A Blob Method for the Aggregation Equation

Katy Craig

University of California, Los Angeles
joint with Andrea Bertozzi

Univeristy of California, Santa Barbara
October 10, 2014

Plan

- aggregation equation
- numerical methods
- blob method
- blob method converges
- sketch of proof
- numerics

Plan

- aggregation equation
- numerical methods
- blob method
- blob method converges
- sketch of proof
- numerics

Aggregation Equation

$$
\left\{\begin{array}{l}
\frac{d \rho}{d t}+\nabla \cdot(v \rho)=0 \quad \rho(0, t)=\rho_{0}(t) \geq 0 \\
v=-\nabla K * \rho
\end{array}\right.
$$

Applied interest:

- $K(x)=|x|^{a} / a-|x|^{b} / b,-d<b<a, \quad$ social aggregation in biology
- $K(x)=-\log |x| / 2 \pi, \quad$ evolution of vortex densities in superconductors

Kernels with low regularity

Mathematical interest:

- non-local
- blowup
- rich structure of steady states
- gradient flow in the Wasserstein metric: $\frac{d \rho}{d t}=-\nabla_{W} E(\rho)$

$$
\nabla_{W} E(\rho)=-\nabla \cdot\left(\rho \nabla \frac{\delta E}{\delta \rho}\right), \quad E(\rho)=\frac{1}{2} \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} \rho(x) K(x-y) \rho(y) d x d y
$$

Particle Approximation and Wasserstein Gradient Flow

Suppose K is radial, continuously differentiable, and convex and we seek a weak solution of the form

$$
\rho^{\text {particle }}(x, t)=\sum_{j=1}^{N} \delta\left(x-X_{j}(t)\right) m_{j} .
$$

Then the velocity field would be given by

$$
v(x, t)=-\int \nabla K(x-y) \rho(y, t) d y=-\sum_{j=1}^{N} \nabla K\left(x-X_{j}(t)\right) m_{j}
$$

and $\rho^{\text {particle }}$ is a weak solution in case

$$
\frac{d}{d t} X_{i}(t)=-\sum_{j=1}^{N} \nabla K\left(X_{i}(t)-X_{j}(t)\right) m_{j}
$$

$$
K(x)=|x|^{2}
$$

Plan

- aggregation equation
- numerical methods
- blob method
- blob method converges
- sketch of proof
- numerics

Plan

- aggregation equation
- numerical methods
- blob method
- blob method converges
- sketch of proof
- numerics

[Kolokolnikov, Sun, Uminsky, Bertozzi, 2011]

Numerical Methods: Recent Results

particle methods

- complement theoretical results: repulsive attractive steady states
- used to prove theoretical results: finite time blowup, confinement
- convergence of particle method
other numerical methods
- developed finite volume method
- convergence of finite difference [James, Vauchelet 2014] method to measure solutions, 1D
[Bertozzi, Sun, Kolokolnikov, Uminsky, Von Brecht 2011], [Balagué, Carrillo, Laurent, Raoul 2012]
[Carrillo, DiFrancesco, Figalli, Laurent, Slepčev 2010, 2011]
[Carrillo, Choi, Hauray 2013]

Numerical Methods: Our Goal

- Develop new numerical method for multidimentional aggregation equation
- Allow singular and non-singular potentials
- Prove quantitative estimates on convergence to classical solutions
- Validate sharpness of estimates with numerical examples

Blob Method for the Aggregation Equation

Theorem (C., Bertozzi 2014)

Let $K(x)$ have power law growth $|x|^{s}, s \geq 2-d$ (for simplicity of notation $d \geq 3$, Newtonian potential admissible for $d=2$).

Suppose $\rho: \mathbb{R}^{d} \times[0, T] \rightarrow \mathbb{R}^{+}$is a smooth, compactly supported solution.

The blob method discretizes $\rho_{0}(x)$ on a mesh of size h and prescribes

- approximate particle trajectories \tilde{X}_{i},
- approximate density along particle trajectories $\tilde{\rho}_{i}$,
so that for $\frac{1}{2} \leq q<1$ and $m \geq 4$ (parameters specifying shape of blobs)

$$
\left\|X_{i}(t)-\tilde{X}_{i}(t)\right\|_{L_{h}^{p}} \leq C h^{m q} \quad\left\|\rho_{i}(t)-\tilde{\rho}_{i}(t)\right\|_{W_{h}^{-1, p}} \leq C h^{m q},
$$

for $1 \leq p<\infty$.

