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Fokker Planck equation
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Motivation for Fokker-Planck equation on a graph: 

• Clustering 

• Sampling 

• Numerical analysis 

 is a solution of the Fokker-Planck equation if 

 

Microscopic perspective:  

Steady state:  

Gradient flow structure: , 

ρ : [0,T] → "(ℝd)

(FP){∂tρ = Δρ + div(ρ∇V )
ρ(0) = ρ0

dXt = 2dBt − ∇V(Xt)dt
Ce−V(x)

∂tρ = − ∇W2
ℰ(ρ) ℰ(ρ) = ∫ ρ log ρ + ∫ Vρ

dρ(x) = ρ(x)dx
V : ℝd → ℝ

∂tρ = (1 − β)Δρ + βdiv(ρ∇V )
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Clustering
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Data set ) = {x1, …, xn}
Density 

“clusters” are regions of high 
concentrations of points, separated 
by areas of low density 

mean shift [Carreira-Perpiñán ’16] 

Geometry 

“clusters” are connected regions, 
separated by bottlenecks 

spectral clustering [Luxburg ’07] 

1) Embedding step:  

2) “Simple” clustering step, e.g., k-means

Ψ : ) → +

FROM SPECTRAL CLUSTERING TO MEAN SHIFT 31

� = 0.20 � = 0.95 � = 1.00

Figure 11. For the same data distribution as in Figure 10, we investigate how the clustering behavior of Q�

depends on the graph connectivity length scale " for � = 0.20, 0.95, 1.00.

Figure 12. Illustration of graph dynamics of Q� on ⇢three blobs for n = 966 samples, with � = 0.7 and initial
condition �xi,yi for (xi, yi) = (0.07, 0.10). The markers in the first three columns represent the locations
of the samples, and the colors of the markers represent the value of ut(xi)d(xi). In the right column, we
plot the steady state of the corresponding continuum PDE (5.15).

of the markers represent the value of ut(xi)d(xi) at each node. In the right column, we plot the steady
state of the corresponding continuum PDE (5.15). We observe good agreement with the graph dynamics
and the steady state by time t = 10.

In Figure 13, we show the clustering behavior of the Q� on ⇢three blobs for n = 966 samples at time
t = 10. The two columns correspond to � = 0.7 and 0.75. The first three rows show the clustering



  

Given , the mean shift algorithm evolves  via gradient ascent of .

) = {x1
0 , …, xn

0} ⊆ ℝd

̂q xi
0 log( ̂q)

Mean Shift Clustering
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kernel density estimate:

̂q(x) = 1
n

n

∑
i=1

ηδ( |x − xi | ), ηδ(x) = 1
δd η ( x

δ ), η ≥ 0, ∫ η = 1, η(x) = η( |x | )

gradient ascent: 

    {xi(t + 1) = xi(t) + ∇log( ̂q(xi(t))
xi(0) = xi

Ψ(xi
0) = xi(T ), T > 0

PDE Perspective:  solves   solves  and 

 for .

xi(t) (MS) ⟺ ρN(t) ρ(x,0) = δxi
0

∂tρ = ∇ ⋅ (ρ∇V ) V = − log( ̂q))

(MS){
d
dt xi(t) = ∇log( ̂q(xi(t))
xi(0) = xi

0



Graph Calculus 

 

 connected 

For , define . 

For , define .

) = {x1, …, xn}, w : ) × ) → [0, + ∞) symmetric

3 = (), w)
ϕ : ) → ℝ ∇3ϕ(x, x′ ) = ϕ(x′ ) − ϕ(x)

v : ) × ) → ℝ div3v(x) = 1
2 ∑

x′ 

(v(x, x′ ) − v(x′ , x))w(x, x′ )

Spectral Clustering - Diffusion Maps
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, , ,  Δ3 = D − W Wij = w(xi, xj) D = diag(d1, …, dn) di = Σj≠iw(xi, xj)

Definition: The unnormalized Laplacian is the operator .Δ3 = div3 ∘ ∇3

[Coifman Lafon ’06] 

Definition: The Coifman-Lafon Laplacian is the operator , 

 and , 

Lrw
α = I − D−1

α Wα

Wα = D−αWD−α Dα = diag(d1
α, …, dn

α) di
α = ∑

j≠i
(Wα)ij



Spectral Clustering - Diffusion Maps
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There exists an orthonormal wrt.  basis of left e-vectors 

, corresponding to the first  nonzero e-values of . 

