

From slow diffusion to a hard height constraint: characterizing congested aggregation

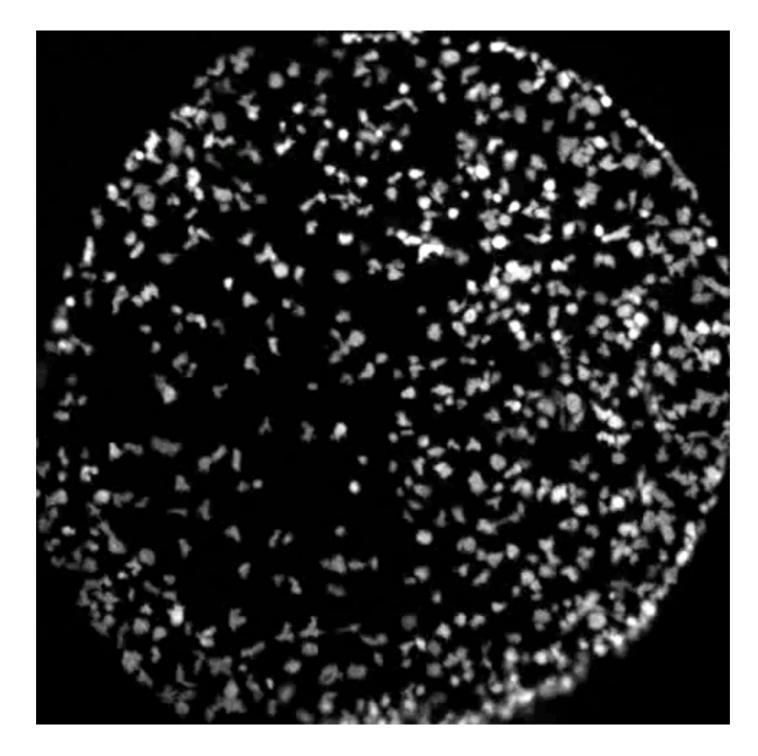
Katy Craig University of California, Santa Barbara

joint work with Inwon Kim (UCLA) and Yao Yao (Georgia Tech)

Applied Math and Analysis Seminar Duke University, 2/22/17

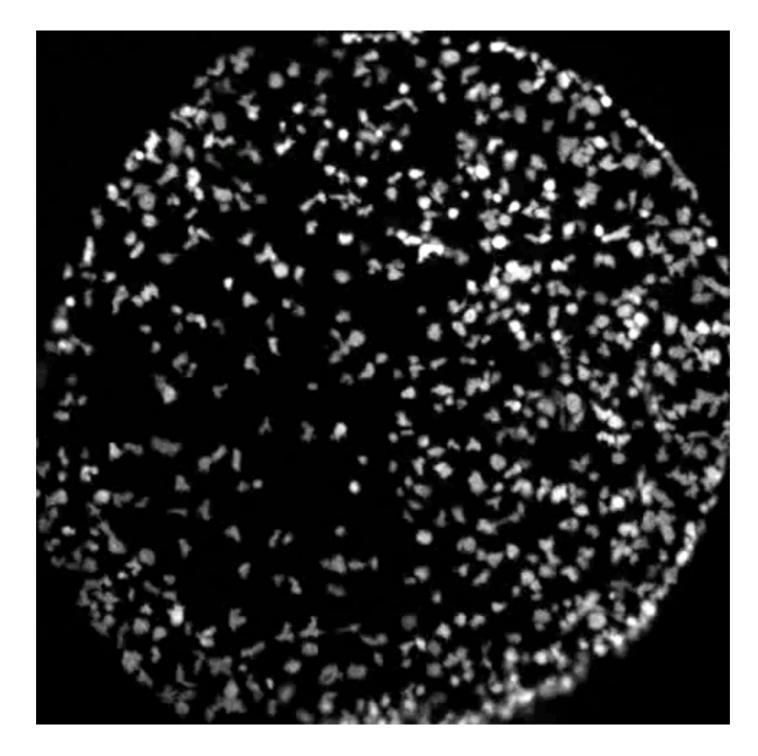
collective dynamics

biological chemotaxis (a colony of slime mold)



collective dynamics

biological chemotaxis (a colony of slime mold)



- congested aggregation equation
- previous work and challenges
- well-posedness

nonconvex Wasserstein gradient flow

- dynamics/long time behavior free boundary problem
- future work

- congested aggregation equation
- previous work and challenges
- well-posedness

nonconvex Wasserstein gradient flow

- dynamics/long time behavior free boundary problem
- future work

motivation

- $\rho(x,t)$: $\mathbb{R}^d \times \mathbb{R} \rightarrow [0, +\infty)$ nonnegative density
- mass is conserved $\Rightarrow \int \rho(x) dx = 1$