Plan

- aggregation equation
- numerical methods
- blob method
- blob method converges
- sketch of proof
- numerics

Euler vs Aggregation: Similarities

Vorticity formulation of Euler equations:

$$
\mathbf{(V)}\left\{\begin{array} { l }
{ \omega _ { t } + v \cdot \nabla \omega = \omega \cdot (\nabla v) } \\
{ v = K _ { d } * \omega }
\end{array} \xrightarrow { \text { material derivative } } \left\{\begin{array}{l}
D \omega / D t=\omega \cdot(\nabla v) \\
v=K_{d} * \omega
\end{array}\right.\right.
$$

Biot-Savart kernel: $K_{2}(x)=\frac{1}{2 \pi|x|^{2}}\left(-x_{2}, x_{1}\right), K_{3}(x) h=\frac{1}{4 \pi} \frac{x \times h}{|x|^{3}}$.
$v=\nabla^{\perp} \Delta^{-1} \omega$

Aggregation equation:

$$
\text { (A) }\left\{\begin{array} { l }
{ \rho _ { t } + \nabla \cdot (v \rho) = 0 } \\
{ v = - \nabla K * \rho }
\end{array} \quad \xrightarrow { \text { material derivative } } \left\{\begin{array}{l}
D \rho / D t=-\rho(\nabla \cdot v) \\
v=-\nabla K * \rho
\end{array}\right.\right.
$$

Newtonian potential: $K(x)=\frac{1}{d(d-2) \omega_{d}}|x|^{2-d}(K(x)=-\log |x| / 2 \pi$ when $d=2)$. $v=\nabla \Delta^{-1} \rho$

Euler vs Aggregation: Differences

Euler Equations

- velocity is divergence free
- Biot Savart kernel
- 2 and 3 dimensions

Aggregation Equation

- mass is conserved
- Newtonian, Riesz, and non-singular kernels (growth at infinity)
- $d \geq 1$

Aggregation equation: Lagrangian perspective

Particle trajectories: $\quad \begin{cases}\frac{d}{d t} X(\alpha, t) & =-\nabla K * \rho(X(\alpha, t), t) \\ X(\alpha, 0) & =\alpha .\end{cases}$
Density along trajectories: $\left\{\begin{array}{l}\frac{d}{d t} \rho(X(\alpha, t), t)=(\Delta K * \rho(X(\alpha, t), t)) \rho(X(\alpha, t), t) \\ \rho(X(\alpha, 0), 0)=\rho_{0}(\alpha) .\end{array}\right.$

By conservation of mass, $\rho(X(\beta, t), t) J(\beta, t)=\rho_{0}(\beta)$,

$$
\begin{aligned}
\int \nabla K(x-y) \rho(y, t) d y & =\int \nabla K(x-X(\beta, t)) \rho(X(\beta, t), t) J(\beta, t) d \beta \\
& =\int \nabla K(x-X(\beta, t)) \rho_{0}(\beta) d \beta
\end{aligned}
$$

... and similarly for $\Delta K * \rho(X(\alpha, t), t)$.

Steps for blob method

(1) Remove the singularity of K by convolution with a mollifier, $K_{\delta}=K * \psi_{\delta}$.
(2) Replace ρ_{0} with a particle approximation on the grid $h \mathbb{Z}^{d}$.

$$
\rho_{0}^{\text {particle }}(y)=\sum_{j \in \mathbb{Z}^{d}} \delta(y-j h) \rho_{0 j} h^{d}
$$