⟨Dα ⋅ , ⋅ ⟩
{ϕ1, …, ϕk} k Lrw

α

Ψ(xi) =
λm

1 ϕ1(xi)
⋮

λm
k ϕk(xi)

, m ∈ ℕ

[Coifman Lafon ’06]

Dynamic interpretation:  is a transition rate matrix−Lrw
α

Definition:  is a transition rate matrix if 

1.  for          and        2.   for all .

Q : ) × ) → ℝ
Q(x, y) ≥ 0 x ≠ y ∑

y∈)
Q(x, y) = 0 x ∈ )



Diffusion Maps: Continuous Time
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Definition: A cts time Markov chain  is a solution toρ : [0,T] → "())

{
∂tρ(y, t) = ∑x∈) ρ(x, t)Q(x, y)
ρ0(x) = μ(x)

⟺ {∂tρt = ρtQ
ρ0 = μ ⟺ ρt = μetQ

"(X) = {ρ = ∑
x∈)

ρ(x)δx : ρ : ) → [0, + ∞) satisfies  ∑
x∈)

ρ(x) = 1}

Ψ(xi) =
ϕ1eTQ(xi)…
ϕkeTQ(xi)

Ψ(xi) = δxi
eTQ

change of basis =
n

∑
l=1

e−Tλl
ϕl(xi)

dα(xi))1/2 ϕl(x)

Dynamic embedding like mean shift!



Diffusion Maps: Continuous Space
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Continuum limit: 

•  iid samples of  

•  

•  for , 

As  and  slowly, 

                      

{xi}n
i=1 q

w(x, y) = ηϵ( |x − y | ) > 0
Q = − Lrw

α /Crw Crw = M2(η)ϵ2/M0(η)

qn := Σn
i=1δxi → q ϵ → 0

ρQ n→+∞ Δℳρ − 2(1 − α)divℳ(ρ∇ℳlog(q))
[Coifman Lafon ’06], [Singer’06], [García Trillos Slepcev’18], [Calder, García 
Trillos ’19], [Cheng, Wu ’20],…

∂tρt = ρtQ
n→+∞ ∂tρ = Δℳρ − 2(1 − α)divℳ(ρ∇ℳlog(q))



Diffusion Maps: Cts Time and Space
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: Laplace-Beltrami operator, no density, pure geometry 

: Fokker-Planck equation 

: normalized graph laplacian, “maximal density”

∂tρ = Δℳρ − 2(1 − α)divℳ(ρ∇ℳlog(q))
α = 1
α = 1/2
α = 0

∂tρ = (1 − βα)Δℳρ + βαdivℳ(ρ∇V ), V = − ∇ℳlog(q)

But… 

• fixed choice of external potential , at both discrete & ctm 

• degenerates as 

V = − log(q)
α → − ∞

After a change of variables, ,  ρ̃(x, t) = ρ(x, (3 − 2α)t) βα = (2 − 2α)/(3 − 2α)

A Fokker-Planck equation on graphs!



Goal
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• How can we use the dynamic perspective of diffusion maps to define a 
true Fokker-Planck equation on a graph, for general external potentials? 

• What is the clustering behavior?
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The Wasserstein distance between  isμ, ν ∈ "2(ℝd)

Wasserstein metric
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effort to rearrange μ to look like ν, using t(x)

|{z}
t sends μ to ν
|{z}

where  if t#μ = ν ν(B) = μ(t−1(B))

Alternatively [Benamou, Brenier ’00], 

W2
2(μ0, μ1) = inf {∫

1

0 ∫ℝd
|v(x, t) |2 dμ(x, t)dt : ∂tμ + ∇(μv) = 0}



Gradient flows
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∂tρ(t) = − ∇W2
E(ρ(t))

Examples: 
energy functional Wasserstein gradient flow

E(⇢) =

Z
⇢ log ⇢

d

dt
⇢ = �⇢

E(⇢) =
1

m� 1

Z
⇢m d

dt
⇢ = �⇢m

E(⇢) =

Z
(K ⇤ ⇢)⇢

E(⇢) =

Z
V ⇢

d

dt
⇢ = r · (r(K ⇤ ⇢)⇢)

d

dt
⇢ = r · (rV ⇢)

