Lecture 2

(Kecall: set X, power set 2^{χ}

ordered pair (a,b) Cartesian product X × Y = {(a,b) : a ∈ X, b ∈ Y}

ordered n-tuple $(a_1, a_2, ..., a_n)$ (artesian product $\chi_1 \chi_1 \chi_2 \chi_1 = \pi \chi_1$ $= \{(a_{1}, ..., a_{n}): a_{i} \in \mathcal{X}_{i}, \forall i = 1, ..., n\}$

function f: X->Y one to one /injective onto/surjective
bijective

ordered field • upper bound • bounded above • supremum / least upper bound

Del: the real numbers \mathbb{R} is the ordered field s.t. $X \leq \mathbb{R}$, $X \neq \emptyset$, X bounded above, the supremum of X exists. If M is the supremum of X, let $\sup(X) \in M$.

Extend defn of Supreman. • If $\chi = \emptyset$, $\sup(\chi) = -\infty$ • If X ≠ Ø and is unbounded above, then sup(x)=+ x In this way, Y XER, sup(X) has meaning. Rmk: The supremum of X D.N.E. \in $Sup(X) = \pm \infty$. $E_{X}: sup([1,2]) = 2$ To justify this answer: 10 m/2 (10 m/2)

By defn of [1,2), Vxe [1,2), x<2, so 2 is an upper bound.

Assume, for the sake of contradiction that MU is an upper bound of [12] and m < 2. Since m is an upper bound of the set m^2]. Let $x = \frac{m^2+2}{2}$. Then... $|\leq m < \chi < 2$

Then $\chi \in (1,2)$ satisfies $\chi^2 M$, so M is not an upper bound. \Box

Fact: $a < b + \varepsilon$ $\forall \varepsilon > 0',$ then $a \leq b$

To prove directly... Let M be an upperbound of [1,2]. We must show $2 \le M$. Fix $x \in [1,2]$. Then $x \le M$. Thus $2 - \epsilon \le M$ for all $\epsilon > 0$ sufficiently small, so $2 \le M + \epsilon = 2$. $2 \le M$. Thm: Rexists.

HW R is unique, up to isomorphism Def: The natural numbers IN is O the smallest subset of IR having the properties that (i) $1 \in IN$ (ii) $n \in IN = n + I \in IN$

Thm: (a) If $A \subseteq 2^{\mathbb{R}}$ is the collection of $A \subseteq [\mathbb{R} \text{ s.t.}(i) \text{ and } (ii) \text{ hold},$ then $\bigwedge \text{ satisfies } (i) \text{ and } (ii).$ (b) $\mathbb{N} = \bigcap A$

 $Rmk: |N = \{1, 2, 3, 4, ...\}$ By definition, 1EA VAEZA.
For any nEE1,2,3,..., if
nEA, Ohen nHIEA by (ii) · By induction, {1,2,3,4,...} = A ∀ A € d · Is it possible that

ξ1,2,3,4,...ζ⊊IN? No, since ξ1,2,3,4,...ζ∈cA.

Thm (Archimedoan Property) Vaber, a, b>0, I nerve s.t. na>br bathtub S.t. na>br bathtub

• countable: IXI = IIN) or Xisfinite uncountable: not countable

Thm: A nonempty set X is countable iff I f: N=X that is surjective. Prop: V de N, N^d= N×N×...×IN dtimes

Prop: Q is countable TR Def: Given a, b ∈ {-∞}URU{+∞} and interval (between a and b)

is a set of the form: • (a,b) • (a,b] • [a,b] · [a,b]

$[x: [-\infty], +\infty] = \overline{\mathbb{R}}$

Prop: For a<b, any interval between a andb is uncountable.

Def: A (real-valued) sequence is Oa function from MintoTR.

Kmk: To emphacize that a sequence is a special type of real-valued function, instead of writing F(N), near we will write Often, Le aill abbreviate a seguence by listing itsvalues (S1, S2, S3, S4,...), nE/N $(s_n)_{n\in N} = (s_n)_{n=1}^{\infty} = \widetilde{s_n}_n^{\infty}$ $\xi_{\chi}: ([, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, ...)$

Thm: Let A, Az,... be a countable family of countable sets. Then UAN is countable.

Pl: First, if $An = \emptyset \forall n \in \mathbb{N}$, the result is immediate, so we may assume $An \neq \emptyset$ for some mEIN.

Next, if Am=@ for m=n, then we may redefine Am:= An Without changing JAn. Thus, we may assume that An # & YnEIN.

Define $f(l,n) = a_{\ell}^{(n)}$. Then $f: N \to V$. An is surjective.

Thus, UAn 1s countable.