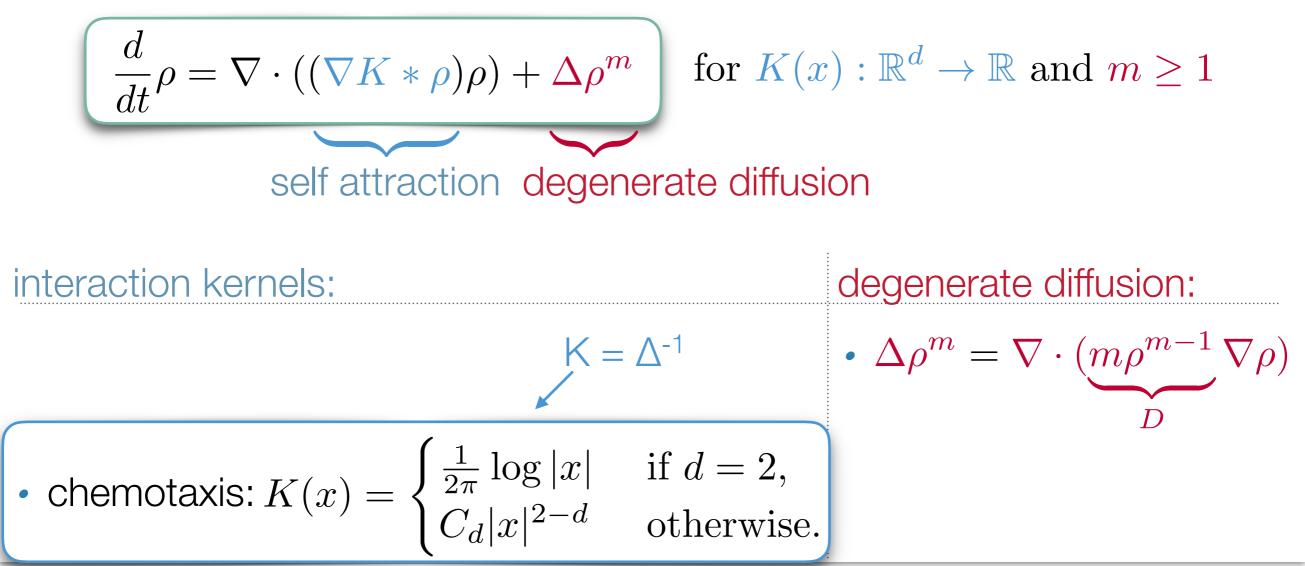
aggregation equation with degenerate diffusion:

$$\begin{array}{c}
\frac{d}{dt}\rho = \nabla \cdot ((\nabla K * \rho)\rho) + \Delta \rho^{m} \quad \text{for } K(x) : \mathbb{R}^{d} \to \mathbb{R} \text{ and } m \geq 1 \\
\text{self attraction degenerate diffusion} \\
\text{interaction kernels:} \\
\text{o granular media: } K(x) = |x|^{3} \\
\text{o swarming: } K(x) = -e^{-|x|} \\
\text{o chemotaxis: } K(x) = \begin{cases} \frac{1}{2\pi} \log |x| & \text{if } d = 2, \\ C_{d}|x|^{2-d} & \text{otherwise.} \end{cases}$$

motivation

- $\rho(x,t)$: $\mathbb{R}^d \times \mathbb{R} \rightarrow [0, +\infty)$ nonnegative density
- mass is conserved $\Rightarrow \int \rho(x) dx = 1$

aggregation equation with degenerate diffusion:



motivation

Inspired by the aggregation equation with degenerate diffusion, we consider the congested aggregation equation.

- Both models have self-attraction from $\nabla K * \rho$.
- The role of repulsion is played by hard height constraint instead of degenerate diffusion.
- Heuristically, hard height constraint is singular limit of degenerate diffusion: Idea: $\Delta \rho^m = \nabla \cdot (\underbrace{m\rho^{m-1}}_{D} \nabla \rho)$, so as $m \rightarrow +\infty$, $D \rightarrow \begin{cases} +\infty & \text{if } \rho > 1 \\ 0 & \text{if } \rho < 1 \end{cases}$

Congested aggregation eqn:

$$\begin{cases} \frac{d}{dt}\rho = \nabla \cdot (\nabla(K * \rho)\rho) \text{ if } \rho < 1\\ \rho \leq 1 \text{ always} \end{cases}$$

"

- In what sense?
- Well-posed? Stable?
- Dynamics?
- Long time behavior?

- congested aggregation equation
- previous work and challenges
- well-posedness

nonconvex Wasserstein gradient flow

- dynamics/long time behavior free boundary problem
- future work

previous work

Congested drift equation:

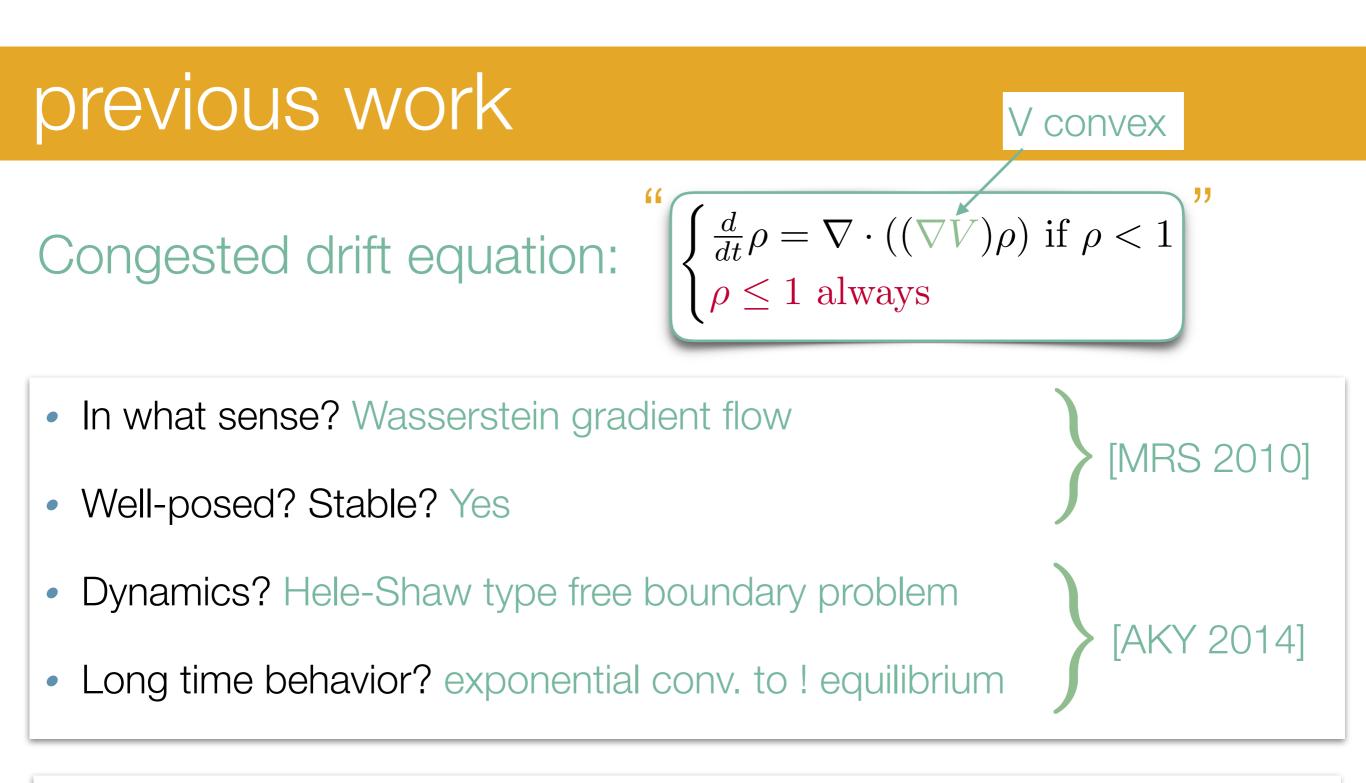
$$\begin{cases} \frac{d}{dt}\rho = \nabla \cdot ((\nabla V)\rho) \text{ if } \rho < 1\\ \rho \leq 1 \text{ always} \end{cases}$$