Blob method for the aggregation equation

(Exact Particle Trajectories: $\quad \frac{d}{d t} X(\alpha, t)=-\int \nabla K(X(\alpha, t)-X(\beta, t)) \rho_{0}(\beta) d \beta$

$$
X(\alpha, 0)=\alpha
$$

Exact Density : $\frac{d}{d t} \rho(X(\alpha, t), t)=\rho(X(\alpha, t), t) \int \Delta K(X(\alpha, t)-X(\beta, t)) \rho_{0}(\beta) d \beta$

$$
\rho(\alpha, 0)=\rho_{0}(\alpha)
$$

Approx Particle Trajectories: $\quad \frac{d}{d t} \tilde{X}_{i}(t)=-\sum_{j} \nabla K_{\delta}\left(\tilde{X}_{i}(t)-\tilde{X}_{j}(t)\right) \rho_{0 j} h^{d}$

$$
\tilde{X}_{i}(0)=i h
$$

Approx Density :

$$
\begin{aligned}
\frac{d}{d t} \tilde{\rho}_{i}(t) & =\tilde{\rho}_{i}(t)\left(\sum_{j} \Delta K_{\delta}\left(\tilde{X}_{i}(t)-\tilde{X}_{j}(t)\right) \rho_{0 j} h^{d}\right) \\
\tilde{\rho}_{i}(0) & =\rho_{0}(i h)
\end{aligned}
$$

(For pure particle method, take $\delta=0$.)

Heuristic interpretation of blob method

When K is the Newtonian potential, $v=-\nabla K * \rho$ implies $\rho=-\nabla \cdot v$.
Applying this to the approximate velocity \tilde{v}...

$$
\tilde{\rho}^{a l t}(x, t)=-\nabla \cdot\left(-\sum_{j} \nabla K_{\delta}\left(x-\tilde{X}_{j}(t)\right) \rho_{0 j} h^{d}\right)=\sum_{j} \psi_{\delta}\left(x-\tilde{X}_{j}(t)\right) \rho_{0 j} h^{d}
$$

Advantages of blob method

- Avoids main source of numerical diffusion
- Only requires computational elements on support of density
- Inherently adaptive
- Accommodates singular kernels, up to and including the Newtonian potential
- Arbitrarily high order rates of convergence, depending on the accuracy of the mollifier and the widths of the blobs

Without regularization: fewer admissible potentials, slower rates of convergence.
These agree with the rate of $\mathcal{O}\left(h^{2-\epsilon}\right)$ for the Euler equations [Goodman, Hou, Lowengrub 1990].

Plan

- aggregation equation
- numerical methods
- blob method
- blob method converges
- sketch of proof
- numerics

Mollifier

Assumption

Assume ψ is radial, $\int \psi=1$, and for some $m \geq 4, L \geq d+2$
(1) Accuracy: $\int x^{\gamma} \psi(x) d x=0$ for $1 \leq|\gamma| \leq m-1$
(2) Regularity: $\psi \in C^{L}\left(\mathbb{R}^{d}\right)$
(3) Decay: $|x|^{n}\left|\partial^{\beta} \psi(x)\right| \leq C$ for all $n \geq 0$
(1) ensures convolution with ψ preserves polynomials of order $|\alpha| \leq m-1$,

$$
\int(x-y)^{\alpha} \psi(y) d y=\sum_{k=0}^{\alpha}\binom{\alpha}{k} x^{\alpha-k} \int y^{k} \psi(y) d y=x^{\alpha} \int \psi(y) d y=x^{\alpha}
$$

(2) and (3) ensure $\nabla K_{\delta}, \Delta K_{\delta} \in C^{L}\left(\mathbb{R}^{d}\right)$.

Mollifier

Assumption

Assume ψ is radial, $\int \psi=1$, and for some $m \geq 4, L \geq d+2$
(1) Accuracy: $\int x^{\gamma} \psi(x) d x=0$ for $1 \leq|\gamma| \leq m-1$
(2) Regularity: $\psi \in C^{L}\left(\mathbb{R}^{d}\right)$
(3) Decay: $|x|^{n}\left|\partial^{\beta} \psi(x)\right| \leq C$ for all $n \geq 0$

Example: $d=1, m=4, L=+\infty$,

$$
\psi(x)=\frac{4}{3 \sqrt{\pi}} e^{-x^{2}}-\frac{1}{6 \sqrt{\pi}} e^{-(x / 2)^{2}}
$$

Kernel

Assumption

Suppose that $K(x)=\sum_{n=1}^{N} K_{n}(x)$.
For each $K_{n}(x)$, there exists $S_{n} \geq 2-d$ such that

$$
\left|\partial^{\beta} K_{n}(x)\right| \leq C|x|^{S_{n}-|\beta|}, \forall x \in \mathbb{R}^{d} \backslash\{0\},|\beta| \geq 0 .
$$

If $S_{n}=2-d$, we additionally require that $K_{n}(x)$ is a constant multiple of the Newtonian potential.

