Lecture 7
-OHs T 2:30-3:30pm, Th 1-2pm
-Makeup lecture this Friday 3:30-4:45pm
The: If a_{n} is bounded and $\lim _{n \rightarrow \infty} b_{n}=0$, then $\lim _{n \rightarrow \infty} a_{n} b_{n}=0$.

14 Further Limit Theorems
The: Suppose a_{n}, bn are convergent sequenas with $a_{n}\left(5 b_{n}\right.$ for all but finitely many $n \in \mathbb{N}$. Then $\lim _{n \rightarrow \infty} a_{n}\left(\lim _{n \rightarrow \infty} b_{n}+w^{2}\right)$

Thy (Squeeze): Suppose

$$
a_{n} \leq b_{n} \leq c_{n}
$$

for all but finitely many $n \in \mathbb{N}$ and $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} c_{n}=\Delta \in \mathbb{R}$.

Then $\lim _{n \rightarrow \infty} b_{n}=L$.
15 Divergent Sequences
From now on, consider $a_{n}: \mathbb{N} \rightarrow \overline{\mathbb{R}}$.
Def:

- ar o diverges to $+\infty$ if, $\forall m \in \mathbb{R}$, $\exists N$ s.t. $n \geq N$ ensures $a_{n}>m$. We write $\lim _{n \rightarrow \infty} a_{n}=+\infty$.
- an diverges to $-\infty$ if, $\forall m \in \mathbb{R}$, $\exists N$ st. $n 2 N$ ensures $a_{n}<m$. We write $\lim _{n \rightarrow \infty} a_{n}=-\infty$.

Del: Given a sequence a_{n}, the limit exists if an converges or an diverges to $\pm \infty$.

$$
\mathbb{N}_{\lim _{n \rightarrow \infty} a_{n} \in \overline{\mathbb{R}}}
$$

Ohm (Sapor): Suppose $a_{n} \leq b_{n}$ for all but finitely many n and the limits exist. Then $\lim _{n \rightarrow \infty} a_{n} \leq \lim _{n \rightarrow \infty} b_{n}$.

16 Monotone Sequences and e
Tho: All bounded monotone sequences converge.
Ex' If $|a|<1, \lim _{n \rightarrow \infty} a^{n}=0$.
Other useful facts... willclefine properly

- If $a>0, \stackrel{a^{1 / n} \longrightarrow 1}{{ }^{1} \text { converges }}$
(will returito $n^{1 / n} \ldots$...)
Notation:
- If an is increasing and converges to L, an AL
- If a_{n} is decreasing and converges to L, an $\triangle L$

The:

- All increasing sequences that are unbounded above diverge to $+\infty$. - All decreasing sequences that all unbounded below diverge to $-\infty$.
P1: Suppose a_{n} is an increasing sequence that is unbounded above. Fix $m \in \mathbb{R}$.
Then $\exists N \in \mathbb{N}$ sit. $a_{N}>M$.
Thus $n \geq N, a_{n} \geq a_{N}>m$. Hence $\lim _{n \rightarrow \infty} a_{n}=+\infty$.

If $b n$ iso decreasing sequence that is unbounded below,
-bn satisfies hyp of fist bullet. Thus $\lim _{n \rightarrow \infty}-b_{n}=+\infty$.

Fix $m \in \mathbb{R}$. Then $\exists N \in \mathbb{N}$ sit. $n \geq N$ $-b_{n}>-m \Leftrightarrow b_{n}<m$.
Hence $\lim _{n \rightarrow \infty} b_{n}=-\infty$.
Rok:

- If a_{n} is increasing and not identically $-\infty$, then unbdd \Leftrightarrow unbdd above
- If a_{n} is decreasing and not identically $+\infty$, then unbdd \Longleftrightarrow unbdd below

RmkiSuppose a_{n} is monotone 1) an bed \Rightarrow converges
2) $a_{n} u n b d d$
A. an increasing.
(a) $a_{n} \equiv-\infty=\lim _{a_{n}}=-\infty$
(b) unbdd above $\Rightarrow \lim _{a_{n}}=+\infty$
B. an decreasing
(a) $a_{n} \equiv+\infty=b \mathrm{im}$
(b) unbdd below $\Rightarrow \lim a_{n}=-\infty$

Cor: For any monotone sequence
$a_{n}: \mathbb{N} \rightarrow \mathbb{R}, \lim _{n \rightarrow \infty} a_{n}$ exists.

Mow: define e as limit of a monotone sequence.
Lemma: For $0 \leq a<b$,

$$
\frac{b^{n+1}-a^{n+1}}{b-a}<(n+1) b^{n}
$$

Pe:

$$
\begin{aligned}
\frac{b^{n}+1}{b-a} & =\left(b^{n}+a b^{n-1}+a^{2} b^{n-2}+\ldots\right. \\
& <\underbrace{\left.b^{n}+b^{n}+\ldots+b^{n}+a^{n-1} b+a^{n}\right)} \\
& =(n+1) b^{n}
\end{aligned}
$$

Them: The sequence $\left(1+\frac{1}{n}\right)^{n}$ is increasing and convergent.
The limit is dencted e.

