Math 117: Homework 2
 Q10 Solution

First, we consider part (i). There exist convex functions $f: \mathbb{R} \rightarrow \mathbb{R}$ so that $-f$ is not convex. For example, consider $f(x)=x^{2}$. We directly compute,
$f((1-\alpha) x+\alpha y)=((1-\alpha) x+\alpha y)^{2}=(1-\alpha)^{2} x^{2}+\alpha^{2} y^{2}+2(1-\alpha) \alpha x y=(1-\alpha)^{2} f(x)+\alpha^{2} f(y)+2(1-\alpha) \alpha x y$.
Since $2 x y \leq x^{2}+y^{2}$ for all $x, y \in \mathbb{R}$, we have

$$
f((1-\alpha) x+\alpha y) \leq(1-\alpha)^{2} f(x)+\alpha^{2} f(y)+(1-\alpha) \alpha(f(x)+f(y)=(1-\alpha) f(x)+\alpha f(y)
$$

which shows f is convex.
On the other hand, choosing $x=0, y=1, \alpha=\frac{1}{2}$, we have

$$
-f((1-\alpha) x+\alpha y)=-\left(\alpha y^{2}\right)=-\alpha^{2} y^{2}>0-\alpha y^{2}=(1-\alpha) f(x)+\alpha f(y)
$$

Thus, $-f$ is not convex.

Now, we consider part (ii). We will show that $c_{1} f+c_{2} g$ is convex for all f, g convex if and only if $c_{1}, c_{2} \geq 0$. First, note that if $f(x)$ is convex, multiplying both sides of the inequality defining convexity by any positive constant $c>0$ preserves the inequality,

$$
f((1-\alpha) x+\alpha y) \leq(1-\alpha) f(x)+\alpha f(y) \Longrightarrow c f((1-\alpha) x+\alpha y) \leq(1-\alpha) c f(x)+\alpha c f(y) .
$$

Next, note that, if f and g are convex, then summing the corresponding inequalities shows $f+g$ is convex: that is

$$
f((1-\alpha) x+\alpha y) \leq(1-\alpha) f(x)+\alpha f(y) \quad \text { and } \quad f((1-\alpha) x+\alpha y) \leq(1-\alpha) f(x)+\alpha f(y)
$$

implies

$$
\begin{aligned}
(f+g)((1-\alpha) x+\alpha y) & =f((1-\alpha) x+\alpha y)+g((1-\alpha) x+\alpha y) \\
& \leq(1-\alpha) f(x)+\alpha f(y)+(1-\alpha) g(x)+\alpha g(y) \\
& =(1-\alpha)(f+g)(x)+\alpha(f+g)(y)
\end{aligned}
$$

This shows that, if $c_{1}, c_{2} \geq 0$, then $c_{1} f(x)+c_{2} g(x)$ is a convex function.
Now we argue that $c_{1}, c_{2} \geq 0$ is necessary for $c_{1} f(x)+c_{2} g(x)$ to be convex for all f, g convex. Note that the function $h(x)=0$ is clearly convex. Thus, applying the result from part (i) shows that if $c_{1}<0$, then $c_{1} f+c_{2} g$ is not convex for $f(x)=-\frac{1}{c_{1}} x^{2}, g(x)=0$, and if $c_{2}<0$, then $c_{1} f+c_{2} g$ is not convex for $f(x)=0$ and $g(x)=-\frac{1}{c_{1}} x^{2}$.

We conclude by considering part (iii). First, we show that $g \circ f$ is convex. For all $x, y \in \mathbb{R}, \alpha \in[0,1]$, the convexity of f ensures,

$$
f((1-\alpha) x+\alpha y) \leq(1-\alpha) f(x)+\alpha f(y)
$$

Since g is increasing, we have

$$
g(f((1-\alpha) x+\alpha y)) \leq g((1-\alpha) f(x)+\alpha f(y)) .
$$

Since g is convex, we may bound the right hand side from above by

$$
(1-\alpha) g(f(x))+\alpha g(f(y))
$$

This shows $g \circ f$ is convex.
Now, we show that $f \circ g$ is, in general, not convex. Let $f(x)=-x$ and $g(x)=\max \{x, 0\}$. A direct computation shows that f is convex, since it is linear, so equality holds in the inequality defining convexity. Now we consider g. If $x \leq y$, then $\max \{x, 0\} \leq \max \{y, 0\}$, so g is increasing. (This can be seen by considering the cases in which x and y are greater than or less than zero.) Finally, to see that g is convex, we aim to show that, for all $x, y \in \mathbb{R}, \alpha \in[0,1]$,

$$
\begin{equation*}
g((1-\alpha) x+\alpha y) \leq(1-\alpha) g(x)+\alpha g(y) \tag{}
\end{equation*}
$$

If both x and y are less than zero, so is $(1-\alpha) x+\alpha y$ so both sides of $(*)$ are zero. Similarly, if both x and y are greater than or equal to zero, so is $(1-\alpha) x+\alpha y$, so both sides of $\left(^{*}\right.$) equal $(1-\alpha) x+\alpha y$. Finally, if $x<0$ and $y \geq 0$, we consider the two cases when $(1-\alpha) x+\alpha y$ is less than zero or greater than or equal to zero. If $(1-\alpha) x+\alpha y$ is less than zero, then the left hand side of $\left(^{*}\right)$ is zero and the right hand side of $\left(^{*}\right)$ is $\alpha y \geq 0$. When $(1-\alpha) x+\alpha y$ is greater than or equal to zero, the left hand side of $\left(^{*}\right)$ is $(1-\alpha) x+\alpha y$ and the right hand side is

$$
\alpha y \geq(1-\alpha) x+\alpha y,
$$

since $(1-\alpha) \geq 0$ and $x<0$.