Let $s=\min _{n} S_{n}$ be the smallest power of the kernel.

Example: $K(x)=|x|^{a} / a-|x|^{b} / b, 2-d \leq b<a$.

$$
s=b
$$

Discrete L^{p} norms

Definition

For $1 \leq p \leq \infty$,

$$
\begin{aligned}
\left\|u_{i}\right\|_{L_{h}^{p}} & =\left(\sum_{i \in \mathbb{Z}^{d}}\left|u_{i}\right|^{p} h^{d}\right)^{1 / p} & \left(u_{i}, g_{i}\right)_{h}=\sum_{i \in \mathbb{Z}^{d}} u_{i} g_{i} h^{d} \\
\left\|u_{i}\right\|_{W_{h}^{1, p}} & =\left(\left\|u_{i}\right\|_{L_{h}^{p}}^{p}+\sum_{j=1}^{d}\left\|D_{j}^{+} u_{i}\right\|_{L_{h}^{p}}^{p}\right)^{1 / p} & \left\|u_{i}\right\|_{W_{h}^{-1, p}}=\sup _{\left\{g_{i}\right\} \in W_{h}^{1, p^{p}}} \frac{\left|\left\langle u_{i}, g_{i}\right\rangle\right|}{\left\|g_{i}\right\|_{W_{h}^{1, p^{\prime}}}}
\end{aligned}
$$

D_{j}^{+}is the forward difference operator in the $j^{t h}$ coordinate direction.

We measure the convergence of X and v in L_{h}^{p} and we measure the convergence of ρ in $W_{h}^{-1, p}$.

This is because, in the most singular case when K is the Newtonian potential, $v=-\nabla K * \rho \Longrightarrow \rho=-\nabla \cdot v$.

Convergence

Theorem (C., Bertozzi 2014)

Suppose...

- $\psi \in C^{L}\left(\mathbb{R}^{d}\right)$ for $L>s+d$,
- $\rho: \mathbb{R}^{d} \times[0, T] \rightarrow \mathbb{R}^{+}$is a smooth, compactly supported solution,
- $0 \leq h^{q} \leq \delta \leq 1 / 2$ for some $\frac{1}{2}<q<1$.

Then for $1 \leq p<\infty$,

$$
\begin{aligned}
\left\|X_{i}(t)-\tilde{X}_{i}(t)\right\|_{L_{h}^{p}} & \leq C\left(\delta^{m}+\delta^{-(L-s-d)} h^{L}\right) \\
\left\|\rho_{i}(t)-\tilde{\rho}_{i}(t)\right\|_{W_{h}^{-1, p}} & \leq C\left(\delta^{m}+\delta^{-(L+1-s-d)} h^{L}\right)
\end{aligned}
$$

provided that for some $\epsilon>0$,

$$
C\left(\delta^{m}+\delta^{-(L+1-s-d)} h^{L}\right)<\delta^{2} h^{1+\epsilon} / 2 .
$$

Convergence of arbitrarily high order

Take $\delta=h^{q}$ for $\frac{1}{2}<q<1$.
Then the technical condition $C\left(\delta^{m}+\delta^{-(L+1-s-d)} h^{L}\right)<\delta^{2} h^{1+\epsilon} / 2$ holds.

