Lecture 8
Practice Midterm 1 Posted (not to be turned in)

Notation:

- If a_{n} is increasing and $a_{n} v-\infty$. converges to L, an $\nearrow L$
- If a_{n} is decreasing and converges to L, an $\triangle L$
The:
- All increasing sequences that are unbounded above diverge to $+\infty$.
- All decreasing sequences that are unbounded below diverge to $-\infty$.

For a real valued sequence $s_{n} .$.

Rmk: Suppose $a_{n}: \mathbb{N} \rightarrow \overline{\mathbb{R}}$

- If a_{n} is increasing and not identicallo $-\infty$, then $a_{n}=(-\infty, 1,1,1, \ldots)$ unbdd \Leftrightarrow unbed above
- If an is decreasing and not identically + as, then unbod \Leftrightarrow unbdd below

RrmeliSuppose a_{n} is monotone 1) a_{n} bed \Rightarrow convenges
2) a_{n} unbadd
A. an increasing.
(a) $a_{n} \equiv-\infty$ - $\lim _{a_{n}}=-\infty$
(b) unbdd above $\Rightarrow \lim _{a_{n}}=+\infty$
B. andecreasing
(a) $a_{n} \equiv+\infty=0 \lim a_{n}=+\infty$
(b) unbdd below $\Rightarrow \lim a_{n}=-\infty$

Rok: Suppose $a_{n}: N \rightarrow \mathbb{R}$ increasing
2) $a_{n}=-\infty$ for at most finitely many $n \in \mathbb{N}$
Then, up to modifying finitely many alts in sequence,
a_{n} is bounded below
A. a_{n} is bounded above

$$
\Rightarrow \lim _{n \rightarrow \infty} a_{n} \in \mathbb{R}
$$

B. an is unbounded above

$$
\Rightarrow \lim _{n \rightarrow \infty} a_{n}=+\infty
$$

Similarly for $a_{n}: \mathbb{N} \rightarrow \overline{\mathbb{R}}$ decreasing

Cor: For an: $N \rightarrow \overline{\mathbb{R}}$ monotone, $\lim _{n \rightarrow \infty} a_{n}$ exists.

The: The sequence $\left(1+\frac{1}{n}\right)^{n}$ is increasing and convergent. The limit is Elenoted e.

Recall:

- If $|a|<1, \lim _{n \rightarrow \infty} a^{n}=0$
- If $a>0, \lim _{n \rightarrow \infty} a^{1 / n}=1$.
- $\forall n \in \mathbb{N}, a, b>0$

$$
a<b \Leftrightarrow a^{n}<b^{n}
$$

Ex: For $n \geq 4$, the sequence $n^{1 / n} \searrow 1$

To see this, note that

$$
\begin{aligned}
&(n+1)^{\frac{1}{n+1}} \leq n^{\frac{1}{n}} \Leftrightarrow(n+1)^{n} \leq n^{n+1} \\
& \Leftrightarrow\left(\frac{n+1}{n}\right)^{n} \leq n \\
& \Leftrightarrow\left(1+\frac{1}{n}\right)^{n} \leq n \\
& \Leftrightarrow \text { Thus this hood } \\
& \text { Rocrald fam }
\end{aligned}
$$

Recall from previous tho that $\left(1+\frac{1}{n}\right)^{n} \leq 4 \quad \forall n \in \mathbb{N}$.

Furthermore $n^{1 / n} \geq 0 \quad \forall n \in \mathbb{N}$, so $n^{\prime \prime m}$ is bounded, hence converges to some $L \in \mathbb{R}$. Thus $(2 k)^{1 / 2 k}$ converges to h.

$$
\begin{aligned}
L^{2}=\lim _{k \rightarrow \infty}\left((k)^{2 / 2 k}\right. & =\lim _{k \rightarrow \infty} 2^{2 / 22} 2\left(\frac{\lambda^{2}}{2}\right)^{2 / 2 k} \\
& =\lim _{k \rightarrow \infty} 2^{1 / k^{2}}(k)^{1 / k}=L .
\end{aligned}
$$

Furthermore, $1 \leq\left. n \Leftrightarrow\right|_{11} ^{1 / n} \leq n^{1 / n}$
Thus $L=0$ is impossible. Hence $L=1$.

