

Gradient Flow in the Wasserstein Metric

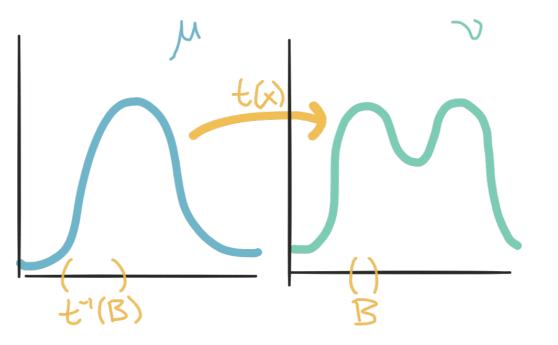
Katy Craig University of California, Santa Barbara

JMM, AMS Metric Geometry & Topology January 11th, 2018

gradient flow and PDE

Wasserstein metric

• Given two probability measures μ and ν on \mathbb{R}^d , $\mathbf{t} : \mathbb{R}^d \to \mathbb{R}^d$ transports μ onto ν if $\nu(B) = \mu(\mathbf{t}^{-1}(B))$. Write this as $t \# \mu = \nu$.



• The Wasserstein distance between μ and $\nu \in P_{2,ac}(\mathbb{R}^d)$ is

$$W_{2}(\mu,\nu) := \inf \left\{ \left(\int |t(x) - x|^{2} d\mu(x) \right)^{1/2} : t \# \mu = \nu \right\}$$

effort to rearrange μ to
look like v, using t(x)

geodesics

Not just a metric space... a geodesic metric space: there is a constant speed geodesic $\sigma: [0,1] \to \mathcal{P}_2(\mathbb{R}^d)$ connecting any μ and ν .

$$\sigma(0) = \mu, \ \sigma(1) = \nu, \ W_2(\sigma(t), \sigma(s)) = |t - s| W_2(\mu, \nu)$$

Monge

Kantorovich

 \mathcal{V}

Wasserstein geodesic $\sigma(t)$

[Peyré, Papadakis, Oudet 2013]

convexity

Since the Wasserstein metric has geodesics, it has a notion of convexity.

Recall: E: $L^2(\mathbb{R}^d) \rightarrow \mathbb{R}$ is $\underline{\lambda}$ -convex if $E((1-t)f + tg) \le (1-t)E(f) + tE(g)$ L² geodesic endpoints For any $g \in L^2(\mathbb{R}^d)$, $E(f) = ||f - g||_2^2$ is 2-convex $\Longrightarrow L^2$ is NPC. Likewise, in the Wasserstein metric, E: $P_2(\mathbb{R}^d) \rightarrow \mathbb{R}$ is $\underline{\lambda}$ -convex if $E(\sigma(t)) \leq (1-t)E(\mu) + tE(\nu) - t(1-t)\frac{\lambda}{2}W_2^2(\mu,\nu)$ M₂ geodesic endpoints For any $v \in P_2(\mathbb{R}^d)$, $E(\mu) = W_2^2(\mu, \nu)$ is 2-concave $\Longrightarrow W_2$ is PC.

gradient flow

We want to define the gradient flow as $\frac{d}{dt}\rho(t) = -\nabla_{W_2}E(\rho(t))$, but without a Riemannian structure, we don't have a notion of **gradient**.

• Given E: $P_2(\mathbb{R}^d) \rightarrow \mathbb{R}$, its local slope is:

$$|\partial E|(\mu) := \limsup_{\nu \to \mu} \frac{\left(E(\mu) - E(\nu)\right)^+}{W_2(\mu, \nu)}$$

• Given $\rho:[0,T] \to P_2(\mathbb{R}^d)$, its metric derivative is: $|\rho'|(t) = \lim_{s \to t} \frac{W_2(\rho(s), \rho(t))}{|s-t|}$

<u>DEF</u>: $\rho(t): \mathbb{R} \to P_2(\mathbb{R}^d)$ is the Wasserstein gradient flow of $E: P_2(\mathbb{R}^d) \to \mathbb{R}$ if $\frac{d}{dt} E(\rho(t)) \le -\frac{1}{2} |\partial E(\rho(t))| - \frac{1}{2} |\rho'|(t)$

Wasserstein gradient flow

<u>DEF</u>: $\rho(t): \mathbb{R} \to \mathbb{P}_2(\mathbb{R}^d)$ is the Wasserstein gradient flow of $E:\mathbb{P}_2(\mathbb{R}^d) \to \mathbb{R}$ if $\frac{d}{dt} E(\rho(t)) \le -\frac{1}{2} |\partial E(\rho(t))| - \frac{1}{2} |\rho'|(t)$

Analogy with L² gradient flow:

Abbreviating
$$\nabla_{L^2}$$
 by ∇ ,

$$\frac{d}{dt}f(t) = -\nabla E(f(t)) \iff \begin{cases} \left| \frac{d}{dt}f(t) \right| = |\nabla E(f(t))| \\ \frac{d}{dt}E(f(t)) = -|\nabla E(f(t))| \left| \frac{d}{dt}f(t) \right| \\ \iff \quad \frac{d}{dt}E(f(t)) \le -\frac{1}{2} |\nabla E(f(t))| - \frac{1}{2} \left| \frac{d}{dt}f(t) \right| \end{cases}$$

gradient flow and PDE

$$\frac{d}{dt}x(t) = -\nabla_X E(x(t))$$

Good news: gradient flows structure is very useful in PDE

- existence
- uniqueness
- approximation
- stability

time discretization

contraction inequality

Bad news: Wasserstein metric has more complicated geometry

L ²	Wasserstein metric
Riemannian manifold	metric space
non-positively curved	positively curved

time discretization: L²

Analogous results hold in any NPC metric space [Mayer, '98], [CL '71]

What about when the metric space isn't NPC?