By the previous theorem

$$
\begin{aligned}
\left\|X_{i}(t)-\tilde{X}_{i}(t)\right\|_{L_{h}^{p}} & \leq C\left(\delta^{m}+\delta^{-(L-s-d)} h^{L}\right)
\end{aligned} \leq \quad C \delta^{m} \quad(\rho_{i}(t)-\tilde{\rho}_{i}(t) \|_{W_{h}^{-1, p}} \leq C\left(\delta^{m}+\delta^{-(L+1-s-d)} h^{L}\right) \leq \underbrace{C \delta^{m}}_{\text {for } L \text { sufficiently large }}
$$

Theorem (C., Bertozzi 2014)

Let $\delta=h^{q}$. If L is sufficiently large, then for $1 / 2 \leq q<1, m \geq 4$,

$$
\begin{aligned}
\left\|X_{i}(t)-\tilde{X}_{i}(t)\right\|_{L_{h}^{p}} & \leq C h^{m q} \\
\left\|\rho_{i}(t)-\tilde{\rho}_{i}(t)\right\|_{W_{h}^{-1, p}} & \leq C h^{m q}
\end{aligned}
$$

Benefit of blob methods: arbitrarily high order of convergence.

Plan

- aggregation equation
- numerical methods
- blob method
- sketch of proof
- numerics

Sketch of proof: convergence of particle trajectories

Velocity		
Exact	$v(x, t)$	$=-\int \nabla K(x-X(\beta, t)) \rho_{0}(\beta) d \beta$
Approx	$\tilde{v}(x, t)$	$=-\sum_{j} \nabla K_{\delta}\left(x-\tilde{X}_{j}(t)\right) \rho_{0 j} h^{d}$
Approx along exact traj.	$v^{h}(x, t)$	$=-\sum_{j} \nabla K_{\delta}\left(x-X_{j}(t)\right) \rho_{0 j} h^{d}$

Main Steps:

(1) Control difference between exact and approximate velocity by separately estimating consistency and stability,

$$
|v(x, t)-\tilde{v}(x, t)| \leq\left|v(x, t)-v^{h}(x, t)\right|+\left|v^{h}(x, t)-\tilde{v}(x, t)\right| .
$$

(2) Use Gronwall's inequality to deduce control of particle error.

Consistency

Proposition (Consistency) (C., Bertozzi 2014)

$$
\left\|v-v^{h}\right\|_{L_{h}^{\infty}} \leq C\left(\delta^{m}+\delta^{-(L-s-d)} h^{L}\right)
$$

$$
\begin{aligned}
& \left|v(x, t)-v^{h}(x, t)\right| \\
& \quad=\left|v(x, t)-\nabla K_{\delta} * \rho(x, t)\right|+\left|\nabla K_{\delta} * \rho(x, t)-v^{h}(x, t)\right| \\
& \quad=\left|\nabla K * \rho(x, t)-\nabla K_{\delta} * \rho(x, t)\right|+\left|\nabla K_{\delta} * \rho(x, t)-\sum_{j} \nabla K_{\delta}\left(x-X_{j}(t)\right) \rho_{0 j} h^{d}\right|
\end{aligned}
$$

$$
\leq \underbrace{\left|\nabla K * \rho(x, t)-\nabla K * \rho * \psi_{\delta}(x, t)\right|}_{\psi \text { is accurate of order } m}+\underbrace{C\left\|\nabla K_{\delta}\right\|_{W^{1, L}\left(B_{R}\right)} h^{L}}_{\text {quadrature, kernel estimates }}
$$

$$
\leq C \delta^{m}+C \delta^{-(L-s-d)} h^{L}
$$

Lemma (Regularized Kernel Estimates) (C., Bertozzi 2014)

For $L>s+d,\left\|\nabla K_{\delta}\right\|_{W^{1, L}\left(B_{R}\right)} \leq C \delta^{-(L-s-d)}$.

Stability

Proposition (Stability) (C., Bertozzi 2014)

$$
\text { If }\|X(t)-\tilde{X}(t)\|_{L_{h}^{\infty}} \leq \delta, \text { then for } 1<p<\infty
$$

$$
\left\|v^{h}(t)-\tilde{v}(t)\right\|_{L_{h}^{p}} \leq C\|X(t)-\tilde{X}(t)\|_{L_{h}^{p}} .
$$

$$
\begin{array}{rlrl}
v_{i}^{h}-\tilde{v}_{i}= & \sum_{j} \nabla K_{\delta}\left(X_{i}-\tilde{X}_{j}\right) \rho_{0 j} h^{d}-\sum_{j} \nabla K_{\delta}\left(X_{i}-X_{j}\right) \rho_{0} h^{d} & & \begin{array}{l}
\text { use mean } \\
\\
\text { value theorem }
\end{array} \\
& +\sum_{j} \nabla K_{\delta}\left(\tilde{X}_{i}-\tilde{X}_{j}\right) \rho_{0 j} h^{d}-\sum_{j} \nabla K_{\delta}\left(X_{i}-\tilde{X}_{j}\right) \rho_{0 j} h^{d} & & \text { to pull out } \\
& X-\tilde{X}
\end{array}
$$