[Maury, Roudneff-Chupin, Santambrogio 2010]

- introduced as a model of crowd motion in an evacuation scenario, where V(x) = distance to exit.
- showed well-posedness as a W_2 gradient flow for V(x) convex.

$$\begin{bmatrix} \text{Alexander, Kim, Yao 2014} \end{bmatrix} \text{ showed} \\ \hline \frac{d}{dt}\rho = \nabla \cdot ((\nabla V)\rho) + \Delta \rho^m \quad \text{m} \rightarrow +\infty \quad \begin{cases} \frac{d}{dt}\rho = \nabla \cdot ((\nabla V)\rho) \text{ if } \rho < 1 \\ \rho \leq 1 \text{ always} \end{cases}$$

and used this to characterize dynamics in terms of free boundary problem



Challenges:

- $K * \rho$ not convex \Rightarrow W₂ gradient flow theory comparatively undeveloped
- $K * \rho$ nonlocal \Rightarrow no comparison principle

Congested aggregation eqn:

$$\begin{cases} \frac{d}{dt}\rho = \nabla \cdot (\nabla(K * \rho)\rho) \text{ if } \rho < 1\\ \rho \leq 1 \text{ always} \end{cases}$$

 $K = \Delta^{-1}$

- In what sense?
- Well-posed? Stable?
- Dynamics?
- Long time behavior?

(nonconvex) Wasserstein gradient flow

"

Congested aggregation eqn:

$$\begin{cases} \frac{d}{dt}\rho = \nabla \cdot (\nabla(K * \rho)\rho) \text{ if } \rho < 1\\ \rho \leq 1 \text{ always} \end{cases}$$

 $K = \Delta^{-1}$

- In what sense?
- Well-posed? Stable?
- Dynamics?
- Long time behavior?

(nonconvex) Wasserstein gradient flow

"

Congested aggregation eqn:

$$\begin{cases} \frac{d}{dt}\rho = \nabla \cdot (\nabla(K * \rho)\rho) \text{ if } \rho < 1\\ \rho \leq 1 \text{ always} \end{cases}$$

 $K = \Delta^{-1}$

In what sense?

- Well-posed? Stable?
- Dynamics?
- Long time behavior?

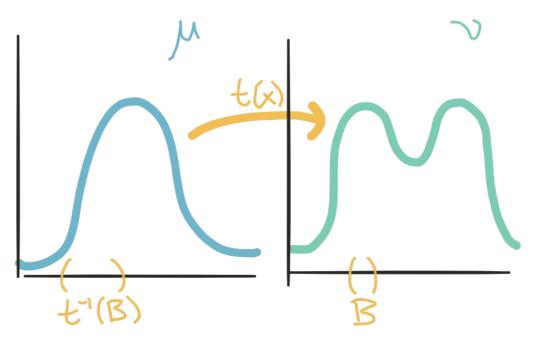
(nonconvex) Wasserstein gradient flow

"

- congested aggregation equation
- previous work and challenges
- well-posedness
 nonconvex Wasserstein gradient flow
- dynamics/long time behavior free boundary problem
- future work

Wasserstein metric

• Given two probability measures μ and ν on \mathbb{R}^d , $\mathbf{t} : \mathbb{R}^d \to \mathbb{R}^d$ transports μ onto ν if $\nu(B) = \mu(\mathbf{t}^{-1}(B))$. Write this as $t \# \mu = \nu$.



• The Wasserstein distance between μ and $\nu \in P_2(\mathbb{R}^d)$ is

$$W_{2}(\mu,\nu) := \inf \left\{ \left(\int |t(x) - x|^{2} d\mu(x) \right)^{1/2} : t \# \mu = \nu \right\}$$

effort to rearrange μ to
look like v, using t(x) t sends μ to v

geodesics

Not just a metric space... a geodesic metric space: there is a constant speed geodesic $\sigma : [0,1] \to \mathcal{P}_2(\mathbb{R}^d)$ connecting any μ and ν .

$$\sigma(0) = \mu, \ \sigma(1) = \nu, \ W_2(\sigma(t), \sigma(s)) = |t - s| W_2(\mu, \nu)$$

