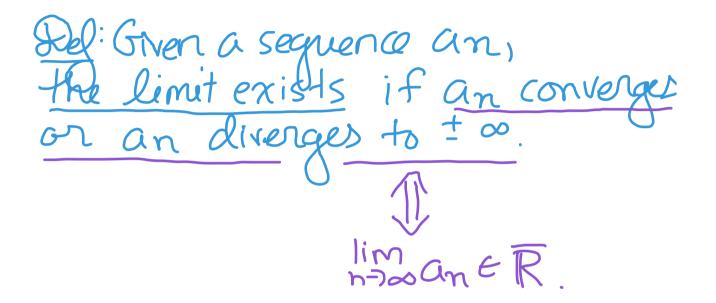
Locture 7

•OHs T 2:30-3:30pm, Th 1-2pm •Makeup lecture this Friday 3:30-4:45pm

"Ihm: If an is bounded and $\lim bn = 0$, then $\lim anbn = 0$. 14 Further Limit Theorems Thm: Suppose an, bn are convergent sequences with an Sbn for all but finitely many nE/N. Then lim an Estim bn. n-700 HW4

Then (Squeeze): Suppose
an = bn = Cn
for all but pritely many new
and lim an = lim Cn = LER.
Then lim bn = L.
15 Divergent Sequences
From now on, Consider an:
$$N = TR$$
.
Def:
• and diverges to + ∞ if, $\forall M \in R$,
 $\exists N \text{ s.t. } n \ge N \text{ ensures } an \ge M$.
We write $\lim_{n \ge \infty} a_n = +\infty$

• an diverges to - ~ if, & MeR, IN s.t. nZN ensures an < M. We write his an = - ~.



Thm (Squere): Suppose an = bn for all but finitely many n and the limits exist. Then lim an E lim bn.

16 Monotine Seguenas and e "Ihm: All bounded monotorre seguences converge. $\mathcal{E}_{X'}Tf |a| < 1, \lim_{n \to \infty} a^n = 0.$ "converges as n>+20._" ·Kotation: • If an is increasing and converges to L, an TL · If and is decreasing and converges to 2, and 32

Thm: •All increasing sequences that are unbounded above diverge to +a. •All decreasing sequences that are unbounded below diverge to -a.

Pl: Suppose an is an increasing sequence that is unbounded above. Fix MeR. Then $\exists N \in IN S: I. a_N > M.$ Thus $n \ge N$, $a_n \ge a_N > M.$ Hence $\lim_{n \to \infty} a_n = +\infty$.

If by is a decreasing sequence that is unbounded below,

Fix MER. Then JNE/NS.L. n?N -bn?-M <>> bn < M. Hence lim bn=-00.

Rmk: • If an is increasing and not identically - a, then unbdd = Unbdd above • If a is decreasing and not

If an is decreasing and not identically +∞, then unbdd ⇐ unbdd below

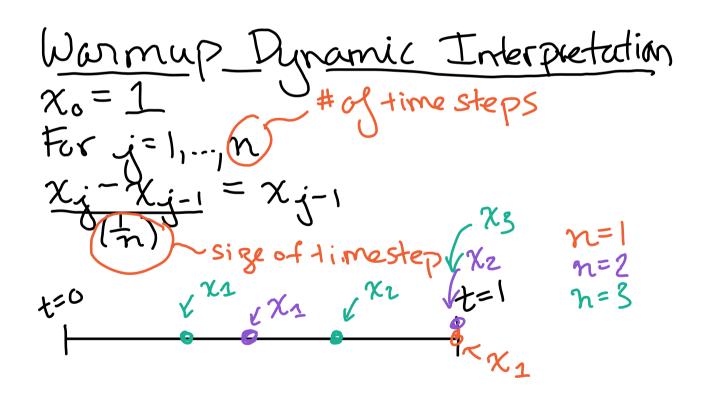
Cor: For any monotone sequence an: IN->IR, fim an exists.

Now: define e as limit of a monotone seguence. Lemma For OSach, bn+1-an+1 < (n+1)bn

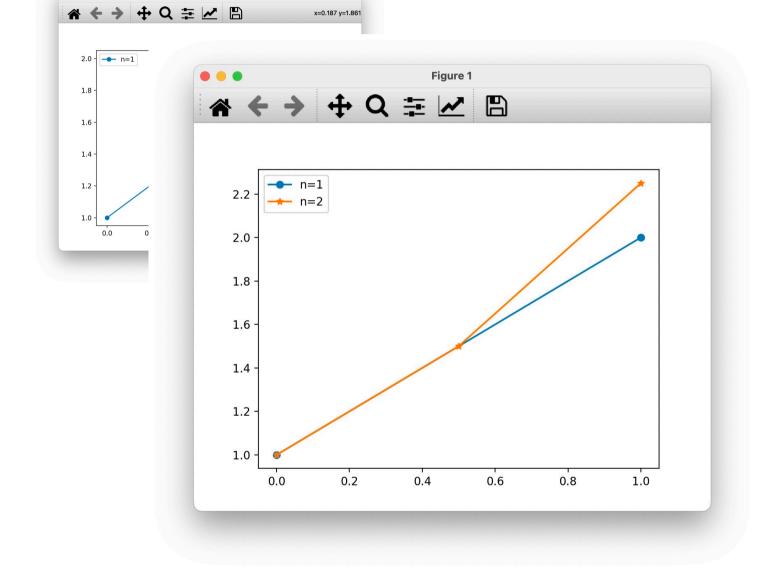
<u>Thm</u>: The sequence $(1+\frac{1}{n})^n$ is increasing and convergent. The limit is denoted e.

