=|x|^{3} / 3-|x|
$$

$$
K(x)=|x|^{3} / 3-|x|, \quad V(x)=-x
$$

gradient flow in the Wasserstein metric

aggregation, drift, and degenerate diffusion:

$$
\frac{d}{d t} \rho=\nabla \cdot((\nabla K * \rho) \rho)+\nabla \cdot(\nabla V \rho)
$$

$$
K(x)=|x|^{3} / 3-|x|
$$

$$
K(x)=|x|^{3} / 3-|x|, \quad V(x)=-x
$$

gradient flow in the Wasserstein metric

aggregation, drift, and degenerate diffusion:

$$
\frac{d}{d t} \rho=\nabla \cdot((\nabla K * \rho) \rho)+\nabla \cdot(\nabla V \rho)
$$

$$
K(x)=|x|^{3} / 3-|x|
$$

$$
K(x)=|x|^{3} / 3-|x|, \quad V(x)=-x
$$

gradient flow in the Wasserstein metric

aggregation, drift, and degenerate diffusion:

$$
\frac{d}{d t} \rho=\nabla \cdot((\nabla K * \rho) \rho) \quad+\Delta \rho^{m}
$$

$$
K(x)=|x|^{3} / 3-|x|
$$

$$
K(x)=|x|^{3} / 3-|x|, m=1
$$

gradient flow in the Wasserstein metric

aggregation, drift, and degenerate diffusion:

$$
\frac{d}{d t} \rho=\nabla \cdot((\nabla K * \rho) \rho) \quad+\Delta \rho^{m}
$$

$$
K(x)=|x|^{3} / 3-|x|
$$

$$
K(x)=|x|^{3} / 3-|x|, m=1
$$

gradient flow in the Wasserstein metric

aggregation, drift, and degenerate diffusion:

$$
\frac{d}{d t} \rho=\nabla \cdot((\nabla K * \rho) \rho) \quad+\Delta \rho^{m}
$$

$$
K(x)=|x|^{3} / 3-|x|
$$

$$
K(x)=|x|^{3} / 3-|x|, m=1
$$

numerical simulation of W_{2} grad flow

JKO scheme

- Pros: reduces simulating grad flow to solving a sequence of optimization problems involving W_{2} distance; leverages state of the art W_{2} solvers.
- Cons: current methods lose convexity/stability properties of gradient flow

Finite volume methods, finite element methods...

- Pros: adapts numerical approaches inspired by classical fluid mechanics to gradient flow setting
- Cons: current methods lose convexity/stability properties of gradient flow

Without stability, we can't prove general results on convergence.

Particle methods

particle methods

Goal: Approximate a solution to $\frac{d}{d t} \rho(x, t)+\nabla \cdot(v(x, t) \rho(x, t))=0$
Assume: $\vee(x, t)$ comes from a Wasserstein gradient flow and is "nice"

A general recipe for a particle methods:

(1) approximate $\rho_{0}(x)$ as a sum of Dirac masses on a grid of spacing

$$
\rho_{0} \approx \sum_{i=1}^{N} \delta_{x_{i}} m_{i}
$$

(2) evolve the locations of the Dirac masses by

$$
\frac{d}{d t} x_{i}(t)=v\left(x_{i}(t), t\right) \quad \forall i
$$

(3) $\rho_{N}(x, t)=\sum_{i=1}^{N} \delta_{x_{i}(t)} m_{i}$ is a gradient flow of the original energy;
it inherits all convexity/stability properties, hence $\rho_{N}(x, t) \rightarrow \rho(x, t)$

particle methods

Goal: Approximate a solution to $\frac{d}{d t} \rho(x, t)+\nabla \cdot(v(x, t) \rho(x, t))=0$

Benefits of particle methods:

(1) positivity preserving
(2) inherently adaptive
(3) energy decreasing
(4) preserves convexity/stability properties of gradient flow at discrete level

but what about when $v(x, t)$ is not "nice"?

$v(x, t)$ is often not nice

aggregation, drift, and degenerate diffusion:

$$
\begin{aligned}
\frac{d}{d t} \rho & =\nabla \cdot((\nabla K * \rho) \rho)+\nabla \cdot(\nabla V \rho)+\Delta \rho^{m} \\
v & =\nabla K * \rho+\nabla V+m \rho^{m-2} \nabla \rho
\end{aligned}
$$

- Diffusion term is worst: particles do not remain particles
- But even the interaction term can slow down convergence if it has a strong singularity at the origin...