17 Real Exponents
Goal: For $a>0, x \in \mathbb{R}$, define a^{x}. Background: rational exponents
Ohm: $\forall a \geq 0, n \in \mathbb{N}$, there exists $b=0$ s.t. $b^{n}=a$. Denote b as $a^{1 / n}$.

Cor: $\forall a \in \mathbb{R}, n \in \mathbb{N}$ odd, \exists $b \in \mathbb{R}$ s.t. $b^{\prime n}=a$. Denote b as $a^{1 / n}$.

Def: For any $r \in \mathbb{Q}$, suppose ${ }_{r} \in \frac{m}{n}$ for $0 n \in \mathbb{Z}, n \in \mathbb{N}$ is its expression in lowest terms. Define $x^{r}=\left(x^{1 / n}\right)^{m}$, for all x st. $x^{1 / n}$ is defined.

Lemma: For all $x>0, r \in \mathbb{Q}$, if $r=\frac{k}{l}, k \in \mathbb{Z}, l \in \mathbb{N}$, then not necessarily $\begin{aligned} & \text { not necessarily } \\ & \text { indowest } \\ & \text { terms }\end{aligned} \chi^{r}=\left(x^{1 / e}\right)^{k}$

Pl: First, note that foraney $i, j \in \mathbb{N}$ (x $\left.x^{i}\right) j=x^{i j}$. Thus,

$$
\left(\left(x^{\frac{1}{j}}\right)^{\frac{1}{i}}\right)^{i j}=\left(\left(\left(x^{\frac{1}{j}}\right)^{\frac{1}{i}}\right)^{i}\right)^{j}=x
$$

Thus, $\left(x^{\frac{1}{j}}\right)^{\frac{1}{i}}=x^{\frac{1}{i j}}$.
Let $r=\frac{m}{n}$ be the expression of r_{k} in lowest terms. Then

$$
\frac{m}{n}=\frac{k}{l} \Leftrightarrow k=m \frac{l}{n} .
$$

Thus, n is a divisurofl, so $\exists j \in \mathbb{N}$ s.t. $l=n j$.
Likewise $k=m j$ Likewis $k=m j$.
Then

$$
\begin{aligned}
\left(x^{1 / e}\right)^{k}=\left(x^{\frac{1}{n j}}\right)^{m j} & \left.=\left(\left(x^{\frac{1}{n}}\right)^{\frac{1}{j}}\right)^{j}\right)^{m} \\
& =x^{\frac{m}{n}}=x^{r} .
\end{aligned}
$$

Thu : For all $\beta_{1}, q \in \mathbb{I f}, x \in \mathbb{R}$,
If $x>0$,
(i) $x^{\rho+q}=x^{p} x^{q}$
(ii) $x^{\rho}=\frac{1}{x^{-p}}$
(iii) $\left(x y y^{P}=x^{P} y^{p}\right.$
(iv) $\left.\left(x^{p}\right)_{q}=x^{p}\right)^{-1}$
(iv) $\left(x^{p}\right) q=x^{\beta}$
(v) If $0<x<y, p>0$, then $x^{P<}<y^{P}$.
(vi) If $x>1$ and $p<q$, then $x^{p<x}$?

Of: Suppose $p=\frac{m}{n}, q=\frac{k}{l}$ for $m, k \in \mathbb{Z}$, $n, l \in \mathbb{N}$.

First, we will show (i).

$$
\begin{aligned}
x^{\rho+q} & =x^{\frac{m l+k n}{l n}} \\
& =\left(x^{\frac{1}{l n}}\right)^{m l+k n} \\
& =\left(x^{\frac{1}{l n}}\right)^{m l}\left(x^{\frac{1}{l n}}\right)^{k n} \\
& =x^{m / n} x^{k / l} \\
& =x^{0} x^{q}
\end{aligned}
$$

Next, we show, (v). Since $\begin{aligned} & a^{n}<b^{n} \\ & \Rightarrow \frac{x^{\frac{1}{n}}<y^{\frac{1}{n}}}{\Rightarrow} \Rightarrow x^{\frac{m}{n}<y^{\frac{m}{n}}}\end{aligned}$
Mow' real valved exponents.

