Lecture 2
Recall:
set x, power set 2^{x}
ordered pair (a, b)
Cartesian product

$$
X \times Y=\{(a, b): a \in X, b \in Y\}
$$

ordered n-tuple $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$
Cartesian product

$$
\begin{aligned}
& X_{1} \times \ldots \times x_{n}=\prod_{i=1}^{T} x_{i} \\
& =\left\{\left(a_{1}, \ldots, a_{n}\right): a_{i} \in X_{i}, \forall i=1, \ldots, n\right\}
\end{aligned}
$$

function $f: X \rightarrow Y$

- one to one /infective
- onto/surjective
- bijecti ie
ordered field
- upper bound
- bounded above
- supremam / least upper bound

Def: The real numbers \mathbb{R} is the ordered field s.t. $x \subseteq \mathbb{R}$, $x \neq \theta, x$ bounded above, the supremum of x exists.
If M is the supremum of x, let $\sup (\chi)=M$.

Extend defy of supiemain

- If $x=\varnothing, \quad \sup (x):=-\infty$
- If $X \neq \varnothing$ and is unbounded above, then $\sup (x)==+\infty$

In this way, $\forall \chi \subseteq \mathbb{R}$, sup (x) has meaning.
Rok: The supremum of χ D.N.E.
$\Leftrightarrow \sup (X)= \pm \infty$.
Ex: $\sup ([1,2))=2$
To justify this answer:

By def n of $[1,2)$,
$\forall x \in-(1,2), x<2$, so 2 is an upper bound.

Assume, for the sake of contradiction that m is an upper bound of $(1,2)$ and $m>2$. Since m is an upper bound of the set $m \geq 1$.
Let $x=\frac{\mid 061+2}{2}$. Then...

$$
1 \leq m<x<2
$$

Then $x \in[1,2)$ satisfies $x>m$, so M is not an upper bound.
$\frac{\text { Fact: }}{a \leq b}: a<b+\varepsilon \quad \forall \varepsilon>0$, $\begin{aligned} & a, b \in \mathbb{R} \\ & \text { sufficierther }\end{aligned}$
To prove directly...
Let m be kin upperbound of $[1,2)$. We must show $2 \leq m$.
Fix $x \in[1,2)$. Then $x \leq m$.
Thus $2-\varepsilon \leq m$ for all $\varepsilon>0$
sufficient ry small, so

$$
2 \leq m+\varepsilon \Rightarrow 2 \leq m \text {. }
$$

Thy: \mathbb{R} exists.
$H W \cdot \mathbb{R}$ is unique, up to isomorphism
Def: The natural numbers IN is the smallest subset of \mathbb{R} having the properties that
(i) $1 \in \mathbb{M}$
(ii) $n \in \mathbb{N} \Rightarrow n+1 \in \mathbb{N}$
${ }^{\circ}$ The:
(a) If $C A \subseteq 2^{\mathbb{R}}$ is the collection of $A \subseteq \mathbb{R}$ s.t. (i) and (ii) hold, then nee satisfies (iland (ii).
(b) $\mathbb{N}=\cap \subset \mathcal{A}$

Qmk: $\mathbb{N}=\{1,2,3,4, \ldots\}$

- By definition $1 \in A \forall A \in c t$.
- For any $n \in\{1,2,3, \ldots\}$, if $n \in A$, then $n+1 \in \widehat{A}$ by (ii)
- By induction,

$$
\{1,2,3,4, \ldots\} \subseteq A \quad \forall A \in \mathcal{A}
$$

- Is it possible that

$$
\begin{aligned}
& \{1,2,3,4, \ldots\} \subset \mathbb{N} ? \\
& \text { No, since }\{1,2,3,4, \ldots\} \in \subset A
\end{aligned}
$$

More nermbers! $\sim \rightarrow=\{-s: s \in S\}$

$$
\begin{aligned}
& \mathbb{Z}=\{0\} \cup \mathbb{N} \cup \mathbb{N} \\
& \mathbb{Q}=\{P / q: \mathbb{P}, q \in \mathbb{Z}, q \neq 0\} \\
& \mathbb{R}^{d}=\underbrace{\mathbb{R} \times \mathbb{R} \times \mathbb{R}^{\prime}}_{\text {d times }}
\end{aligned}
$$

Thm (Density of \mathbb{C} in \mathbb{R}):
$\forall a, b \in \mathbb{R}$ with $a<b, \exists q \in \mathbb{Q}$ s.t. $a<q<b$.