<latexit sha1_base64="dCehMmHM8GVKYYv3SI+aBSVTfHc=">AAACFHicbZBNSwMxEIazftb6terRS7AIlULZlaJelIIIHivYD+guJZumbWg2WZKsUJb+CC/+FS8eFPHqwZv/xux2D9o6EHjmnRky8wYRo0o7zre1tLyyurZe2Chubm3v7Np7+y0lYolJEwsmZCdAijDKSVNTzUgnkgSFASPtYHyd1tsPRCoq+L2eRMQP0ZDTAcVIG6lnV27KnhyJE3gJPco1bME0hZVZlrHHxDCjnl1yqk4WcBHcHEogj0bP/vL6Asch4RozpFTXdSLtJ0hqihmZFr1YkQjhMRqSrkGOQqL8JDtqCo+N0ocDIc0zq2Tq74kEhUpNwsB0hkiP1HwtFf+rdWM9uPATyqNYE45nHw1iBrWAqUOwTyXBmk0MICyp2RXiEZIIa+Nj0Zjgzp+8CK3TqntWrd3VSvWr3I4COARHoAxccA7q4BY0QBNg8AiewSt4s56sF+vd+pi1Lln5zAH4E9bnD/8unFI=</latexit>

E(⇢) =

Z
V ⇢+

Z
⇢ log ⇢

<latexit sha1_base64="firXzylQE0PvZAK/+Cuxc7TSoUo=">AAACJ3icbVBLSwMxEM76tr6qHr0Ei1ARyq4U9WIR9OBRwdZCt5RsNtuGZpMlmRXK0n/jxb/iRVARPfpPTNs9aOtA4HvMMJkvSAQ34Lpfztz8wuLS8spqYW19Y3OruL3TMCrVlNWpEko3A2KY4JLVgYNgzUQzEgeC3Qf9y5F//8C04UrewSBh7Zh0JY84JWClTrHmR5rQLBxmIQyxr3sKn2P/igkgE3aEfUkCYRkNFeByzhpj97BTLLkVd1x4Fng5KKG8bjrFVz9UNI2ZBCqIMS3PTaCdEQ2cCjYs+KlhCaF90mUtCyWJmWln4zuH+MAqIY6Utk8CHqu/JzISGzOIA9sZE+iZaW8k/ue1UojO2hmXSQpM0smiKBUYFB6FhkOuGQUxsIBQze1fMe0RGxzYaAs2BG/65FnQOK54J5XqbbV0UcvjWEF7aB+VkYdO0QW6Rjeojih6RM/oDb07T86L8+F8TlrnnHxmF/0p5/sHmI+kfg==</latexit>

d

dt
⇢ = �⇢+r · (rV ⇢)

∂tρ + ∇ ⋅ (ρv[ρ]) = 0, v[ρ] = − ∇W2
E(ρ) = − ∇ ∂E

∂ρ
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Wasserstein metric(s) on graphs
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Graph continuity equation 

 ,  

 for  interpolating  on the edges

ρ = ∑
x∈X

ρ(x)δx ∈ "()) v : ) × ) → ℝ

∂tρ + div3(ρ̄v) = 0 ρ̄ : ) × ) → ℝ ρ

Graph action 

∫
t

0 ∑
x,y∈3

|vt(x, y) |2 w(x, y)dρt(x)dt

How to define the interpolating function ρ̄?



Choices of density interpolation
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arithmetic:  

induces a true metric, but GFs not positivity preserving 
[Chow, Li, Zhou ’18] 

logarithmic:  

induces a true metric, but support of GF can’t expand 
[Maas ’11], [Mielke ’11], [Gigli, Maas ’13] 

upwinding:    

preserves positivity, support can expand, but quasi metric and diff. nonlinear  
[Chow, Huang, Li, Zhou ’12], [Chen, Georgiou, Tannenbaum ’18] 
[Esposito, Patacchini, Schlichting, Slepčev ’21]

ρ̄(x, y) = ρ(x) + ρ(y)
2

ρ̄(x, y) = ρ(x) − ρ(y)
log(ρ(x)) − log(ρ(y))

ρ̄(x, y) = {ρ(x)  if v(x, y) ≥ 0,
ρ(y)  if v(x, y) < 0.



Graph GF: drift
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Energy:  

Gradient Flow: 

?(ρ) = ∑
x∈)

V(x)ρ(x)

∂tρt(y) = ∑
x∈)

ρt(x)QV(x, y), QV(x, y) := {
((V(x) − V(y))+w(x, y)  for x ≠ y,
−∑z≠x (V(x) − V(z))+w(x, y)  for x = y .