Idea: For any $a>0$, define a^{x} as $\lim _{n \rightarrow \infty} a^{r_{n}}$, where $r_{n} \cdot \mathbb{N} \rightarrow \mathbb{Q}$ satisfyngen $\lim _{n \rightarrow \infty} x$.
The: $\forall x \in \mathbb{R}, \exists r_{n}: \mathbb{N} \rightarrow \mathbb{Q}$ sit. $r n^{\lambda} x$.

Pf: Choose $r_{1} \in \mathbb{Q}$ sit. $\quad x-1<r_{1}<x$. Suppose we have defined $\left(r_{n}\right)_{n=1}^{k-1}$ to be an increwing sequence sit. $\quad x^{-\frac{1}{n}}<r_{n}<x, \forall n=1, \ldots, k-1$.
Choose $r_{k} \in \mathbb{W}$ so that $\max \left\{x-\frac{k}{k}, r_{k}-1\right\}<r_{k}<x$

By construction r_{n} is increasing
and since $x-\frac{1}{n}<n^{2}<x$ $\forall n \in \mathbb{N}, b y$ Squeeze Chm, $\lim _{n \rightarrow \infty} r_{n}=x$.
Lemma: Suppose $a>1, x \in \mathbb{R}$ and $r_{n}, s_{n}: \mathbb{N} \rightarrow \mathbb{Q}$ sst. $r_{n} 7 x$, $s_{n} 7 x$. Then $\lim _{n \rightarrow \infty} a^{r_{n}^{\prime}}=\lim _{n \rightarrow \infty} a^{s n}$.

Pf: First, observe that by previous the, part (visby), $a^{r_{n}}$ is increasing. Also $\frac{1}{1}<a^{r_{n}}<a^{y_{0}}$ for $y_{0} \in Q, y_{0}>x$. Thus a $a^{r_{n}}$ converges.
Similarly $a^{s n}$ converges.

Define $R_{n}=\sigma_{n}-\frac{1}{n}$ and $S_{n}=s_{n}-\frac{1}{n}$. Then

$$
\begin{aligned}
S_{n}=s_{n}-\frac{1}{n} . \text { Then } \\
\begin{aligned}
\lim _{n \rightarrow \infty} a^{R_{n}}=\lim _{n \rightarrow \infty} a^{r_{n}-\frac{1}{n}} & =\lim _{n \rightarrow \infty} a^{r_{n}} a^{-\frac{1}{n}} \\
& =\lim _{n \rightarrow \infty} a^{r_{n}}
\end{aligned}
\end{aligned}
$$

and similarly $\lim _{n \rightarrow \infty} a^{n \rightarrow \infty}=\lim _{n \rightarrow \infty} a^{5 n}$.
thus, it suffices to show

$$
\lim _{n \rightarrow \infty} a^{R_{n}}=\lim _{n \rightarrow \infty} a^{S_{n}} .
$$

We construct a new sequence $b_{k} \gamma_{x}$ as follows. Let $b_{1}=O R_{1}$. Since $R_{1}<x, \exists n_{2} s, t$. $R_{1}<S_{n_{2}}<x$. Likewise, $\exists n_{3}$
s.t. $n_{3}>1$ and $R_{n_{3}}>S_{n_{2}}$. "bs
Finally, $\exists n_{4}>n_{2}$ s.t. $S_{n_{4}}>R_{n_{3}}$. In this way, we construct b_{k} so odd ells are subsey of $R n$ and even et are subseo of S_{n}. Thus $b_{k}>x$.
So $\lim _{k \rightarrow \infty} a^{b_{k}} \in \mathbb{R}$.
Since all subseg musthave same limits.