Thm (Archimedean Propenty) $\forall a, b \in \mathbb{R}, a, b>0, \exists \quad n \in \mathbb{X}$ s.t. $n_{a}>b$ b bathtab ${ }^{\text {sspoon }}$

Chapter 3: Set Equivalence
Cardinality
Def: Two nonempty sets X
and Y have the sabre cardinality if there exists a bijection between them. We will write $|X|=|Y|$.

Def: For any $n \in \mathbb{N}$, write $\{\{1,2,3, \ldots, n\}|=n| B=0$. Possibly
Terminology: Given a sett x

- finite: $|X| \in \mathbb{N} \cup\{0\}$ infinite: if not finite
- countable: $|\chi|=\left||N|\right.$ or $X_{\text {is -finite }}$ uncountable: not countable

The: A nonempty $\operatorname{set} X$ is countable inf \exists f $f: N \rightarrow X$ that is surjective.
Prop: $\forall d \in \mathbb{N}, \mathbb{N}^{d}=\frac{\mathbb{N} \times \mathbb{N} \times \ldots \times \mathbb{N}}{d+i m e s}$
Prop: \mathbb{Q} is countable,$\overline{\mathbb{R}}$
Def: Given $a, b \in\{-\infty\} \cup \mathbb{R} \cup\{+\infty\}$ an interval (between a and b)
is a set of the form:

- (a, b)
- $(a, b]$
- $[a, b)$
- $[a, b]$

$$
\varepsilon x:[-\infty,+\infty]=\overline{\mathbb{R}}
$$

Prop: For $a<b$, any interval between a and b is uncountable.

Def: A (real-valued) sequence is a function from \mathbb{N} into \mathbb{R}.

Rok: To emphacige that a sequence is a special type of
real-valued function, instead of writing $f(n), n \in(\mathbb{N}$ we will write
$S_{n}, n \in \mathbb{N}$.
Often, we will abbreviate a sequence by listing its values

$$
\begin{aligned}
& \left.\tau\left(s_{1}, s_{2}, s_{3}, s_{4}, \ldots\right)\right\}_{1} n \in \mathbb{N} \\
& \left(s_{n}\right)_{n \in \mathbb{N}}=\left(s_{n}\right)_{n=1}=\{5\}_{n=1}^{\infty} \\
& \varepsilon_{x}:\left(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\right)
\end{aligned}
$$

$\varepsilon x:(-1,1,-1,-1,-)=(-1)$

$$
\left\{(-1)^{n}\right\}_{n=1}^{\infty^{\prime}}=\{-1,1\}
$$

Thm: Let A_{1}, A_{2}, \ldots be a countable family af countable sets. Then $\bigcup_{n=1}^{0} A_{n}$ is countable.

Pl: First, if $A_{n}=\varnothing \forall n \in \mathbb{N}$ The result is immediate, so we may assume $A_{n} \neq \varnothing$ for sore $n \in \mathbb{N}$.

Next, if $A_{m}=\varnothing$ for $m \neq n$, then we may re define $A_{m}:=A_{n}$ without changing $\bigcup_{n=1}^{\infty} A_{n}$. Thus, we may assume that $A_{n} \neq \varnothing \forall n \in \mathbb{N}$.

Since A_{n} is countable for all $n \in \mathbb{N}$, we may list the elements as $a_{1}^{(n)}, a_{2}^{(n)}, a_{3}^{(n)} \ldots$ finite or infinite If $\left|A_{n}\right|=k, k \in \mathbb{N}$, we define $a_{l}^{(n)}=a_{k}^{(n)} \quad \forall l \in \mathbb{N}, l>k$.
Define $f\left(l, n_{n}\right)=a_{l}^{(n)}$. Then $f: \mathbb{R} \times \mathbb{N} \rightarrow \bigcup_{n=1}^{\infty} A_{n}$ is surjective.

Thus, $\bigcup_{n=1}^{\infty} A_{n}$ is countable.