Formal Theorem [C., García-Trillos, Slepčev ’21]: 

•  iid samples of  

•  

•   for  .  

As  and  slowly 

                                     .

{xi}n
i=1 q

w(x, y) = ηϵ( |x − y | ) > 0
Q = QV /CMS CMS = 2M2(η)dnϵ2

qn := Σn
i=1δxi → q ϵ → 0

ρQ n→+∞ divℳ(ρq∇ℳV )
See also [Esposito, Patacchini, Schlichting, Slepčev ’21] for .n → + ∞, ϵ > 0



Graph GF: drift
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A Wasserstein gradient flow with nontrivial mobility, : 

 

[Dolbeault, Nazaret, Savaré ’08]

h(μ(x)) = μ(x)q(x)

W2
2,h(μ0, μ1) = inf {∫

1

0 ∫ℝd
|v(x, t) |2 h(μ(x, t), x)dxdt : ∂tμ + ∇(h(μ)v) = 0}

 

When , this is not quite mean shift.

∂tρ + divℳ(ρq∇ℳV ) = 0
V = log(q)

Modifying the ground metric on the underlying space : 

 

[Lisini ’09]

ℝd

dq(x, y) = inf {∫
1

0
q(γ(t))−1 | ·γ(t) |dt : γ ∈ AC([0,1]; ℝd, γ(0) = x, γ(1) = y}

V(x) = − 1
q(x)



Fokker-Planck on graphs
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• Formal continuum limits: 

 for  

• A true Fokker-Planck equation, including both endpoints at all timescales. 

• Flexibility in choice of external potential

∂tρ = (1 − β)Δℳρ + βdivℳ(ρq∇ℳV ) α = 1

GF of potential energy: ,  

 

∂tρt = ρtQV /CMS

QV(x, y) = {
((V(x) − V(y))+w(x, y)  for x ≠ y,
−∑z≠x (V(x) − V(z))+w(x, y)  for x = y .

Fokker-Planck:  for  ∂tρt = ρtQα Qβ = − (1 − β)Lrw
1 /Crw + βQV /CMS



Clustering Algorithm
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With these transition rate matrices in hand, we may now consider solutions ut of (2.1) when Q = Q
rw
↵

or when Q = Q� . We solve the ordinary differential equations describing the graph dynamics by directly
computing the matrix exponential e

tQ in each case; see Definition 2.1. Following the discussion in section
4.2, we know that for each of these dynamics, as n ! +1 and ", � ! 0 (at an n dependent rate that
is not too fast), the measures

Pn
j=1 ut(xj)�xj are expected to converge to solutions ft of the following

Fokker-Planck equation:

@tft = (1 � �)�ft � �div(ftr log(⇢)),(5.9)

where for the Q
rw
↵ dynamics, we take

� = �↵ = (2 � 2↵)/(3 � 2↵)(5.10)

The steady state of the equation is the corresponding Maxwellian distribution

c⇢,� ⇢
�/(1��)(x),(5.11)

where c⇢,� > 0 is a normalizing constant chosen so that the distribution integrates to one over ⌦. Note that,
if d(xi) represents the degrees of the graph vertices, as in equation (1.8), then the function ut(xi)d(xi)
likewise converges to ft(x) as the number of nodes in our sample n ! +1. Consequently, when
comparing our graph dynamics to the PDE dynamics, we will often plot ut(xi)d(xi) and ft(x).

Finally, we use the embedding maps  ̂↵ and  ̂� from sections 2.1 and 3.1 to cluster the nodes. In
particular, we apply k-means to the vectors { ̂↵(xi)}ni=1 and { ̂�(xi)}ni=1, obtaining in this way a series
of maps from nodes {xi}ni=1 to cluster centers {lm}km=1. Nodes mapped to the same cluster center are
identified as belonging to the same cluster. While we will not discuss at any depth the methods to select
the best number of clusters, we note that a number of methods to do so (in particular the elbow method
and the gap statistics [38]) relies on the value of the k-means energy,

(5.12) Ek =
1

n

nX

i=1

min
m=1,...k

| (xi) � lj |2,

for each relevant  . Note that Ek always decreases with k. While a large decrease in the energy as k

increases is indicative of the improved approximation of data by cluster centers the size of the jumps is
truly telling only if we compare it with the relevant model for the data considered, see [38] and discussion
in Section 5.2.3. For ease of visualization, in our numerical examples, we will plot the normalized
k-means energy, which is rescaled so that energy of a single cluster equals one,

E
norm
k = Ek/E1.(5.13)

All of our simulations are conducted in Python, using the Numpy, SciPy, Sci kit-learn, and MatPlotLib
libraries [23, 24, 33, 42]. In particular, we use the Sci kit-learn implementation of k-means to cluster the
embedding maps.