Pf: First, we show increasing. By lemna, for 0 = a < b, 0 b^ [b-(n+1)(b-a)] < a^{n+1} Take $a = 1 + \frac{1}{n+1}$, $b = 1 + \frac{1}{n}$ to obtain... $(1 + \frac{1}{n}) \cdot (1 + \frac{1}{n}) - (m + 1) \cdot (\frac{1}{n} - \frac{1}{n+1}) \cdot (1 + \frac{1}{n+1})$ Now, we show bold above. Take a = 1, $b = (+ \frac{1}{2n}) \cdot (n+1)(\frac{1}{2n}) \times (1 + \frac{1}{2n}) \cdot (n+1)(\frac{1}{2n}) \cdot (n+1)(\frac{1}{2n}) \times (1 + \frac{1}{2n}) \cdot (n+1)(\frac{1}{2n}) \times (1 + \frac{1}{2n}) \cdot (n+1)(\frac{1}{2n}) \cdot (n+1)(\frac{1}$

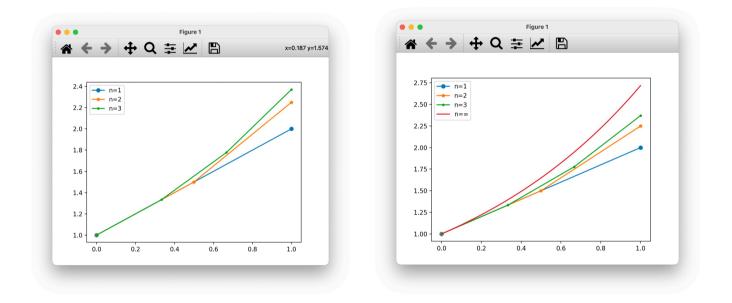
This gives $(1+\frac{1}{2n})^n < (1+\frac{1}{2n})^n < 4$. increasing seguence Thus the sequence is convergent. [] $R_{mk}: 2 \le (1+\frac{1}{n})^n < 4 \quad \forall n \in \mathbb{N}$ Thus $e \in [2, 4]$.



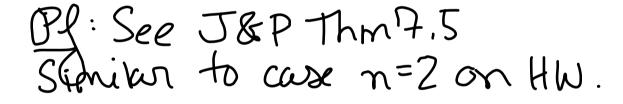
 $\chi_{j} = \chi_{j-1} + \frac{1}{n} \chi_{j-1} = (1 + \frac{1}{n}) \chi_{j-1}$ $\chi_{n} = (1 + \frac{1}{n})^{n} \chi_{0} = (1 + \frac{1}{n})^{n}$



 $\frac{Continuum limit:}{(dxH) = \chi(H)}$ $\frac{1}{2} \chi(t) = e^{t}$ dt (χ(υ)=1



17 Real Exponents Goal: For a?O, XEIR, define a^x. Background: rational exponents Thm: Yazo, nell, there exists bz0 s.t. bⁿ=a. Denote bas a'm.



Cor: FaetR, nENodd, J berrs.t. bⁿ=a. Denote bas a'm.

Pl' By previous thm, FCER s.t. $c^n = |a|$. If $a \ge 0$, $c^n = |a| = a$, and we are done. If a < 0, let b = -c. Then $b^n = (-c)^n = (-1)^n c^n = -c^n = a$. with no common noda T [- factors Del: For any $r \in Q$, $\exists m \in \mathbb{Z}$, $n \in \mathbb{N} \text{ s.t.} \quad d = \frac{m}{m}$. Define $\chi^r = (\chi'n)^m$, for all xs.t. x 'n is defined.

Thm: For all B,gEQ, XER, $\overline{If \chi} > 0,$ (i) $\chi^{0+g} = \chi^0 \chi^g$ (ii) $\chi^{\mathcal{P}} = \frac{1}{\chi^{-} \mathcal{P}}$ $(iii)(xy)^{P} = \chi^{P}y^{P}$ ensures definition $(iv)(xP)^{2} = \chi^{P}y^{P} \qquad of x^{r} is indep$ $of x^{r} is indep$ (v) If U<x<y, p>0, then xP<yP (vi) If $x \ge 1$ and $p \le q$ then $x \ge 1$ no common factors Pl: Let $p = \frac{m}{n}$, $q = \frac{k}{2}$, $m, k \in \mathbb{Z}$ and $m, l \in \mathbb{N}$.

We will show (i).

 $\chi^{0+g} = \chi \frac{ml+kn}{ln}$ $defn = \chi \frac{1}{ln} ml+kn$ $defn = (\chi \frac{1}{ln}) ml+kn$ $defn = (\chi \frac{1}{ln}) ml (\chi \frac{1}{ln}) kn$ $exp = \chi^{mn} \chi^{k/g}$ $= \chi^{0} \chi^{g}$ winder mumber