Assume: E is
$$\lambda$$
-convex. Since L²(\mathbb{R}^d) is NPC, Φ is $\frac{1}{\tau} + \lambda$ -convex.
Prop: $||f_n - \tilde{f}_n||_2 \le \frac{1}{1 + \lambda \tau} ||f_{n-1} - \tilde{f}_{n-1}||_2$
Thm: For $\tau = \frac{t}{n}$, $||f(t) - f_n||_2 \le \frac{C}{\sqrt{n}}$, $||f(t) - \tilde{f}(t)||_2 \le e^{-\lambda t} ||f(0) - \tilde{f}(0)||_2$
[time discretization] [contraction inequality]

time discretization: W₂

$$\begin{aligned} & \text{gradient flow} \\ & \frac{d}{dt} E(\rho(t)) \leq -\frac{1}{2} |\partial E(\rho(t))| - \frac{1}{2} |\rho'|(t) \\ & \rho_n = \underset{\nu}{\arg\min} \left\{ \frac{1}{2\tau} W_2^2(\nu, \rho_{n-1}) + E(\nu) \right\} \\ & \rho(0) = \mu \end{aligned}$$

Assume: E is bounded below and λ -convex along generalized geodesics. Then $\Phi(\nu) = \frac{1}{2\tau} W_2^2(\nu, \rho_{n-1}) + E(\nu)$ is $\frac{1}{\tau} + \lambda$ -convex along gen geodesics.

Thm: For
$$\tau = \frac{t}{n}$$
, $W_2(\rho(t), \rho_n) \leq \frac{C}{\sqrt{n}}$, $W_2(\rho(t), \tilde{\rho}(t)) \leq e^{-\lambda t} W_2(\rho(0), \tilde{\rho}(0))$
time discretization contraction inequality
Prop: $W_2(\rho_n, \tilde{\rho}_n) \leq \frac{1}{1 + \lambda \tau} W_2(\rho_{n-1}, \tilde{\rho}_{n-1}) + O(\tau^2)$
[C. '16]

Overcome W₂ geometry issues... what about when E isn't λ -convex?

ω-convexity

Recall:

E: $P_2(\mathbb{R}^d) \to \mathbb{R}$ is $\underline{\lambda}$ -convex if $E(\sigma(t)) \le (1-t)E(\mu) + tE(\nu) - t(1-t)\frac{\lambda}{2}W_2^2(\mu,\nu)$

Def: Given a modulus of convexity $\omega(\mathbf{x})$ and $\lambda \in \mathbb{R}$, E is $\underline{\omega}$ -convex if $E((\sigma(t)) \leq (1-t)E(\mu) + tE(\nu) - \frac{\lambda}{2} \left[(1-t)\omega(t^2W_2^2(\mu,\nu)) + t\omega((1-t)^2W_2^2(\mu,\nu)) \right]$

Examples:

- $\omega(x) = x$, reduces to λ -convexity
- $\omega(x) = x |\log(x)|$, [Ambrosio Serfaty, 2008] [Carrillo Lisini Mainini, 2014]
- $\omega(x) = x^p, \ p > 1$, [Carrillo McCann Villani, 2006]

time discretization: W₂

gradient flow

$$\frac{d}{dt}E(\rho(t)) \leq -\frac{1}{2}|\partial E(\rho(t))| - \frac{1}{2}|\rho'|(t)$$
time discretization (JKO)

$$\rho_n = \underset{\nu}{\arg\min} \left\{ \frac{1}{2\tau} W_2^2(\nu, \rho_{n-1}) + E(\nu) \right\}$$

$$\rho_0 = \mu$$

Assume: E is bounded below and ω -convex along generalized geodesics for $\omega(x)$ satisfying Osgood's condition: $\int_0^1 \frac{dx}{\omega(x)} = +\infty$ Thm: For $\tau = \frac{t}{n}$, $W_2(\rho(t), \rho_n) \to 0$, $F_{2t}(W_2^2(\rho_1(t), \rho_2(t))) \leq W_2^2(\rho_1(0), \rho_2(0))$ [C. '17] time discretization $\frac{d}{dt}F_t(x) = \lambda \ \omega(F_t(x))$ contraction inequality In particular, for $\omega(x) = x|\log(x)|$ and $W_2(\rho(0), \tilde{\rho}(0)) \leq 1$, $W_2(\rho(t), \tilde{\rho}(t)) \leq W_2(\rho(0), \tilde{\rho}(0))^{e^{2\lambda t}}$

12