Algorithm 1 Dynamic Clustering Algorithm for Q� or Q
rw
↵

Input: {xi}ni=1, ", �, t, k

Q = Q� or Q = Q
rw
↵

 ̂Q(xi) = (etQ)(i,j=1,...n) for i = 1, . . . , n

lm = Kmeans.fit( ̂Q(x1), . . . ,  ̂Q(xn)) with nclusters = k

5.2. Simulations. We now turn to simulations of the graph dynamics, PDE dynamics, and clustering.
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rw
↵

Input: {xi}ni=1, ", �, t, k

Q = Q� or Q = Q
rw
↵

 ̂Q(xi) = (etQ)(i,j=1,...n) for i = 1, . . . , n

lm = Kmeans.fit( ̂Q(x1), . . . ,  ̂Q(xn)) with nclusters = k

5.2. Simulations. We now turn to simulations of the graph dynamics, PDE dynamics, and clustering.

<latexit sha1_base64="+52Vl9KpZYk95wfDJ+oKCA+RiTE=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgQcKuBPUkAS8eEzAPSJYwO+lNxszOLjOzQgj5Ai8eFPHqJ3nzb5wke9DEgoaiqpvuriARXBvX/XZya+sbm1v57cLO7t7+QfHwqKnjVDFssFjEqh1QjYJLbBhuBLYThTQKBLaC0d3Mbz2h0jyWD2acoB/RgeQhZ9RYqX7RK5bcsjsHWSVeRkqQodYrfnX7MUsjlIYJqnXHcxPjT6gynAmcFrqpxoSyER1gx1JJI9T+ZH7olJxZpU/CWNmShszV3xMTGmk9jgLbGVEz1MveTPzP66QmvPEnXCapQckWi8JUEBOT2dekzxUyI8aWUKa4vZWwIVWUGZtNwYbgLb+8SpqXZe+qXKlXStXbLI48nMApnIMH11CFe6hBAxggPMMrvDmPzovz7nwsWnNONnMMf+B8/gB0w4y1</latexit>,

Given , , let  be iid samples from . 

 

 in one dimension 

q ∈ "(Ω) Ω ⊂ ⊂ ℝd {xi}n
i=1 q

w(x, y) = ηϵ( |x − y | ), ηϵ(x) = e−x2/(2ϵ2)/(2πϵ2)d/2

ϵ = 2 max
i

min
j:j≠i

|xi − xj |

̂q(x) = − 1
n ∑

y∈)
ηδ( |x − y | ), δ = 2 ( |Ω |

n )
1/2
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• Wasserstein gradient flows 

• Wasserstein gradient flows on graphs 

• Numerical examples 
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initial conditions

long time behavior, δ = 0.25

MS GMS

long time behavior, δ = 0.71

MS GMS


n = 280
ϵ = 0.3

GMS

• restricts dynamics to data 

• sensitive to , noiseδ
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Figure 10. Illustration of the clustering behavior of Q� on ⇢blue sky for n = 965 samples at time t = 10.
The first three rows show the clustering behavior for k = 2, 3, 4, with each node colored according to which
cluster it belongs. The fourth row shows the normalized k-means energy for each number of clusters k.

Finally, in Figure 11, we investigate how the clustering behavior of Q� for ⇢blue sky depends on the
graph connectivity "; see equation (5.1). The columns correspond to � = 0.20, 0.95, 1.00 and the rows
correspond to " = 0.01, 0.03, [0.04, 0.11] and 0.12. We note that for a wide range of ", the diffusion
dominated regime � = 0.2 prefers to make shorter cuts even over parts of the domain where data are
dense, which is undesirable for the data considered. On the other hand, the pure mean shift suffers, as in
other examples, from the tendency to identify spurious local maxima of KDE as clusters. We observe
the best clustering performance over the wide range of " for � = 0.95. Considered together with other
experiments, this suggests that adding even a small amount of diffusion goes a long way towards correct
clustering.