Monge

Kantorovich

レ

 \mathcal{V}

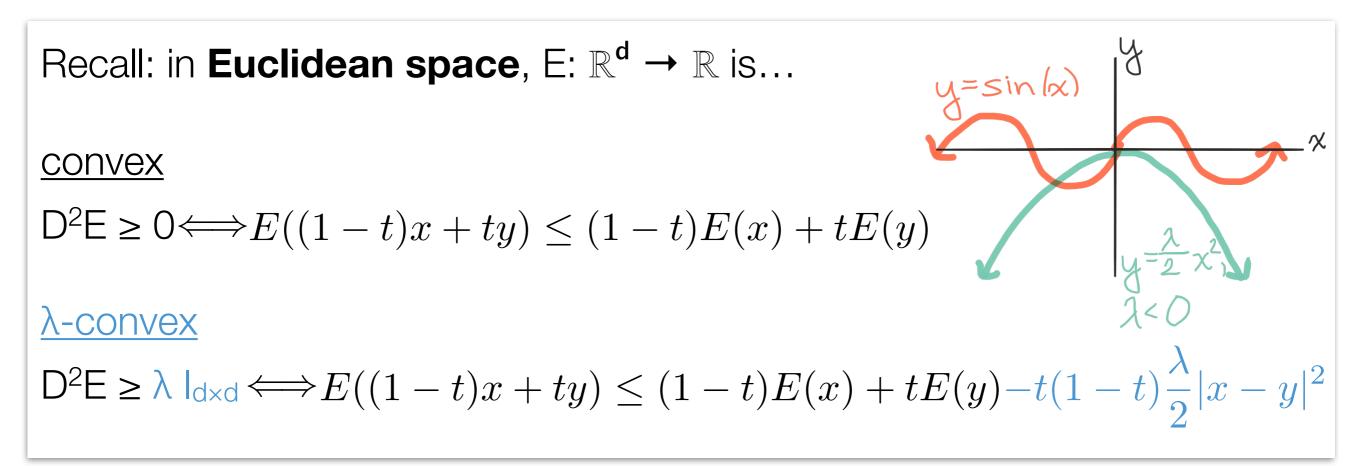
 μ

 μ

Wasserstein geodesic $\sigma(t)$

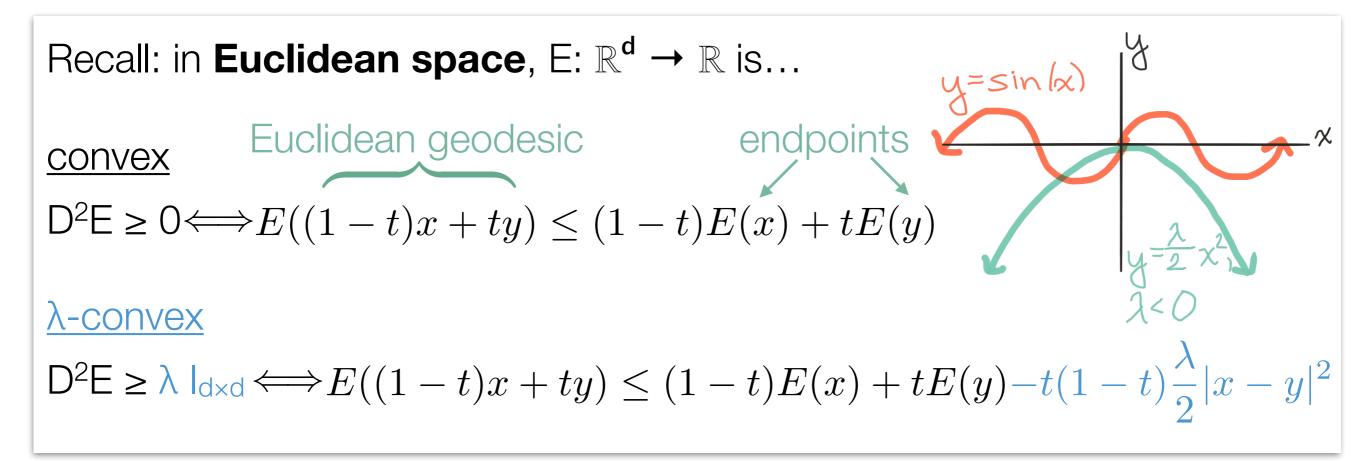
linear interpolation $(1-t)\mu + t\nu$

Since the Wasserstein metric has geodesics, it has a notion of convexity.



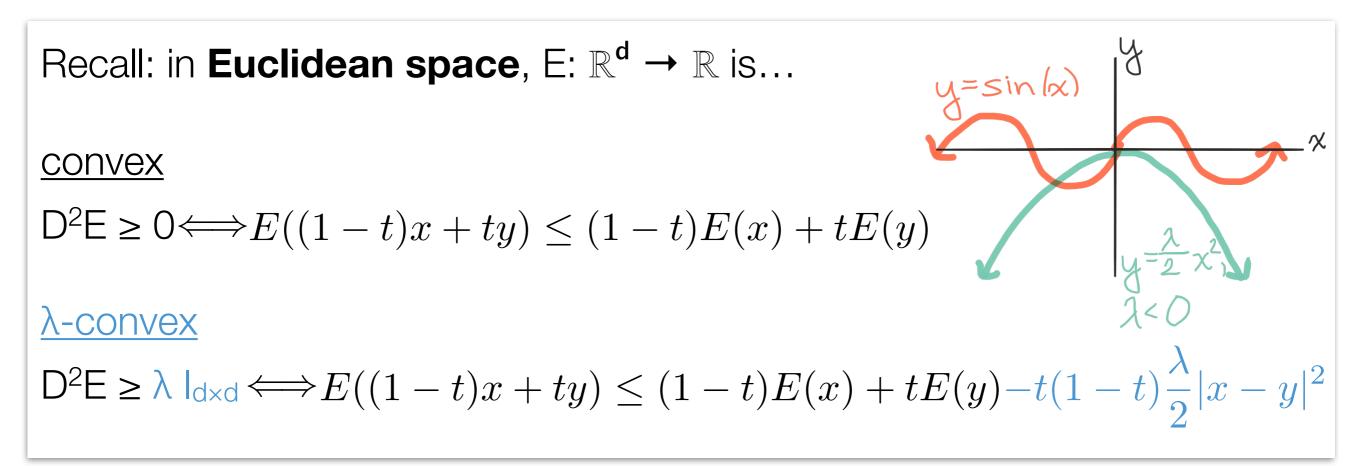
$$E(\sigma(t)) \le (1-t)E(\mu) + tE(\nu) - t(1-t)\frac{\lambda}{2}W_2^2(\mu,\nu)$$