Convergence

Therefore, for $\|X(t)-\tilde{X}(t)\|_{L_{h}^{\infty}} \leq \delta$,

$$
\begin{aligned}
\|v(t)-\tilde{v}(t)\|_{L_{h}^{p}} & \leq\left\|v(t)-v^{h}(t)\right\|_{L_{h}^{p}} \quad+\left\|v^{h}(t)-\tilde{v}(t)\right\|_{L_{h}^{p}} \\
& \leq C\left(\delta^{m}+\delta^{-(L-s-d)} h^{L}\right)+C\|X(t)-\tilde{X}(t)\|_{L_{h}^{p}\left(B_{R_{0}}\right)}
\end{aligned}
$$

With Gronwall's inequality and a bootstrap argument, we obtain the result:

$$
\|X(t)-\tilde{X}(t)\|_{L_{h}^{p}} \leq C\left(\delta^{m}+\delta^{-(L-s-d)} h^{L}\right)
$$

Plan

- aggregation equation
- numerical methods
- blob method
- sketch of proof
- numerics

Newtonian potential, one dimension

$$
\begin{aligned}
& h=0.04 \\
& q=0.9 \\
& \hline m=4
\end{aligned}
$$

$$
\rho_{0}(x)=\left(1-x^{2}\right)_{+}^{20}
$$

blowup: $t=1$

- approximate particle trajectories bend to avoid collision
- convergence of method agrees with theoretically predicted $3.6=m \cdot q$

Newtonian potential, one dimension

$$
\begin{aligned}
& h=0.04 \\
& q=0.9 \\
& m=4
\end{aligned}
$$

$$
\rho_{0}(x)=\left(1-x^{2}\right)_{+}^{20}
$$

blowup: $t=1$

- approximate particle trajectories bend to avoid collision
- convergence of method agrees with theoretically predicted $3.6=m \cdot q$

Various kernels, one dimension: blob vs particle

- Blob method is more beneficial for more singular kernels

two dimensions, aggregation

$$
K(x)=\log |x| / 2 \pi \quad K(x)=|x|^{2} / 2 \quad K(x)=|x|^{3} / 3
$$

- finite vs infinite time collapse
- delta function vs delta ring

$$
h=0.04, q=0.9, m=4
$$

two dimensions: repulsive-attractive kernels

$K(x)=\|x\|^{4} / 4-\log \|x\| / 2 \pi$	$K(x)=\|x\|^{4} / 4-\|x\|^{3 / 2} /(3 / 2)$	$K(x)=\|x\|^{7} / 7-\|x\|^{3 / 2} /(3 / 2)$

- large δ affects steady state behavior
- illustrates role of kernel's regularity in dimensionality of steady states [Balagué, Carrillo, Laurent, Raoul 2013]

Future Work

- Keller-Segel equation [Yao, Bertozzi 2013]
- Interplay between particle methods and theoretical results
- Finite time blowup, confinement [Carrillo, DiFrancesco, Figalli, Laurent, Slepčev 2010, 2011]
- Existence of weak measure solutions [Lin, Zhang 2000]
- ongoing work with Ihsan Topaloglu (Fields Institute): Г-convergence of regularized interaction energy; convergence of blob method to steady states

$$
E_{\delta}(\rho)=\frac{1}{2} \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} \rho(x) K_{\delta}(x-y) \rho(y) d x d y
$$

- ongoing work with Andrea Bertozzi: long time error estimates for repulsive attractive kernels?

Thank you!