5.2.7. Density vs. Geometry. In Figure 12, we consider the graph dynamics of Q� on a two dimensional
data distribution chosen to illustrate how the competing effects of density and geometry depend on the
parameter �. We choose n = 966 samples, " = 0.07, and � = 0.05, in order to optimize agreement
between the discrete dynamics and the continuum steady state.

The data density, which we refer to as ⇢three blobs is given by a piecewise constant function that is equal to
height one on the three circles of radius 0.25, as well as on the wide rectangle [0.25, 0.75]⇥[�0.125, 0.125]
on the top. On the narrow rectangle [�0.75, 0.25] ⇥ [�0.04, 0.04] on the bottom, the piecewise constant
function has height four. Finally, the data density is multiplied by a normalizing constant so that it
integrates to one over the domain ⌦ = [�1.5, 1.5] ⇥ [�1, 1].

In Figure 12, we choose � = 0.7 and initial condition for the dynamics to be �xi,yi for (xi, yi) =
(0.07, 0.10). The locations of the markers represent the samples from the data distribution, and the colors








n = 965
ϵ = 0.04
δ = 0.10
T = 10

A small amount of 
diffusion helps graph 
mean shift overcome the 
problems of a noisy KDE 
and “getting trapped”.
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Figure 11. For the same data distribution as in Figure 10, we investigate how the clustering behavior of Q�

depends on the graph connectivity length scale " for � = 0.20, 0.95, 1.00.

Figure 12. Illustration of graph dynamics of Q� on ⇢three blobs for n = 966 samples, with � = 0.7 and initial
condition �xi,yi for (xi, yi) = (0.07, 0.10). The markers in the first three columns represent the locations
of the samples, and the colors of the markers represent the value of ut(xi)d(xi). In the right column, we
plot the steady state of the corresponding continuum PDE (5.15).

of the markers represent the value of ut(xi)d(xi) at each node. In the right column, we plot the steady
state of the corresponding continuum PDE (5.15). We observe good agreement with the graph dynamics
and the steady state by time t = 10.

In Figure 13, we show the clustering behavior of the Q� on ⇢three blobs for n = 966 samples at time
t = 10. The two columns correspond to � = 0.7 and 0.75. The first three rows show the clustering






n = 965
δ = 0.10
T = 10

• Decreasing the 
connectivity parameter 
 isn’t enough to save 

pure diffusion methods. 
• Graph Fokker-Planck 

performs well for a 
wide range of .

ϵ

ϵ
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Figure 13. Illustration of the clustering behavior of the Q� on ⇢three blobs for n = 966 samples at time
t = 10. The first three rows show the clustering behavior for k = 2, 3, 4, with each node colored according
to which cluster it belongs. In the fourth row, we show the normalized k-means energy for each choice of k.

behavior for k = 2, 3, 4, with each node colored according to which cluster it belongs. In the fourth row,
we show the normalized k-means energy for each choice of k.

This simulation provides an example of a data distribution where there is no single “correct” choice
of clustering for k = 2: a “good” clustering algorithm might seek to cut either the thin, high density
rectangle on the bottom, or the wide, low density rectangle on the top. For small values of � 6 0.7,
diffusion dominates, and the clusters are chosen based on the geometry of the data, preferring to cut the
thin, high density rectangle. For large values of � > 0.75, density dominates, and the clustering prefers to
cut the wide, low density rectangle. For intermediate values of �, there is a phase transition for which the
clustering becomes unstable.








n = 966
ϵ = 0.07
δ = 0.05
T = 10

Choosing the “right” balance 
between density and 
geometry depends on 
modeling assumptions.
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Figure 5. Comparison of the graph dynamics for Q� (top) and Q↵ (middle) with the PDE dynamics
(bottom). The data density is ⇢two bump, and the initial data is �xi for xi = �0.1. The graphs are built from
n = 625 samples of the data density. The steady states are obtained from equation (5.15) for the graph
dynamics and equation (5.11) for the finite difference dynamics.

(5.9). We compute solutions of the PDEs using a semidiscrete, upwinding finite difference scheme on a
one dimensional grid, with 200 spatial gridpoints and continuous time. This reduces the PDEs to a system
of ODEs, which we then solve using the SciPy odeint method.