Since the Wasserstein metric has geodesics, it has a notion of convexity.



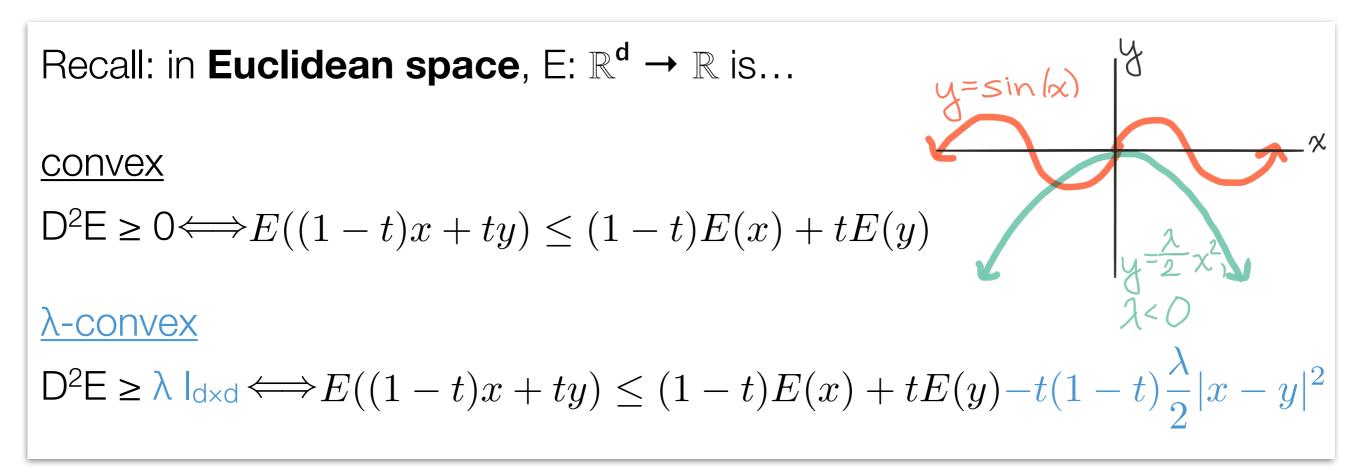
$$E(\sigma(t)) \le (1-t)E(\mu) + tE(\nu) - t(1-t)\frac{\lambda}{2}W_2^2(\mu,\nu)$$

Since the Wasserstein metric has geodesics, it has a notion of convexity.

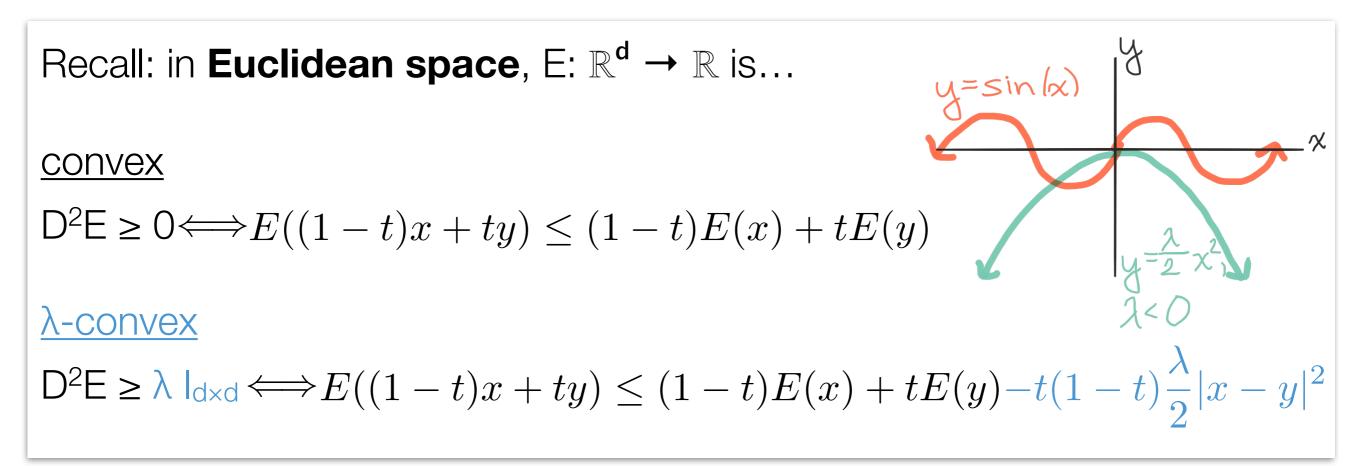


$$E(\sigma(t)) \le (1-t)E(\mu) + tE(\nu) - t(1-t)\frac{\lambda}{2}W_2^2(\mu,\nu)$$

Since the Wasserstein metric has geodesics, it has a notion of convexity.



Since the Wasserstein metric has geodesics, it has a notion of convexity.



$$E(\sigma(t)) \le (1-t)E(\mu) + tE(\nu) - t(1-t)\frac{\lambda}{2}W_2^2(\mu,\nu)$$

gradient flow

How does this relate to PDE? Wasserstein gradient flow.