Backup

Associated particle system and gradient flow

Given the blob method particle trajectories

$$
\left\{\begin{array}{l}
\frac{d}{d t} \tilde{X}_{i}(t)=-\sum_{j} \nabla K_{\delta}\left(\tilde{X}_{i}(t)-\tilde{X}_{j}(t)\right) \rho_{0 j} h^{d} \\
\tilde{X}_{i}(0)=i h
\end{array}\right.
$$

we may define the corresponding particle measure

$$
\hat{\rho}(x, t)=\sum_{j} \delta\left(x-\tilde{X}_{j}(t)\right) \rho_{0 j} h^{d}
$$

This is

- energy decreasing
- formally Wasserstein gradient flow
for the regularized energy functional

$$
E_{\delta}(\rho)=\frac{1}{2} \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} \rho(x) K_{\delta}(x-y) \rho(y) d x d y
$$

(For pure particle method, take $\delta=0$.)

Blowup

For which kernels does finite time blowup occur?
Intuition from particle approximation: $\rho(x, t)=\sum_{j=1}^{N} \delta\left(x-X_{j}(t)\right) m_{j}$

$$
\begin{aligned}
v(x, t) & =-\int \nabla K(x-y) \rho(y, t) d y=-\sum_{j=1}^{N} \nabla K\left(x-X_{j}(t)\right) m_{j} \\
\frac{d}{d t} X_{i}(t) & =-\sum_{j=1}^{N} \nabla K\left(X_{i}(t)-X_{j}(t)\right) m_{j}
\end{aligned}
$$

Osgood Condition

Simple case: particle moving toward minimum of attractive potential: $K(x)=k(|x|)$

$$
\begin{aligned}
\frac{d}{d t} X(t) & =-\nabla K(X(t)) \quad X(0)=x_{0} \\
\frac{d}{d t} r(t) & =-k^{\prime}(r(t)) \quad r(0)=R_{0}
\end{aligned}
$$

To move a distance $d r$, it takes time $\frac{d r}{\left|k^{\prime}(r)\right|}$.
Thus, the particle reaches the origin at time

$$
T=\int_{0}^{R_{0}} \frac{d r}{k^{\prime}(r)}
$$

Osgood Condition

Theorem (Osgood Condition) (Bertozzi, Carrillo, Laurent 2009)

A kernel K satisfies the Osgood condition in case

$$
\int_{0}^{R_{0}} \frac{d r}{k^{\prime}(r)}<\infty
$$

This is a necessary and sufficient condition for finite time blowup.
$K(x)=|x|^{\alpha}: \alpha \geq 2 \Longrightarrow$ no finite time blowup, $\alpha<2 \Longrightarrow$ finite time blowup

$K=$ Newtonian potential

Rewriting the aggregation equation in terms of the material derivative $\frac{D}{D t}=\frac{\partial}{\partial t}+v \cdot \nabla$,

$$
\left\{\begin{array} { l }
{ \rho _ { t } + \nabla \cdot (v \rho) = 0 } \\
{ v = - \nabla K * \rho }
\end{array} \quad \xrightarrow { \text { material derivative } } \left\{\begin{array}{l}
\frac{D \rho}{D t}=-\rho(\nabla \cdot v) \\
v=-\nabla K * \rho
\end{array}\right.\right.
$$

When K is the Newtonian potential, $v=-\nabla K * \rho$ implies $\rho=-\nabla \cdot v$, so

$$
\frac{D \rho}{D t}=\rho^{2}
$$

If $X(\alpha, t)$ denotes the particle trajectories induced by the velocity field v,

$$
\frac{d}{d t} \rho(X(\alpha, t), t)=\rho(X(\alpha, t), t)^{2}
$$

Hence,

$$
\rho(X(\alpha, t), t)= \begin{cases}\left(\frac{1}{\rho_{0}(\alpha)}-t\right)^{-1} & \text { if } \rho_{0}(\alpha) \neq 0 \\ 0 & \text { if } \rho_{0}(\alpha)=0\end{cases}
$$