$v(x, t)$ is often not nice

aggregation, drift, and degenerate diffusion:

$$
\frac{d}{d t} \rho=\nabla \cdot((\nabla K * \rho) \rho)+\nabla \cdot(\nabla V \rho)+\Delta \rho^{m}
$$

$$
v=\nabla K * \rho+\nabla V+m \rho^{m-2} \nabla \rho
$$

- Diffusion term is worst: particles do not remain particles
- But even the interaction term can slow down convergence if it has a strong singularity at the origin...
"Blob Method": regularize the velocity field to make it nice!

$v(x, t)$ is often not nice

aggregation, drift, and degenerate diffusion:

$$
\frac{d}{d t} \rho=\nabla \cdot((\nabla K * \rho) \rho)
$$

$$
v=\nabla K * \rho
$$

- Diffusion term is worst: particles do not remain particles
- But even the interaction term can slow down convergence if it has a strong singularity at the origin...
"Blob Method": regularize the velocity field to make it nice!

a blob method for aggregation

Goal: Approximate a solution to $\frac{d}{d t} \rho=\nabla \cdot((\nabla K * \rho) \rho) \quad v=\nabla K * \rho$

A regularized particle method:

(0) regularize the interaction kernel via convolution with a mollifier

$$
K_{\epsilon}(x)=K * \varphi_{\epsilon}(x), \quad \varphi_{\epsilon}(x)=\varphi(x / \epsilon) / \epsilon^{d}
$$

(1) approximate $\rho_{0}(\mathrm{x})$ as a sum of Dirac masses on a grid of spacing h

$$
\rho_{0} \approx \sum_{i=1}^{N} \delta_{x_{i}} m_{i}
$$

(2) evolve the locations of the Dirac masses by

$$
\frac{d}{d t} x_{i}(t)=-\sum_{j=1}^{N} \nabla K_{\epsilon}\left(x_{i}(t)-x_{j}(t)\right) m_{j}
$$

(3) $\rho_{N}(x, t)=\sum_{i=1}^{N} \delta_{x_{i}(t)} m_{i}$ is a gradient flow of the regularized energy

$$
E_{\epsilon}(\rho)=\int\left(K_{\epsilon} * \rho\right) \rho
$$

a blob method for aggregation

Theorem [C., Bertozzi 2014]: If $\varepsilon=h^{q}, 0<q<1$, the blob method converges as $h \rightarrow 0$.

aggregation + ?

aggregation, drift, and diffusion:

$$
\frac{d}{d t} \rho=\nabla \cdot((\nabla K * \rho) \rho)+\nabla \cdot(\nabla V \rho)+\Delta \rho^{m} \quad K, V: \mathbb{R}^{d} \rightarrow \mathbb{R}, \text { and } m \geq 1
$$

- Adding a drift term is straightforward: just do a particle method with

$$
v=\nabla K_{\epsilon} * \rho+\nabla V
$$

- How can we add diffusion?
- Previous work: stochastic [Liu, Yang 2017], [Huang, Liu 2015], deterministic [Carrillo, Huang, Patacchini, Wolansky 2016]
- Our idea: regularize by convolution with a mollifier.

a blob method for degenerate diffusion

diffusion equation:

$$
\frac{d}{d t} \rho=\Delta \rho^{m} \quad m \geq 1
$$

Solutions of diffusion equation are gradient flows of $E(\rho)=\frac{1}{m-1} \int \rho^{m}$
Let's consider gradient flows of $E_{\epsilon}(\rho)=\frac{1}{m-1} \int\left(\rho * \varphi_{\epsilon}\right)^{m-1} \rho$

- Previous work (m=2):[Lions, Mas-Gallic 2000], [P.E. Jabin, in progress]
- For $\varepsilon>0$, particles remain particles, so can do a particle method for

$$
v=\nabla \varphi_{\epsilon} *\left(\left(\varphi_{\epsilon} * \rho\right)^{m-2} \rho\right)+\left(\varphi_{\epsilon} * \rho\right)^{m-2}\left(\nabla \varphi_{\epsilon} * \rho\right)
$$

\Longrightarrow a blob method for diffusion.

a blob method for degenerate diffusion

diffusion equation:

$$
\frac{d}{d t} \rho=\Delta \rho^{m} \quad m \geq 1
$$

Solutions of diffusion equation are gradient flows of
Let's consider gradient flows of $E_{\epsilon}(\rho)=\frac{1}{m-1} \int\left(\rho * \varphi_{\epsilon}\right)^{m-1} \rho$

