Math 117: Homework 3

Due Sunday, April 21st at 11:59pm
Questions followed by * are to be turned in. Questions without * are extra practice. At least one extra practice question will appear on each exam.

Question 1

Use the properties of an ordered field F to prove the following facts, for any $x, y, z \in F$:
(i) $0<1$
(ii) If $x>y$ and $y>z$, then $x>z$.
(iii) If $x>y$, then $x+z>y+z$.
(iv) If $x>y$ and $z>0$, then $x z>y z$.
(v) If $x>y$ and $z<0$, then $x z<y z$.

Question 2*

Use the definition of the absolute value, the definition of an ordered field F, and the results from Q1 to prove the following results for all $a, b \in \mathbb{F}$.
(i) $|a| \geq 0$
(ii) $|a b|=|a||b|$
(iii) $|a| \geq a$ and $|a| \geq-a$
(iv) $|a+b| \leq|a|+|b|$. This is known as the triangle inequality.

Question 3

Use the definition of the absolute value, the definition of an ordered field F, and the results of Q1 and Q2 to prove the following facts for all $a, b, c \in F$.
(a) $|b| \leq a$ if and only if $-a \leq b \leq a$.
(b) $|a-b| \leq c$ if and only if $c-a \leq b \leq c+a$
(c) $\| a|-|b|| \leq|a-b|$. This is known as the reverse triangle inequality.

Question 4*

Use the definition of an ordered field to proved that, for all $a, b, \epsilon \in F$, if $a \leq b+\epsilon$ for all $\epsilon \in F$ with $\epsilon>0$, then $a \leq b$.

Question 5*

This question will guide you through how to use the Archimedean property and the definition of the real numbers to prove that \mathbb{Q} is dense in \mathbb{R}.

Suppose $a, b \in \mathbb{R}$ with $a<b$.
(i) Suppose $b>0$.
(a) Prove that there exists $n \in \mathbb{N}$ so that $b-a>\frac{1}{n}$.
(b) Prove that there exists $m \in \mathbb{N}$ so that $\frac{m-1}{n}<b \leq \frac{m}{n}$.
(c) Prove that these choices of n, m satisfy $a<\frac{m-1}{n}$.
(d) Combine the previous steps to prove the following claim: there exists $r \in \mathbb{Q}$ with $a<r<b$.
(ii) Now, suppose $b \in \mathbb{R}$.
(a) Prove that there exists $n^{\prime} \in \mathbb{N}$ so that $b+n^{\prime}>0$.
(b) Use (ii)(a) and (i)(d) to show that there exists $r \in \mathbb{Q}$ with $a<r<b$.

Question 6

Prove that the two definitions of convergence of a sequence stated in class are equivalent.

Question 7*

Justify the following facts, using the definition of convergence.
(i) $\lim _{n \rightarrow+\infty} \frac{1}{n-2}=0$
(ii) $\lim _{n \rightarrow+\infty} \frac{2 n}{n+2}=2$.
(iii) $\lim _{n \rightarrow+\infty} \frac{(-1)^{n}}{n}=0$.

Question 8*

Prove that $\left(n+\frac{1}{n}\right)_{n=1}^{\infty}$ diverges.

Question 9*

Solve question 10.11 from the textbook.

Question 10

Solve question 10.12 from the textbook.

Question 11*

Solve question 11.8 from the textbook.

Question 12

Solve question 11.9 from the textbook.