$K=$ Newtonian potential

$$
\rho(X(\alpha, t), t)= \begin{cases}\left(\frac{1}{\rho_{0}(\alpha)}-t\right)^{-1} & \text { if } \rho_{0}(\alpha) \neq 0 \\ 0 & \text { if } \rho_{0}(\alpha)=0\end{cases}
$$

blowup: If $\rho_{0}(\alpha)>0$ for any α, the first blowup occurs at time $t=\left\|\rho_{0}\right\|_{L^{\infty}}^{-1}$.
patch solutions: If $\rho_{0}(\alpha)=1_{\Omega}(\alpha)$, for $\Omega_{t}:=X^{t}(\Omega)$,

$$
\rho(X(\alpha, t), t)=(1-t)^{-1} 1_{\Omega}(\alpha)=(1-t)^{-1} 1_{\Omega_{t}}(X(\alpha, t)) .
$$

Patch solutions collapse onto a set of Lebesgue measure zero at $t=1$.

[Bertozzi, Laurent, Léger 2012]

2D Euler equations: Lagrangian perspective

For simplicity of notation, write $K=K_{2}$.
Particle trajectories: $\begin{cases}\frac{d}{d t} X(\alpha, t) & =K * \omega(X(\alpha, t), t) \\ X(\alpha, 0) & =\alpha .\end{cases}$
Since the velocity field is divergence free and $\omega(X(\beta, t), t)=\omega_{0}(\beta)$,

$$
\begin{aligned}
\int K(x-y) \omega(y, t) d y & =\int K(x-X(\beta, t)) \omega(X(\beta, t), t) d \beta \\
& =\int K(x-X(\beta, t)) \omega_{0}(\beta) d \beta .
\end{aligned}
$$

Thus the particle trajectories evolve according to

$$
\begin{cases}\frac{d}{d t} X(\alpha, t) & =\int K(X(\alpha, t)-X(\beta, t)) \omega_{0}(\beta) d \beta \\ X(\alpha, 0) & =\alpha\end{cases}
$$

Blob method for the 2D Euler equations

Steps for blob method:
(1) Remove the singularity of K by convolution with a mollifier.

Write $K_{\delta}=K * \psi_{\delta}$.
(2) Replace ω_{0} with a particle approximation on the grid $h \mathbb{Z}^{d}$.

$$
\omega_{0}^{\text {particle }}(y)=\sum_{j \in \mathbb{Z}^{d}} \delta(y-j h) \omega_{0 j} h^{d}
$$

Exact Particle Trajectories: $\begin{cases}\frac{d}{d t} X(\alpha, t) & =\int K(X(\alpha, t)-X(\beta, t)) \omega_{0}(\beta) d \beta \\ X(\alpha, 0) & =\alpha .\end{cases}$
Approx Particle Trajectories: $\begin{cases}\frac{d}{d t} \tilde{X}_{i}(t) & =\sum_{j} K_{\delta}\left(\tilde{X}_{i}(t)-\tilde{X}_{j}(t)\right) \omega_{0 j} h^{d} \\ \tilde{X}_{i}(0) & =i h .\end{cases}$

Blob Method for the 2D Euler Equations

- First used by [Chorin,1973]
- [Hald, Del Prete 1978] proved 2D convergence
- [Hald, 1979] proved second order convergence in 2D for arbitrary time intervals $[0, T]$
- [Beale, Majda 1982] proved convergence in 2D and 3D with arbitrarily high-order accuracy
- [Cottet, Raviart 1984] simplified 2D and 3D convergence proofs
- [Anderson, Greengard 1985] modified the 3D blob method, considered time discretization

Comparison at $t=1.45$. (a) Experiment, from Didden (1979). (b) Simulation, $\delta=0.2$. [Nitsche, Krasny 1994]

Newtonian potential, one dimension: patch initial data

- particle trajectories bend, densities round
- lower order accuracy (≈ 0.9) compared to regular initial data (≈ 3.6)

Newtonian potential, one dimension: blob vs. particle

$$
\begin{aligned}
& h=0.04 \\
& q=0.9 \\
& m=4
\end{aligned}
$$

$$
\rho_{0}(x)=\left(1-x^{2}\right)_{+}^{20}
$$

$$
\text { blowup: } t=1
$$

- blob has higher order accuracy (≈ 3.6) compared to particle (≈ 2)
- trajectories computed by pure particle method collide at blowup time

