Lecture 9
Recall:
Def: Given nus $x, f: x \rightarrow \mathbb{R} \cup\{+\infty\}$ proper, $x \in D(f)$, the subdifferential of f at x is the set valued operator

$$
\begin{gathered}
\partial f(x)=\left\{y \in x^{\infty}: f\left(x^{\prime}\right) \geq f(x)+\left\langle y, x^{\prime}-x\right\rangle+\partial\left(\left\|x^{\prime}-x\right\|,\right\}\right. \\
\text { as } \left.x^{\prime} \xrightarrow{\rightarrow} x\right\}
\end{gathered}
$$

If $x \notin D(f), \partial f(x)=\varnothing$.

The: If f is differentiable at $x \in D(f)$, then $\partial f(x)=\left\{\nabla f\left({ }_{x}\right)\right\}$.

Prop: If $f: x \rightarrow \mathbb{R} \cup\{+\infty\}$ is convex and $x \in D(f)$, then

$$
\partial f(x)=\left\{y \in x^{\otimes}: f\left(x^{\prime}\right) \geq f(x)+\left\langle y, x^{\prime}-x\right\rangle \quad \forall x^{\prime} \in x\right\}
$$

Prop: Given $f: \chi \rightarrow \mathbb{R} \cup\{+\infty\}$, proper and convex,

$$
u \in \partial f\left(x_{0}\right) \Leftrightarrow f\left(x_{0}\right)+f^{*}\left(y_{0}\right)=\left\langle u_{0}, x_{0}\right\rangle
$$

Prop: Suppose f is convex and it is ISC at $x_{0} \in D(f)$. Then $x_{0} \in \partial f^{*}\left(y_{0}\right) \Rightarrow$ $y_{0} \in \partial f\left(x_{0}\right)$

The: Suppose f is proper, convex, and ISC. Then $y^{\in} \partial f(x) \Leftrightarrow x \in \partial f^{\star}(y)$.

Def: For $C \leq x$, its characteristic f_{n} is

$$
X_{c}(x):= \begin{cases}0 & \text { if } x \in C \\ +\infty & \text { otherwise }\end{cases}
$$

Primal/Dual Optimization Problems
Goal of convex optimization: given f convex, C convex, solve

$$
\inf _{x \in \mathscr{C}} f(x)=\inf _{x \in \chi} f(x)+x_{c}(x)
$$

Key trick: observe the behavior of has optimization problem under perturbations

Def: Given normed vector spaces χ and U and a convex function $F: X \times U \rightarrow \mathbb{R} \cup\{+\infty\}$.

Primal problem: $P_{0}:=\underset{x \in \mathcal{X}}{\inf f(x), f(x)=F(x, 0)}$
dual problem: $D_{0}:=\sup _{v \in \mathcal{U}^{\prime}} g(v), \quad g(v)=-F(0, v)$.
Remark: $x \times U$ is a nos with dual $x^{*} \times u^{*}$ and duality pairing

$$
\langle(y, v\rangle,(x, u)\rangle=\langle y, x\rangle+\langle v, u\rangle
$$

In this case, Young's inequality is

$$
F(x, u)+F(y, v) \geq\langle y, x\rangle+\langle v, u) .
$$

In particular,

$$
\begin{aligned}
f(x)-g(v) \geq 0 & \Leftrightarrow f(x) \geq g(v) \forall x \in X, v \in U^{ \pm} \\
& \Leftrightarrow P_{0} \geq D_{0}
\end{aligned}
$$

Thus, we will seek conditions on F that ensure, $P_{0}=D_{0}$, i.e. "there is no duality gap"

Ohm (Equivalence of Primal and Dual Problems): Given $F: x \times U \rightarrow Y \mathcal{R} \cup\{+\infty\}$ convex, suppose $P_{0} \leq+\infty$. "the primal problem is feasible"
Define the inf-projection $P(u):=\inf _{x \in \mathcal{X}} F(x, u)$. Then
(i) $P_{0}=D_{0} \Leftrightarrow P$ is Isc at $x=0$.
(ii) $P_{0}=D_{0}$ and a maximizer of dual problem exists $\Leftrightarrow \partial P(0) \neq \varnothing$.