• In general, given a complete metric space (X,d), a curve x(t): $\mathbb{R} \rightarrow X$ is the gradient flow of an energy E: $X \rightarrow \mathbb{R}$ if

$$\frac{d}{dt}x(t) = -\nabla_X E(x(t))$$

• "x(t) evolves in the direction of steepest descent of E"

Examples:

metric	energy functional	gradient flow
$(L^2(\mathbb{R}^d), \ \cdot\ _{L^2})$	$E(f) = \frac{1}{2} \int \nabla f ^2$	$\frac{d}{dt}f = \Delta f$
$(\mathcal{P}_2(\mathbb{R}^d), W_2)$	$E(\rho) = \int \rho \log \rho$	$\frac{d}{dt}\rho = \Delta\rho$
	$E(\rho) = \frac{1}{m-1} \int \rho^m$	$\frac{d}{dt}\rho = \Delta\rho^m$

16

gradient flow

 $\rho(t): \mathbb{R} \to P_2(\mathbb{R}^d)$ is the Wasserstein gradient flow of energy E: $P_2(\mathbb{R}^d) \to \mathbb{R}$ if $\frac{d}{dt}\rho(t) = -\nabla_{W_2}E(\rho(t))$

Relationship between Wasserstein gradient flow and PDE:

- If E sufficiently regular, gradient flow \iff PDE
- More generally, gradient flow \iff PDE

For λ -convex energies, gradient flow theory is well-developed.

Theorem (Ambrosio, Gigli, Savaré 2005): If E is λ -convex, lower semicontinuous, and bounded below, solutions of its W₂ gradient flow

- exist
- are unique
- contract $(\lambda > 0)$ /expand $(\lambda \le 0)$ exponentially:

 $W_2(\rho_1(t), \rho_2(t)) \le e^{-\lambda t} W_2(\rho_1(0), \rho_2(0))$

gradient flow

 ρ (t): $\mathbb{R} \to P_2(\mathbb{R}^d)$ is the Wasserstein gradient flow of energy E: $P_2(\mathbb{R}^d) \to \mathbb{R}$ if $\frac{d}{dt}\rho(t) = -\nabla_{W_2}E(\rho(t))$

Relationship between Wasserstein gradient flow and PDE:

- If E sufficiently regular, gradient flow \iff PDE
- More generally, gradient flow \iff PDE

For λ -convex energies, gradient flow theory is well-developed.

Theorem (Ambrosio, Gigli, Savaré 2005): If E is λ -convex, lower semicontinuous, and bounded below, solutions of its W₂ gradient flow

- exist
- are unique
- contract (λ >0)/expand (λ <0) exponentially:

This ensured well-posedness of the congested drift equation for V(x) convex.

 $W_2(\rho_1(t), \rho_2(t)) \le e^{-\lambda t} W_2(\rho_1(0), \rho_2(0))$

gradient flow and aggregation

The congested aggregation equation is (formally) a Wasserstein gradient flow of the height constrained interaction energy:

$$\begin{cases} \frac{d}{dt}\rho = \nabla \cdot (\nabla (K * \rho)\rho) \text{ if } \rho < 1\\ \rho \leq 1 \text{ always} \end{cases}$$

$$E_{\infty}(\rho) = \begin{cases} \frac{1}{2} \iint K(x-y)\rho(x)\rho(y)dxdy & \text{if } \|\rho\|_{\infty} \leq 1\\ +\infty & \text{otherwise} \end{cases}$$

Fact: If K: $\mathbb{R}^{d} \to \mathbb{R}$ is λ -convex, then E_{∞} is λ -convex. **Problem:** $K(x) = \begin{cases} \frac{1}{2\pi} \log |x| & \text{if } d = 2\\ C_{d} |x|^{2-d} & \text{otherwise} \end{cases}$ is not λ -convex.

 E_{∞} falls outside the scope of the existing theory.

ω-convexity

where $\omega(x) = x |\log(x)|$.

Solution: Even though we don't have

$$E_{\infty}(\sigma(t)) \le (1-t)E_{\infty}(\mu) + tE_{\infty}(\nu) - \frac{\lambda}{2}t(1-t)W_{2}^{2}(\mu,\nu)$$

 E_{∞} does satisfy a similar inequality for a different modulus of convexity

$$E_{\infty}(\sigma(t)) \le (1-t)E_{\infty}(\mu) + tE_{\infty}(\nu) - \frac{\lambda}{2} \left[(1-t)\omega \left(t^2 W_2^2(\mu,\nu) \right) + t\omega \left((1-t)^2 W_2^2(\mu,\nu) \right) \right]$$

Remark: The above two inequalities coincide for $\omega(x) = x$: ω -convexity is a generalization of λ -convexity.

 λ -convexity

ω-convexity

aside: w-convexity & Euler equations

In fact, when $\omega(x) = x |\log(x)|$, ω -convexity is related to well-posedness of bounded solutions of the the Euler equations.

• λ -convexity in W₂ is analogous to D²E being bounded from below in Euclidean space, or that ∇ E is one-sided Lipschitz.

• Likewise, ω -convexity in W₂ is analogous to D²E being BMO in Euclidean space, or that ∇ E is log-Lipschitz.

 Log-Lipschitz regularity of the velocity field was precisely what allowed [Yudovich 1963] to prove uniqueness of bounded solutions of the two dimensional Euler equations.

ω-convexity: well-posedness

For merely ω -convex energies, the gradient flow is well-posed.