The steady states we plot for the graph dynamics are given by the following equation

cn,�,�(⇢̂�(x))�/(1��)
, ⇢̂�(x) =

1

n

X

y2X
 �(x � y),  �(x) =

1

(2⇡)1/2�
e
�|x|2/(2�2)

,(5.15)

where cn,�,� is a normalizing constant chosen so the steady state integrates to one over ⌦. For the Q�

dynamics, we choose the standard deviation � = �, and for the Q
rw
↵ dynamics, we choose � = ". Recall

that ⇢̂� is the kernel density estimator used in the construction of the transition matrix Q
�; see equation

(2.7). The steady states for the PDE dynamics are given by equation (5.11).
Interestingly, even though there is no explicit kernel density estimate of the data in the construction of

the transition rate matrix Q
rw
↵ , the above simulations demonstrate better agreement of these dynamics as

t ! +1 with the steady state arising from a kernel density estimate (5.15) than with the steady state
arising directly from the data density (5.11). This can be seen by observing the good agreement at time
t = 8.0 with the solid black line shown in the middle row, rather than the solid black line shown in
the bottom row. This suggests that the Q

rw
↵ operator effectively takes a KDE of the data density with

bandwidth " > 0, corresponding to the scaling of the weight matrix on the graph.

n = 625

• graph dynamics 
agree well with 
continuum PDE 

• Graph Fokker-
Planck steady state 
depending on KDE 
bandwidth  

• Coifman-Lafon 
steady state 
depending on KDE 
bandwidth 

δ

ϵ

Graph Fokker-Planck

Coifman-Lafon
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Figure 7. Effect of the bandwidth of the kernel density estimator on clustering, for n = 676 samples
clustered at time t = 30. First two rows show the clustering with Q� , (5.5) for KDE bandwidths � = 0.2
and � = 0.015, while the third shows the dynamics of Qrw

↵ , (5.3). The first three columns show clustering
performance for different balances of drift and diffusion, and the fourth column shows the data distribution
and kernel density estimate. Note that, since no explicit kernel density estimate is used in the construction of
Qrw

↵ , none is shown in the third row. The colors of the samples indicate the clusters to which they belong,
and the height of the samples in each frame indicates the value of the normalized k-means energy (5.12).
The top row of markers in each frame corresponds to a single cluster (k = 1), the next one represents two
clusters (k = 2), then three and four clusters.

In the top row, when the bandwidth in the KDE is large, we observe good clustering performance
for � = 0.9 and 1.0 and k = 2. On the other hand, � = 0.25 performs poorly, since the large amount
of diffusion cause the dynamics to ignore the changes in relative density and cluster based on the fairly
uniform geometry of the sampling. In the middle row, when the bandwidth in the KDE is small, we still
observe good performance for � = 0.9, though � = 1.0 clusters poorly: without diffusion, the dynamics
cluster based on spurious local maxima. As before, � = 0.25 identifies incorrect clusters, since it lacks
information about density. Finally, as we expected, the clustering performance in the bottom row is similar
to the middle row, due to the fact that the bandwidth in the middle row was chosen to match the bandwidth
of the implicit kernel density estimate which appears to drive the dynamics of Q

rw
↵ . Note that, for the

bottom row, the only way to increase the bandwidth of the implicit kernel density estimate would be to
increase the graph connectivity parameter ", which, for compactly supported graph weights, would lead to
a more densely connected graph and thus higher computational cost.

5.2.5. Effect of data distribution on clustering. Figure 8 illustrates the effect that different choices in data
distribution have on the clustering method based on Q� , for n = 160 nodes and at time t = 30. Each row
considers a different data distribution: ⇢twobump (see equation 5.14) and

⇢deep valley(x) = 7c0'0.5(x + 0.5) + 3c0'0.15(x � 1.25),

⇢three bump(x) = c1'0.1(x � 0.5) + c1'0.1(x � 1.1) + 4c1'0.4(x + 1),


n = 676
T = 30

δ = .2

δ = .015

CL

Clustering behavior of CL also appears to rely 
on density estimator with bandwidth .ϵ
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• How can analysis of eigenvalues lead to appropriate choices of T? 
Hierarchical clustering method? 

• Sampling on graphs? Stochastic particle method? 

• Can we combine logarithmic & unwinding interpolation, via inf-convolution 
or product structure, to get gradient flow structure of graph FP? Rigorous 
proof of continuum limit? 

• Numerical analysis -> data analysis?



Thank you!