Pf (1) Show $P(u)$ is proper and convex. By assumption $P(0)=P_{0}<+\infty$.

$$
\begin{aligned}
P\left((1-\alpha) u_{0}+\alpha u_{1}\right) & =\inf _{x \in} x F\left(x, u_{\alpha}\right) \\
& \leq F\left(x_{0}, u_{\alpha}\right) \quad \forall x_{0} \in X \\
& =F\left((1-\alpha) x_{0}+\alpha x_{0},(1-\alpha) u_{0}+\alpha u_{1}\right), \forall x_{0} \\
& \leq(1-\alpha) F\left(x_{0}, u_{0}\right)+\alpha F\left(x_{0}, u_{1}\right), \forall x_{0}
\end{aligned}
$$

Taking inf over $x_{0}, P\left(u_{\alpha}\right) \leq(1-\alpha) P\left(u_{0}\right)+\alpha P\left(u_{1}\right)$.
(2) $P_{0}=D_{0} \Leftrightarrow P(0)=P^{*}(0)$

By definition,

$$
\begin{aligned}
& P(v)=\sup _{u \in u}\langle v, u\rangle-P(u) \\
& =\sup _{x \in x}=\langle v, u\rangle-F(x, u) \\
& =\sup _{\substack{u \in u \\
x \in x}}\langle 0, x\rangle+\langle v, u\rangle-F(x, u\rangle \\
& =F^{*}(0, v) \\
& =-g(v) \\
& P^{* *}(u)=\sup _{v \in u^{*}}\langle v, u\rangle+g(v)
\end{aligned}
$$

$$
P^{* *}(0)=\sup _{v \in u^{*}} g(v)=D_{0} .
$$

Since $P(0)=P_{0}$, this gives the result.
(3) We now show (i).

Since P is convex, $O \in D(P)$, Fenchel-Morean ensures $P(0)=P+\infty(0) \Leftrightarrow P$ is lie at 0 .
(4) We now show (ii). Suppose $v_{n} \in \partial P(0)$.

Since P is convex, $O \in D(P)$, for any sequence $u_{n} \rightarrow 0$, we have

$$
\begin{aligned}
\liminf _{n \rightarrow \infty} P\left(u_{n}\right) & \geq \liminf _{n \rightarrow \infty} P(0)+\left\langle v_{\infty}, u_{n}-0\right\rangle \\
& \geq P(0)
\end{aligned}
$$

Thus, $P_{\text {is }}$ Is at zero, so by part (i), $P_{0}=D_{0}$.
Furthermore, $v_{>} \in \partial P(0)$ ensures

$$
P(0)+P^{P}\left(v_{+}\right)=\left\langle v_{*}, 0\right\rangle=0
$$

Thus,

$$
\sup _{v \in P^{*}} g(v)=D_{0}=D_{0}=-P^{*}(v *)=g(v *) \text {. }
$$

Converseley, suppose $P_{0}=D_{0}$ and v_{∞} is a maximizer of the dual problem.
By (i), $P_{0}=D_{0} \Rightarrow P$ sc at 0 .
By Fenchel-Mareaur,

$$
\begin{aligned}
\nabla(0)=P^{\infty}(0) & =\sup _{v \in u^{\prime}}\langle v, 0\rangle-P^{\Phi}(v) \\
& =v_{v \in}^{g(v)} \\
& =g\left(v^{*}\right) \\
& =g(v) \\
& =-P^{\otimes}\left(v_{*}\right) .
\end{aligned}
$$

Thus, equality must hold in Young's inequality, $v_{\infty} \in \partial P(0)$.

Kantorovich Duality (x, d) Polish space

$$
\mu, \nu \in P(\chi)
$$

$c: x \times x \rightarrow[0,+\infty)$ lower semicontinuous

$$
\begin{equation*}
\min _{\gamma: \gamma \in \Gamma(\mu, v)} \overbrace{\int_{x \times x} c\left(x^{2}, x^{2}\right) d \gamma\left(x^{1}, x^{2}\right)}^{\mathbb{K}(\gamma)} \tag{KP}
\end{equation*}
$$

This is a convex optimization problem. To find its dual...
(1) Rewrite as unconstrained optimization problem.
(2) Identify "perturbation" function $F(x, u)$ so that (KP) $=D_{0}$.

We will do this via introducing a Lagrange multiplier.