Theorem (C. 2016): If E is ω -convex for $\omega(x) = x |\log(x)|$, lower semicontinuous, and bounded below, solutions of its W₂ gradient flow

- exist
- are unique
- contract (λ >0)/expand (λ <0) double exponentially: $W_2(\rho_1(t), \rho_2(t)) \leq W_2(\rho_1(0), \rho_2(0))^{e^{2\lambda t}}$

In fact, well-posedness holds for all $\omega(x)$ that satisfy Osgood's condition.

Corollary (C. 2016): Since E_{∞} is ω -convex for $\omega(x) = x |\log(x)|$ and $\lambda < 0$, the congested aggregation equation is well-posed as a Wasserstein gradient flow and expands at most double exponentially.

Congested aggregation eqn:

$$\begin{cases} \frac{d}{dt}\rho = \nabla \cdot (\nabla(K * \rho)\rho) \text{ if } \rho < 1\\ \rho \leq 1 \text{ always} \end{cases}$$

 $K = \Delta^{-1}$

- In what sense?
- Well-posed? Stable?
- Dynamics?
- Long time behavior?

(nonconvex) Wasserstein gradient flow

"

Congested aggregation eqn:

$$\begin{cases} \frac{d}{dt}\rho = \nabla \cdot (\nabla(K * \rho)\rho) \text{ if } \rho < 1\\ \rho \leq 1 \text{ always} \end{cases}$$

 $K = \Delta^{-1}$

In what sense?

• Well-posed? Stable?

• Dynamics?

• Long time behavior?

(nonconvex) Wasserstein gradient flow

"

Congested aggregation eqn:

$$\begin{cases} \frac{d}{dt}\rho = \nabla \cdot (\nabla(K * \rho)\rho) \text{ if } \rho < 1\\ \rho \leq 1 \text{ always} \end{cases}$$

 $K = \Delta^{-1}$

In what sense?

- Well-posed? Stable?
- Dynamics?
- Long time behavior?

(nonconvex) Wasserstein gradient flow

"

Congested aggregation eqn:

$$\begin{cases} \frac{d}{dt}\rho = \nabla \cdot (\nabla(K * \rho)\rho) \text{ if } \rho < 1\\ \rho \leq 1 \text{ always} \end{cases}$$

 $K = \Delta^{-1}$

In what sense?

- Well-posed? Stable?
- Dynamics?
- Long time behavior?

(nonconvex) Wasserstein gradient flow

"

Congested aggregation eqn:

$$\begin{cases} \frac{d}{dt}\rho = \nabla \cdot (\nabla(K * \rho)\rho) \text{ if } \rho < 1\\ \rho \leq 1 \text{ always} \end{cases}$$

 $K = \Delta^{-1}$

In what sense?

- Well-posed? Stable?
- Dynamics?
- Long time behavior?

(nonconvex) Wasserstein gradient flow

"

Congested aggregation eqn:

$$\begin{cases} \frac{d}{dt}\rho = \nabla \cdot (\nabla(K * \rho)\rho) \text{ if } \rho < 1\\ \rho \leq 1 \text{ always} \end{cases}$$

 $K = \Delta^{-1}$

In what sense?

Well-posed? Stable?

Dynamics?

• Long time behavior?

(nonconvex) Wasserstein gradient flow

"

questions

Congested aggregation eqn:

$$\begin{cases} \frac{d}{dt}\rho = \nabla \cdot (\nabla(K * \rho)\rho) \text{ if } \rho < 1\\ \rho \leq 1 \text{ always} \end{cases}$$

 $K = \Delta^{-1}$

In what sense?

Well-posed? Stable?

Dynamics?

Long time behavior?

(nonconvex) Wasserstein gradient flow

"

combination of Wasserstein gradient flow with viscosity solution theory

- congested aggregation equation
- previous work and challenges
- well-posedness

nonconvex Wasserstein gradient flow

- dynamics/long time behavior free boundary problem
- future work

motivation for free boundary problem

How does congested aggregation equation relate to free boundary problem?

$$\begin{cases} \frac{d}{dt}\rho = \nabla \cdot (\nabla (K * \rho)\rho) \text{ if } \rho < 1\\ \rho \leq 1 \text{ always} \end{cases}$$

- Consider patch solutions. For a domain Ω , suppose that $\rho(x,t)$ is a solution with initial data $\rho(x,0) = \begin{cases} 1 & \text{if } x \in \Omega, \\ 0 & \text{otherwise.} \end{cases}$
- Since $K = \Delta^{-1}$, $\nabla K * \rho$ causes self-attraction. Thus, we expect $\rho(x,t)$ to remain a characteristic function.
- Let $\Omega(t) = \{\rho = 1\}$ be congested region, so $\rho(x,t) = \mathbf{1}_{\Omega(t)}(x)$.

What free boundary problem describes evolution of $\Omega(t)$?

260=5

O(i)

2(10)

セニト

t=10

formal derivation

• Here is a formal derivation of the related free boundary problem.

"

• Suppose ρ(x,t) solves

$$\begin{cases} \frac{d}{dt}\rho = \nabla \cdot (\nabla (K * \rho)\rho) \text{ if } \rho < 1\\ \rho \leq 1 \text{ always} \end{cases}$$

• Since mass is conserved, we expect ρ(x,t) satisfies a continuity equation

$$\frac{d}{dt}\rho = \nabla \cdot \left(\underbrace{\left(\nabla K * \rho + \nabla \mathbf{p}\right)}_{v}\rho\right)$$

where $\nabla p(x,t)$ is the pressure arising from the height constraint.

Height constraint is active on the congested region $\{p>0\} = \Omega(t)$.

Height constraint is inactive outside the congested region $\{\mathbf{p}=0\}=\Omega(t)^{c}$.

formal derivation

Given
$$\underbrace{\frac{d}{dt}\rho = \nabla \cdot \left(\left(\nabla K * \rho + \nabla \mathbf{p} \right) \rho \right)}_{v}$$

what happens on congested region?

