(8) Let O ' and 1' denote the additive and multiplicative identities of \mathbb{R}. Let \mathbb{N}^{\prime} denote the set where all elements may be expressed as a finite sum bo the form

$$
\frac{1^{\prime}+\left(0+1^{\prime}\right.}{n \text { times }}=\sum_{i=1}^{n} 1^{\prime}
$$

As shown in class, N^{\prime} is the smallest set satisfying $1^{\prime} \in \mathbb{N}^{\prime}$ and $n^{\prime} \in \mathbb{N}^{\prime} \Rightarrow n^{\prime}+1 \in \mathbb{N}^{\prime}$.
Note that if $\sum_{i=1}^{n} 1^{\prime}<\sum_{i=1}^{m} 1^{\prime}$, since (FLOG $n \geq m$), by the properties of an ordered field,

$$
0=\sum_{i=1}^{m} 1^{\prime}-\sum_{i=1}^{m} 1^{\prime}>\sum_{i=1}^{n} 1^{\prime}-\sum_{i=1}^{m} 1^{\prime}
$$

Since $1^{\prime}>0^{\prime}$, if $n \geq m$, the sum of positive numbers is positive, so the RHS is nonneg, which is a contradiction. Thus, we must have $n^{<} m$. Conversely, we also see that, since $1^{\prime}>0^{\prime}$, $n<m$ ensures $\sum_{i=1}^{n} 1^{\prime}<\sum_{i=1}^{m} 1^{\prime}$.

Define $f: \mathbb{N} \rightarrow \mathbb{N}^{\prime}$ by $f(n)=\sum_{i=1}^{n} 1^{\prime}$.
By definition, f is sutictive By definition, f is sulectective (its $i_{i=1}$ range is all finite sums of 1^{\prime}) and f is infective (since f is strictly increasing). By definition, $\forall n, m \in \mathbb{N}$, we have

$$
f(n+m)=\sum_{i=1}^{n+m} 1^{\prime}=\sum_{i=1}^{n} 1^{\prime}+\sum_{i=1}^{m} 1^{\prime}=f(n)+f(m)
$$

[B] $f(n)<f(m) \Leftrightarrow n<m$

Next we show $f(n m)=f(n) f(m)$. Base case: $m=1$

$$
f(n m)=f(n)=f(n) \cdot 1^{\prime}=f(n) f(m)
$$

Assume $f(n m)=f(n) f(m)$ for $m \in \mathbb{N}$.
Then, $f(n(m+1))=f(n m+n)=f(n m)+f(n)$

$$
\begin{aligned}
& =f(n) f(m)+f(n)=f(n)\left(f(m)+1^{\prime}\right) \\
& =f(n)(f(m)+f(1))=f(n) f(m+1) .
\end{aligned}
$$

This shows $[0$.

Let $\mathbb{Z}^{\prime}=\mathbb{N}^{\prime} \cup\{0\} \cup-\mathbb{N}^{\prime}$. Extend
$f: \mathbb{Z} \rightarrow \mathbb{Z}^{\prime}$ by defining
$f(x)=\int_{x}(x)$ if

By def, f is surjective. Likewise, $\begin{aligned} f(x)<\cup f(y) & \Leftrightarrow\left\{\begin{array}{l}x<y, \text { by above, if } \quad x \in \mathbb{N} \\ x<y, \text { b y above, if } x \in \mathbb{N} \\ 0<y,\end{array}, \text { ifx=0. since-x<N}\right.\end{aligned}$
Thus, f is strictly increasing. $\begin{aligned} & f(-x)>f(-g) \\ & -x\rangle-y\end{aligned}$
We check that this extension still satisfies properties $A \in$ and $[C$. Fix $x, y \in \mathbb{Z}$ If both $x, y \in \mathbb{N}$, the result has already been shown. If $x \in \mathbb{Z}$ and $y=0$, then

$$
\begin{aligned}
& f(x+y)=f(x)=f(x)+0^{\prime}=f(x)+f(0) \\
& f(x y)=f(0)=0^{\prime}=f(x) \cdot 0^{\prime}=f(x) f(y) \\
& \text { Thy } 3.4
\end{aligned}
$$