Recall: Lagrange multipliers in Calculus...
Given $A \in m_{m \times n}(\mathbb{R}), b \in \mathbb{R}^{m}$

$$
\inf _{A x} f_{b} f(x)=\operatorname{in}_{x \in \|_{\mathbb{R}} n} f(x)+x_{\{x: A x=b\}}
$$

$$
\begin{aligned}
&=\operatorname{lif}_{x \in \mathbb{R}^{n}} \underbrace{}_{\substack{\sup \in \mathbb{R}^{m}\\
}} f(x)+\langle\lambda, A x-b\rangle \\
&= \begin{cases}f(x) & \text { if } A x=b \\
+\infty & \text { if } A x \neq b\end{cases}
\end{aligned}
$$

Relation to Primal/Dual Problem:
Primal problem: $P_{0}:=\inf _{x \in \mathbb{Z}} f(x), f(x)=F(x, 0)$
dual problem: $D_{0}:=\sup _{v \in \mathcal{U}^{*}} g(v), \quad g(v)=-F^{*}(0, v)$.
Note that

$$
\begin{aligned}
g(v)=-F^{0}(0, v)= & -\sup _{(x, u) \in X, u}(0, u)+(v, u)-F(x, u) \\
& =\inf _{(x, u) \in X \times u} F(x, u)-\langle v, u)
\end{aligned}
$$

Thus,

$$
\left.D_{0}=\sup _{v \in U^{*}(x, u) \in X \times U} \inf _{x}(x, u)-\langle v, u\rangle\right] \begin{aligned}
& \text { saddle } \\
& \text { point } \\
& \text { problem }
\end{aligned}
$$

Moral: Introducing a Lagrange multiplier to remove constraints can Shed light on how to choose perturbation function $F(x, u)$.

How to do this for (KP)?
Recall: for (x, d) locally compact,
Banach space $\left|\left(C_{0}(x),\|\cdot\|_{\infty}\right)\right|\left(C_{b}(x),\|\cdot\|_{\infty}\right)$
Dual space $\left(\operatorname{c\mu }^{s}(x),\|\cdot\| T v\right) \left\lvert\, \begin{aligned} & {\left[\begin{array}{l}\text { big space, containing } \\ \left.\left(c v^{2}(x),\|\cdot\| T v\right)\right]\end{array}\right)}\end{aligned}\right.$
Weak-*topolgy wide topology narrow topology
If (x, d) compact, all of above notions co incicle.

Given $\varphi_{\in} C_{b}(x), \quad \mu \in \mathcal{M}^{s}(x)$, let

$$
\langle\mu, \Phi\rangle=\int_{x} \Phi(x) d \mu(x)
$$

Fact: $\mu=\nu \Leftrightarrow\langle\mu, \varphi\rangle=(\nu, \varphi\rangle \quad \forall \varphi \in C b(x)$.
Lemma: Given $\mu, v \in P(x), \quad \gamma \in \mu(\chi \times x)$

$$
\sup _{\phi_{1} \psi \in \operatorname{Co}(x)}\left\langle\mu-\pi^{1 \# \gamma}, \varphi\right\rangle+\left\langle\nu-\pi^{2} \# \gamma, \psi\right\rangle=x_{\Gamma(\mu, \nu)}(\gamma) .
$$

Of: The equality is clearly true if $\gamma \in \Gamma(\mu, \nu)$.
If $\gamma \in \mu(x \times \chi) \backslash \Gamma(\mu, \nu)$, then either $\pi^{1} \# \gamma \neq \mu$ or $\pi^{2} \# \gamma \neq \nu$. WLOG $\pi^{1} \# \gamma \neq \mu$, so $\exists \varphi_{0} \in C_{b}(x)$ So that $\left\langle\mu-\pi^{1} \# \gamma, \varphi_{0}\right\rangle=c_{0} \neq 0$.

Define, for $n \in \mathbb{N}$,

$$
\left.\varphi_{n} \mid x\right)=\operatorname{sgn}\left(c_{0}\right) n Q_{0}(x) \in(b(x)
$$

Then

$$
\begin{aligned}
& \text { Then } \\
& \lim _{n \rightarrow \infty}\left\langle\mu-\pi^{1 \#} \#, \varphi_{n}\right\rangle=\lim _{n \rightarrow \infty} \operatorname{sgn}\left(c_{0}\right) n \overbrace{\mu-\pi^{1 \#}+\varphi_{0}}\rangle \\
&=\lim _{n \rightarrow \infty}\left|\operatorname{Col}_{0}\right| n \\
&=+\infty
\end{aligned}
$$