- Because of hard height constraint, on the congested region Ω(t)={ρ=1}, the velocity field is incompressible, ∇·v=0.
- Since $K = \Delta^{-1}$, $\nabla \cdot v = \Delta K * \rho + \Delta \mathbf{p} = \rho + \Delta \mathbf{p}$, so incompressibility means

$$-\Delta \mathbf{p} = \rho \text{ on } \Omega(t) = \{\rho = 1\}$$

 Using that the height constraint is active on the congested region, Ω(t)={p>0}, we obtain the following equation for the pressure:

$$-\Delta \mathbf{p} = 1 \text{ on } \{\mathbf{p} > 0\}$$

formal derivation

Given
$$\left(\frac{d}{dt}\rho = \nabla \cdot \left(\underbrace{(\nabla K * \rho + \nabla \mathbf{p})}_{v}\rho\right)\right)$$

what about bdy of congested region?

outward normal velocity of $\partial \Omega(t)$

• By conservation of mass,

$$0 = \frac{d}{dt} \int_{\Omega(t)} \rho = \int_{\Omega(t)} \frac{d}{dt} \rho + \int_{\partial \Omega(t)} V \rho$$

Using that p(x,t) solves the above continuity equation, this equals

$$= \int_{\Omega(t)} \nabla \cdot \left((\nabla K * \rho + \nabla \mathbf{p}) \rho \right) + \int_{\partial \Omega(t)} V \rho = \int_{\partial \Omega(t)} (\partial_{\nu} K * \rho + \partial_{\nu} \mathbf{p} + V) \rho$$

• Using that $\rho(x,t)=1_{\Omega(t)}(x)$, for $\Omega(t)=\{p>0\}$, we again obtain an equation for p,

 $\partial_{\nu} K * 1_{\{\mathbf{p}>0\}} + \partial_{\nu} \mathbf{p} + V = 0 \text{ on } \partial\{\mathbf{p}>0\}$

free boundary problem

Combining the observations that...

• on the congested region,

$$-\Delta \mathbf{p} = 1 \text{ on } \{\mathbf{p} > 0\}$$

and on the boundary of the congested region,

$$\partial_{\nu} K * 1_{\{\mathbf{p}>0\}} + \partial_{\nu} \mathbf{p} + V = 0 \text{ on } \partial\{\mathbf{p}>0\}$$

Theorem (C., Kim, Yao 2016):

- Suppose $\rho(x,t)$ solves congested aggregation eqn with $\rho(x,0) = 1_{\Omega(0)}(x)$.
- Then $\rho(x,t)=1_{\Omega(t)}(x)$, for $\Omega(t) = \{p(x,t)>0\}$, where p a viscosity solution of

$$\begin{cases} -\Delta \mathbf{p} = 1 & \text{on } \{\mathbf{p} > 0\} \\ V = -\partial_{\nu} K * \mathbf{1}_{\{\mathbf{p} > 0\}} - \partial_{\nu} \mathbf{p} & \text{on } \partial\{\mathbf{p} > 0\}. \end{cases}$$

outward normal

velocity of $\partial \Omega(t)$

long time behavior

Using the characterization of the dynamics of patch solutions provided by the free boundary problem, we are able to study their long time behavior:

Theorem (C., Kim, Yao 2016):

- Suppose $\rho(x,t)$ solves congested aggregation eqn with $\rho(x,0) = 1_{\Omega(0)}(x)$.
- Then, in two dimensions,

$$o(x,t) \xrightarrow{L^p} 1_B(x)$$
 for all $1 \le p < +\infty$

and

$$|E_{\infty}(\rho(\cdot,t)) - E_{\infty}(1_B)| \le C_{\Omega(0)}t^{-1/6}$$

- In any dimension, the Riesz Rearrangement Inequality guarantees that the unique minimizer of E_{∞} is $1_B(x)$.
- The difficult part is showing that mass of $\rho(x,t)$ doesn't escape to $+\infty$. To accomplish this, we use an inequality due to Talenti, which holds in d=2.

- congested aggregation equation
- previous work and challenges
- well-posedness

nonconvex Wasserstein gradient flow

- dynamics/long time behavior free boundary problem
- future work

future work:

Does Keller-Segel converge to congested aggregation?

$$\frac{d}{dt}\rho = \nabla \cdot \left((\nabla K * \rho)\rho \right) + \Delta \rho^m \qquad \text{m} \to +\infty \qquad \begin{cases} \frac{d}{dt}\rho = \nabla \cdot \left(\nabla (K * \rho)\rho \right) \text{ if } \rho < 1 \\ \rho \leq 1 \text{ always} \end{cases}$$

For V(x) convex, [Alexander, Kim, Yao 2014] showed

- Connecting Keller-Segel and the congested aggregation eqn would...
 - Lead to new numerical methods for congested aggregation.
 - Lead to greater insight in long-time behavior of supercritical (m>2-2/d) Keller-Segel.

future work:

What about non-patch solutions?

- Relates to recent work on $m \rightarrow +\infty$ limit in PME-type models for tumor growth by [Kim and Pozar 2015] and [Mellet, Perthame, Quiros 2015]

What about non-Newtonian kernels K(x)?

- While well-posedness theory extends to a range of interaction kernels, free boundary problem strongly uses Newtonian structure.

future work:

Other characterizations of dynamics?

- Can we show

$$\frac{d}{dt}\rho = \nabla \cdot \left(\underbrace{(\nabla K * \rho + \nabla \mathbf{p})}_{v}\rho\right) \text{ in a weak sense?}$$

 For the congested drift equation [Maury, Roudneff-Chupin, Santambrogio 2010] showed that the analogous continuity equation holds, where v is obtained by projecting ∇V onto a space of admissible velocities.

Further examples of ω -convex energies?

More applications with a height constraint?