If $x \in \mathbb{N}, y \in-\mathbb{N}$, then

$$
\begin{aligned}
f(x+y) & = \begin{cases}x_{i=1}^{k} y & \Phi^{\prime} \\
-\sum_{i=1}^{x-y} 1^{\prime} & \text { if } x+y \geq 0\end{cases} \\
& = \begin{cases}\sum_{i=1}^{x} 1^{\prime}-\sum_{i=1}^{-y} 1^{\prime} & \text { if } x+y \geq 0 \\
-\left(\sum_{i=1}^{-y} 1^{\prime}-\sum_{i=1}^{x} 1^{\prime}\right) & \text { if } x+y^{<}<0\end{cases} \\
& =f(x)-f(-y) \\
& =f(x)+f(y)
\end{aligned}
$$

Likewise,

$$
\begin{aligned}
& \text { Likewise, } \\
& \begin{aligned}
& f(x y)=-f(-x y)=-f(x(-y))=-f(x) f(--y) \\
&=f(x) f(x)
\end{aligned}
\end{aligned}
$$

Finally, if both $x, y \in-\mathbb{N}$,

$$
\begin{aligned}
f(x+y)=-f(-x-y)=-f(-x)+f(-y))=f(x)+f(y) \\
f(x y))=f(1-x)(-y))=f(-x) f(-y)=(-f(-x))(-f f(y)) \\
\ldots=f(x)) f(y) . \quad \begin{array}{l}
\text { extras } 3.8 \\
\text { gives }(-1)(-1)=1
\end{array}
\end{aligned}
$$

Thus, properties $\mathbb{A},[B]$, and $[C]$ continue to
hold for $f: \mathbb{Z} \rightarrow \mathbb{Z}$?

Let $\mathbb{Q}^{\prime}=\left\{\mathbb{P}^{\prime} / q^{\prime}: q^{\prime} \in \mathbb{Z} \backslash\{0\}, p^{\prime} \in \mathbb{Z}\right\}$
Extend $f: \mathbb{Q} \rightarrow \mathbb{Q}$ ' by defining $f\left(\frac{p}{q}\right)=\frac{f(p)}{f(q)}$, for all $q \in \mathbb{Z} \backslash\{0\}, p \in \mathbb{Z}$.
Note that this is a well-defined
function, since $\frac{\rho}{a}=\frac{5}{s}$ for function, since $\frac{p}{q}=\frac{r}{s}$ for $q, s \in \mathbb{Z} \backslash\{c\}, p, r \in \mathbb{Z}$ implies s. $p=q r$, so $f(s) f(f)=f(s p)=f(g r)=f(g)+(r)$.
Likewise $f(a), f(s) \in \mathbb{Z} \backslash\{0\}\}$. Likewise $f(q), f(s) \in \mathbb{Z} \backslash\{00\}$.
Thus, $\frac{f(p)}{f(q)}=\frac{f(r)}{f(s)}$.
Since $f: \mathbb{Z} \rightarrow \mathbb{Z}^{\prime}$ was surjective, we likewise have $f: \mathbb{Q} \rightarrow \mathbb{Q}^{\prime}$ is surjective.

We now check properties $[A,[B]$, and $[C]$.
Fix $p_{1}, p_{2} \in \mathbb{Z}, q_{1}, q_{2} \in \mathbb{Z} \backslash\{0\}$.
For $[B$,

$$
\begin{aligned}
\frac{p_{1}}{q_{1}}<\frac{p_{2}}{q_{2}} & \Leftrightarrow p_{1} q_{2}<q_{1}\left(p_{2}\right. \\
& \Leftrightarrow f\left(p_{1} q_{2}\right)<\left(q_{1} p_{2}\right) \\
& \Leftrightarrow f_{1}\left(q_{1}\right) f\left(q_{2}\right)<f\left(q_{1}\right) f\left(p_{2}\right), q_{1} q_{2} \neq 0 \\
& \left.\Leftrightarrow \frac{f\left(q_{1}\right)}{f\left(q_{1}\right)}<\frac{f\left(p_{2}\right.}{f\left(q_{2}\right)} \quad f_{q_{1}}\right) ;\left(f_{2}\right)=0^{\prime}
\end{aligned}
$$