Pf: First, we show increasing.
B. lemma, for $0 \leq a<b$,
By lumina, for $0 \leq a<b$,

$$
b^{n}[b-(n+1)(b-a)]<a^{n+1}
$$

Take $a=1+\frac{1}{n+1}, b=1+\frac{1}{n}$ to obtain...

$$
\left(1+\frac{1}{n}\right)^{n} \underbrace{\left.\left[\left(1+\frac{1}{n}\right)-(n+1)^{\left(\frac{1}{n}\right.}-\frac{1}{n+1}\right)\right]}_{=1}<\left(1+\frac{1}{n+1}\right)^{n+1}
$$

Now, we show bdl above.
Take $a=1, b=1+\frac{1}{2 n}$. Then

$$
\left(1+\frac{1}{2 n}\right)^{n}\left[\frac{\left[\left(1+\frac{1}{2 r}\right)-(n+1)\left(\frac{1}{2 n}\right)\right]}{1 / 2} 1\right.
$$

This gives

$$
\left(1+\frac{\operatorname{li}}{n}\right)^{n}<\left(1+\frac{1}{2 n}\right)^{2 n}<4 \text {. }
$$

Thus the segverce is convergent.
Rok: $2 \leq\left(1+\frac{1}{n}\right)^{n}<4 \quad \forall n \in \mathbb{N}$
Thus $e \in[2,4]$.
Warmup Dynamic Interpretation

$$
\begin{aligned}
& x_{0}=1 \\
& \text { For } j=1, \ldots, n \\
& \frac{x_{j}-x_{j-1}}{O\left(\frac{1}{n}\right)} \quad \text { size of time step } \sqrt{x_{2}} \quad \begin{array}{l}
x_{3} \\
n=1 \\
n=0 \quad n \quad x_{j-1} \\
x_{1} \quad x_{1} \quad n=3
\end{array}
\end{aligned}
$$

17 Real Exponents
Goal: For $a>0, x \in \mathbb{R}$, define a^{x}.
Background: rational exponents
Ohm: $\forall a \geq 0, n \in \mathbb{N}_{n}$, there exists $b=0$ st. $b^{n}=a$. Denote b as $a^{1 / n}$.

Pf: See J\&P Thm 7.5 Simitar to case $n=2$ on HW.

Cor: $\forall a \in \mathbb{R}, n \in \mathbb{N}$ odd, \exists $b \in \mathbb{R}$ s.t. $b^{1 n}=a$. Denote b as $a^{1 / n}$.

Pf' By previous the,
$\exists c \in \mathbb{R}$ s.t. $c^{n}=|a|$. If $a \geq 0$, $c^{n}=|a|=a$, and we are dome.
If $a<0$, let $b=-c$.
Then $b^{n}=(-c)^{n}=(-1)^{n} c^{n}=-c^{n}=a$.
withnocommon node factors
Def: For arg $r \in \mathbb{Q}, \exists m \in \mathbb{Z}$,
$n \in \mathbb{N S} \cdot t . \quad\left(=\frac{m}{m}\right.$. Define

$$
x^{r}=\left(x^{1 / n}\right)^{1 / n}
$$

for all x st. $x^{1 / n}$ is defined.

Thu: For all $p, q \in \mathbb{Q}, x \in \mathbb{R}$,
If $x>0$,
(i) $x^{p+q}=x^{p} x^{q}$
(ii) $x^{p}=\frac{1}{x^{-p}}$
(iii) $(x y)^{p}=x^{P} y^{p}$
(iv) $\left(x^{p}\right) q=x^{p q}$
ensures definition of x^{5} is index of expression of $r=\frac{m}{n}, m \in \mathbb{Z}, n \in \mathbb{N}$
(v) If $0<x<y, P>0$, then $x^{P}<y^{P}$.
(vi) If $x>1$ and $p^{<}<q$, then $x<x<x$.

Pl: Let $p=\frac{m}{n}, q=\frac{k}{l}, m, k \in \mathbb{Z}$
We will show (i).

$$
\begin{aligned}
& x^{\rho+q}=x^{\frac{m l+k n}{l n}} \\
& \text { defn } \downarrow=\left(x^{\frac{1}{l n}}\right)^{m l+k n} \\
& \text { of } \\
& \text { ational }=\left(x^{\frac{1}{l n}}\right)^{m l}\left(x^{\frac{1}{l n}}\right)^{k n} \\
& \text { exp is }=x^{m / n} x^{k / l} \\
& \text { indep }=x^{\infty} x^{q} \\
& \text { of of scal }
\end{aligned}
$$

