MATH 117: Homework 3

Due Sunday, April 21st at 11:59pm

Questions followed by * are to be turned in. Questions without * are extra practice. At least one extra practice question will appear on each exam.

Question 1

Use the properties of an ordered field F to prove the following facts, for any $x, y, z \in F$:

- (i) 0 < 1
- (ii) If x > y and y > z, then x > z.
- (iii) If x > y, then x + z > y + z.
- (iv) If x > y and z > 0, then xz > yz.
- (v) If x > y and z < 0, then xz < yz.

Question 2*

Use the definition of the absolute value, the definition of an ordered field F, and the results from Q1 to prove the following results for all $a, b \in \mathbb{F}$.

- (i) $|a| \ge 0$
- (ii) |ab| = |a| |b|
- (iii) $|a| \ge a$ and $|a| \ge -a$
- (iv) $|a+b| \leq |a| + |b|$. This is known as the triangle inequality.

Question 3

Use the definition of the absolute value, the definition of an ordered field F, and the results of Q1 and Q2 to prove the following facts for all $a, b, c \in F$.

- (a) $|b| \le a$ if and only if $-a \le b \le a$.
- (b) $|a-b| \le c$ if and only if $c-a \le b \le c+a$
- (c) $||a| |b|| \le |a b|$. This is known as the reverse triangle inequality.

Question 4^*

Use the definition of an ordered field to proved that, for all $a, b, \epsilon \in F$, if $a \leq b + \epsilon$ for all $\epsilon \in F$ with $\epsilon > 0$, then $a \leq b$.

Question 5^*

This question will guide you through how to use the Archimedean property and the definition of the real numbers to prove that \mathbb{Q} is dense in \mathbb{R} .

Suppose $a, b \in \mathbb{R}$ with a < b.

- (i) Suppose b > 0.
 - (a) Prove that there exists $n \in \mathbb{N}$ so that $b a > \frac{1}{n}$.
 - (b) Prove that there exists $m \in \mathbb{N}$ so that $\frac{m-1}{n} < b \leq \frac{m}{n}$.
 - (c) Prove that these choices of n, m satisfy $a < \frac{m-1}{n}$.
 - (d) Combine the previous steps to prove the following claim: there exists $r \in \mathbb{Q}$ with a < r < b.
- (ii) Now, suppose $b \in \mathbb{R}$.
 - (a) Prove that there exists $n' \in \mathbb{N}$ so that b + n' > 0.
 - (b) Use (ii)(a) and (i)(d) to show that there exists $r \in \mathbb{Q}$ with a < r < b.

Question 6

Prove that the two definitions of convergence of a sequence stated in class are equivalent.

Question 7*

Justify the following facts, using the definition of convergence.

(i)
$$\lim_{n \to +\infty} \frac{1}{n-2} = 0$$

(ii)
$$\lim_{n \to +\infty} \frac{2n}{n+2} = 2.$$

(iii) $\lim_{n \to +\infty} \frac{(-1)^n}{n} = 0.$

Question 8*

Prove that $(n + \frac{1}{n})_{n=1}^{\infty}$ diverges.

Question 9*

Solve question 10.11 from the textbook.

Question 10

Solve question 10.12 from the textbook.

Question 11*

Solve question 11.8 from the textbook.

Question 12

Solve question 11.9 from the textbook.