In particular, this shows f is injective.

$$
\begin{aligned}
& \text { For }\lfloor\Delta \\
& \begin{aligned}
\text { For }\left(\frac{p_{1}}{q_{1}+\frac{p_{2}}{} q_{2}} q_{2}\right) & =f\left(\frac{p_{1} q_{2}+q_{1} p_{2}}{q_{2}}\right)=\frac{f\left(p_{1}\right) f\left(q_{2}\right)+f\left(q_{1}\right) f\left(q_{2}\right)}{\left.f\left(q_{1}\right)\right)\left(q_{2}\right)} \\
& =f\left(p_{1}\right) q_{2}
\end{aligned} \\
& =\frac{f\left(p_{1}\right)}{f\left(q_{1}\right)}+\frac{f\left(p_{2}\right)}{f\left(q_{2}\right)}=f\left(p_{1} q_{1}\right)+f\left(q_{2} q_{2}\right) \\
& \text { For [C], } \\
& f\left(\frac{p_{1}}{q_{1}} \frac{p_{2}}{q_{2}}\right)^{\prime}=\frac{f\left(p_{1}\right) f\left(f_{2}\right)}{f\left(q_{1}\right) f\left(q_{2}\right)}=f\left(\frac{p_{1}}{q_{1}}\right) f\left(\frac{p_{2}}{q_{2}}\right) \text {. }
\end{aligned}
$$

By definition \mathbb{R} (resp \mathbb{R}^{\prime}) is an ordered field containing \mathbb{Q} (resp \mathbb{Q}) so that every subset that is bounded above has a supremum.
Claim: For and $x \in \mathbb{R}, x=\sup \{q \in \mathbb{Q}: q<x\}$ $x^{\prime} \in \mathbb{R}^{\prime}, x=\sup \left\{q^{\prime} \in \mathbb{Q}^{\prime}: q^{\prime \prime} x^{\prime}\right\}$
Q1: We show the result for \mathbb{R} !. The Same argument works for \mathbb{R}. By
definition of the set $S=q^{\prime} \in \mathbb{Q}^{\prime}: q^{\prime}()_{x}$ definition of the set $S=\left\{q^{\prime} \in \mathbb{Q}^{\prime}: q^{\prime}(S) x^{\prime}\right\}$, x^{\prime} is an upper bound of S, so sup $(S) \leq x^{\prime}$. Assume, for the sake oof contracleztion, that $\operatorname{sip}(s)<x^{\prime}$. By density of \mathbb{Q}^{\prime} in \mathbb{R},
$\exists q^{\prime} \in \mathbb{Q}^{\prime} s-t$. Sup $(s)<q^{\prime} \leqslant x^{\prime}$ Bu at then $\exists q^{\prime} \in \mathbb{Q}^{\prime} s . t$. Sup $(s)<q^{\prime}<x^{\prime}$ But then $q^{\prime} \in S$, which contradicts that sup (S) is an upper bound for S. Thus sup $(S)=x$!
We extend $f: \mathbb{R} \rightarrow \mathbb{R}^{\prime}$ by

$$
\begin{aligned}
& \text { extend } f: \mathbb{K} \rightarrow \mathbb{K} \text { Dy } \\
& f \in \mathbb{x}(x) \text {. this }\{f(q): q \mathbb{x}, \underline{\mathbb{R}}\}
\end{aligned}
$$