- Previous work (m=2):[Lions, Mas-Gallic 2000], [P.E. Jabin, in progress]
- For $\varepsilon>0$, particles remain particles, so can do a particle method for

$$
v=\nabla \varphi_{\epsilon} *\left(\left(\varphi_{\epsilon} * \rho\right)^{m-2} \rho\right)+\left(\varphi_{\epsilon} * \rho\right)^{m-2}\left(\nabla \varphi_{\epsilon} * \rho\right)
$$

\Longrightarrow a blob method for diffusion.

a blob method for degenerate diffusion

diffusion equation:

$$
\frac{d}{d t} \rho=\Delta \rho^{m} \quad m \geq 1
$$

Solutions of diffusion equation are gradient flows of

Let's consider gradient flows of

- Previous work (m=2):[Lions, Mas-Gallic 2000], [P.E. Jabin, in progress]
- For $\varepsilon>0$, particles remain particles, so can do a particle method for

$$
v=\nabla \varphi_{\epsilon} *\left(\left(\varphi_{\epsilon} * \rho\right)^{m-2} \rho\right)+\left(\varphi_{\epsilon} * \rho\right)^{m-2}\left(\nabla \varphi_{\epsilon} * \rho\right)
$$

\Longrightarrow a blob method for diffusion.

a blob method for degenerate diffusion

diffusion equation:

$$
\frac{d}{d t} \rho=\Delta \rho^{m} \quad m \geq 1
$$

Solutions of diffusion equation are gradient flows of $E(\rho)=\int \log (\rho) \rho$
Let's consider gradient flows of

- Previous work (m=2):[Lions, Mas-Gallic 2000], [P.E. Jabin, in progress]
- For $\varepsilon>0$, particles remain particles, so can do a particle method for

$$
v=\nabla \varphi_{\epsilon} *\left(\left(\varphi_{\epsilon} * \rho\right)^{m-2} \rho\right)+\left(\varphi_{\epsilon} * \rho\right)^{m-2}\left(\nabla \varphi_{\epsilon} * \rho\right)
$$

\Longrightarrow a blob method for diffusion.

a blob method for degenerate diffusion

diffusion equation:

$$
\frac{d}{d t} \rho=\Delta \rho^{m} \quad m \geq 1
$$

Solutions of diffusion equation are gradient flows of $E(\rho)=\int \log (\rho) \rho$
Let's consider gradient flows of $E_{\epsilon}(\rho)=\int \log \left(\rho * \varphi_{\epsilon}\right) \rho$

- Previous work (m=2):[Lions, Mas-Gallic 2000], [P.E. Jabin, in progress]
- For $\varepsilon>0$, particles remain particles, so can do a particle method for

$$
v=\nabla \varphi_{\epsilon} *\left(\left(\varphi_{\epsilon} * \rho\right)^{m-2} \rho\right)+\left(\varphi_{\epsilon} * \rho\right)^{m-2}\left(\nabla \varphi_{\epsilon} * \rho\right)
$$

\Longrightarrow a blob method for diffusion.

a blob method for degenerate diffusion

Theorem [Carrillo, C., Patacchini 2017]: Consider

$$
E_{\epsilon}(\rho)=\int(K * \rho) \rho+\int V \rho+\frac{1}{m-1} \int\left(\rho * \varphi_{\epsilon}\right)^{m-1} \rho
$$

As $\varepsilon \rightarrow 0$,

- For all $m \geq 1, \mathrm{E}_{\varepsilon} \Gamma$-converge to E .
- For $m=2$ and initial data with bounded entropy, gradient flows of E_{ε} converge to gradient flows of E .
- For $m \geq 2$ and particle initial data with $\varepsilon=h^{q}, 0<q<1$, if a priori estimates hold, gradient flows of E_{ε} converge to gradient flows of E .

numerics: Keller-Segel (d=2)

subcritical mass

critical mass
supercritical mass
Evolution of Density

Evolution of Second Moment

numerics: Keller-Segel (d=2)

subcritical mass

critical mass
supercritical mass
Evolution of Density

Evolution of Second Moment

numerics: Keller-Segel (d=2)

subcritical mass

critical mass
supercritical mass
Evolution of Density

Evolution of Second Moment

Future work

- Convergence for $1 \leq \mathrm{m}<2$?
- Quantitative estimates for $\mathrm{m} \geq 2$?
- Utility in related fluids and kinetic equations?

Thank you!