If $x \in \mathbb{Q}$, this agrees withowr previous definition

We now show f is surjectire. Fix $y^{\prime} \in \mathbb{R}^{\prime}$.
Let $x=$ inf $\left\{q \in \mathbb{Q}: f(q) \geq y^{\prime}\right\}$
Suppose $q^{\prime} \in \mathbb{Q}, q^{\prime \leq} q^{\prime}$. Then, for all $q \in S^{\prime} f\left(q^{\prime} \geq y^{\prime} \geq q \cdot \Rightarrow q \geq f^{-1}\left(q^{\prime}\right)\right.$. Thus $f^{-1}\left(q^{\prime}\right)$ is a lower bound for S, so $x \geq f^{-1}\left(q^{\prime}\right)$. This shows $q^{\prime} \in T_{1}$,
so $f^{\prime}(x) \geq q^{\prime}$ Since $q^{\prime} \in \mathbb{Q}$ was an so $f(x) \geq q^{\prime}$? Since $q^{\prime} \in \mathbb{Q}$ was an arbitrary number satisfying $q^{\prime} \leq y^{\prime}$,

$$
f(x) \geq \sup \left\{q \in \mathbb{Q}^{\prime}: y^{\prime} \geq q^{\prime}\right\}=y^{\prime} .
$$

On the other hand, if $f(x)>y^{\prime}$, then y^{\prime} is not an uppo' bound fo $f^{\prime} T$,
so there exists $q \in Q$ with $\& x$, so there exists $q \in Q$ with $q<x$
and $f(q)>y^{\prime}$. Thus $q \in \xi$ and and $f(g)>y^{\prime}$. Thus $q \in S$ and $q<x$, which contradicts that x is a lowen bound for S. Thus $f(x)=y^{\prime}$,
so f is surjective.

Next, we show $\left[\boxed{A},[1]\right.$ and $[C]$. Fix $x_{x, y} \in \mathbb{R}$.
To see $A B$, note that

$$
\begin{aligned}
& x \leq y \Rightarrow\{f(q): q<x, q \in Q\} \leq\{f(q): q<y, q \in Q\} \\
& \\
& \Rightarrow f(x) \leq f(y) \quad U H W, Q 3(q)
\end{aligned}
$$

Furthermore, if $x<y$, by density of \mathbb{Q} in $\mathbb{R}_{\mathcal{l}} \exists q_{1} q_{2} \in \mathbb{Q}, t$. $x<q_{1}<q_{2}, Q y$.
Since f is strictly increasing on \mathbb{Q}, Since f is strictly increasing on \mathbb{Q},
$\left.f(x) \leq f\left(q_{1}\right)<f\left(q_{2}\right) \leq f(y) \Rightarrow f(g)\right)<f(g)$. $f(x) \leq f\left(q_{1}\right)<f\left(q_{2}\right) \leqslant f\left(y_{1}\right) \Rightarrow f(x)<f\left(g_{)}\right)$.
In particular, this shows fisiniective.

$$
\begin{aligned}
& \begin{aligned}
f(x+y) & =\sup \{f(q): q<x+y, q \in \mathbb{Q}\} \text { ht } q_{2}=q q_{1} . \\
& =\sup \left\{f(q): q=q_{1} \rightarrow q_{2}, q_{1}<x, q_{2}<y_{1}\right.
\end{aligned} \\
& =\sup \left\{f(q): q=q_{1} \rightarrow q_{2}, \frac{q_{1}<x, q_{2}<y_{1}}{s_{2} q_{11} q_{2}}\right. \\
& =\sup \left\{f\left(q_{1}\right)+f\left(q_{2}\right): q_{1}<x, q_{2}<q_{11}, q_{2} \in \mathbb{q _ { 1 }}, q_{2} \in \mathbb{Q}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =f(x)+f(y) \text {. }
\end{aligned}
$$

Before turning to \mathbb{C}, observe that, $\forall x \in \mathbb{R}$, $f(-x)=\sup \left\{f(\xi): q^{-}-x, q+Q\right\}$
$=\sup \{f(q):-q>x, q \in Q\}$
$=\sup \{f(-r): r>x, r \in \mathbb{E}\}$
$=\sup \{-f(r): r>x, r \in \mathbb{Q}\} \downarrow H W 2, \otimes 5$
$=-\inf \{f(r): r>x, r \in \mathbb{Q}\}$
$=-$ ind $\left\{r^{\prime} \in \mathbb{\alpha ^ { \prime }}: f^{-1}\left(r^{\prime}\right)>x\right\}$
$=-\operatorname{ing}\left\{r^{\prime} \in \mathbb{Q}^{\prime}: f^{-1}\left(r^{\prime}>x\right\}\right.$
$=-\inf \left\{r^{\prime} \in \mathbb{Q}^{\prime}: r^{\prime}>f(x)\right\}$
$=-i n\}\left\{r^{\prime} \in \mathbb{Q}^{\prime}: r^{\prime}>f(x)\right\}$,
$=\sup \left\{-r^{\prime} \in \mathbb{Q} x^{\prime}:-r^{\prime}<f(x)\right\}$
$=\sup \left\{g^{\prime} \in \mathbb{Q}^{\prime}: q^{1<-f(x)}\right\}=-f(x)$
Now, weshow [C]. Note that it is immediate if $y-0$, so suppose $y \neq 0$.
If $y \in \mathbb{Q}$ and $y>0$,
$\begin{aligned} &\left.f^{\prime}(x y) \in \sup \{f(g)): \frac{q_{q}<x y,}{} \in \mathbb{Q}\right\} \\ &=\sup \left\{f(q): \frac{\mathbb{Q}}{y}<x \in\right.\end{aligned}$

$$
\begin{aligned}
& =\sup \left\{f(q): \frac{q}{y}<x, q \in \mathbb{Q}\right\} \\
& =\sup \{f(r y): \gamma<x, q \in \mathbb{Q}\} \\
& =\sup \{f(r) f(g): r<x, q \in \mathbb{Q}\} \in \text { Exercise } \\
& =f(y) \sup \{f(r): r<x, q \in \mathbb{Q}\}\} \\
& =f(g) f(x) .
\end{aligned}
$$

Thus, if $y \in \mathbb{Q}$ and $y<0$

$$
\begin{aligned}
f(x y)=f((-x)(-y))=f(-x) f^{\prime}(-y) & =(-f(x)))(-f(y)) \\
& =f(x) f(y) .
\end{aligned}
$$

Finally, if $y \in \mathbb{R}$ and $x>0$,

$$
\begin{aligned}
& \begin{aligned}
f(x) f(y) & =f(x) \sup \{f(q): q<y, q \in \mathbb{Q}\} \downarrow \text {, Exeriix } \\
& =\sup \{(x) f(q): q<a \in \mathbb{q}
\end{aligned} \\
& =\sup \{f(x) f(q): q 2 y, q \in \mathbb{Q}\} \\
& =\sup \{f(x q): q \in q ; q \in \mathbb{Q}\} \\
& =\sup \{f(x)): x q<x y, q \in \mathbb{Q}\} \\
& =\sup \left\{f(z): z<x y, \frac{z}{x} \in \mathbb{E}\right\} \\
& \left.\left.\begin{array}{ll}
\text { Last } \\
\operatorname{stap} & =\sup \left\{z^{\prime}: z^{\prime}<f\left(x y^{\prime}\right)\right.
\end{array}=\frac{f^{\prime \prime}\left(z^{\prime}\right)}{x} \in \mathbb{L}\right\}\right\} \\
& =f(x y)
\end{aligned}
$$

As a consequence, if $y \in \mathbb{R}$ and $x<0$,
$f(x) f(y)=-\theta(-x) f(y)$

$$
\begin{aligned}
f(x) f(y) & =-f(-x) f(y) \\
& =-f((-x y) \\
& =f(x y)
\end{aligned}
$$

Justification of Last Step:

- Since $f(x y)$ is an upper bound for the set U, we have $\sup (u) \leq f(x y)$.
- If $f(x y)>\sup (u)$, then
$\bar{f}(x y) / f(x)>\sup (u) / f(x)$, so \exists
$r^{\prime} \in\left(x^{\prime}\right.$ s.t. $f(x y) / f(x)>r^{\prime}>\sup (u) / f(x)$,
hence $f(x y)>r^{\prime} f(x)>\sup (u)$.
Then $f^{-1}\left(r^{\prime} f(x)\right)=f^{-1}\left(r^{\prime}\right) x$
satisfies $f^{-1}\left(r^{\prime}\right) x / x \in \mathbb{Q}$ and
$r^{\prime} f(x)<f(x y)$. Hence $r^{\prime} f(x) \in U$.
This contradicts $*$).

