Lecture 9

Recall:

Def: Given mors X, $f: X \to IRU \{t \to t\}$ proper, x $\in D(f)$, the subdifferential of f at xis the set valued operator $\partial f(x) = \{y \in X^* : f(x') \ge f(x) + \langle y, x' - x \rangle + o([x' - x]), as x' \to x \}$ If $x \notin D(f)$, $\partial f(x) = \emptyset$.

Thm: If f is deferentiable at $x \in D(f)$, then $\partial f(x) = \{ \nabla f(x) \}$.

 $\frac{P_{rop}: If f: \chi \rightarrow RU\{+,\infty\} \text{ is convex and}}{\chi \in D(f), \text{ then}}$ $\frac{\partial f(\chi) = \{y \in \chi^*: f(\chi') \ge f(\chi) + \langle y, \chi' - \chi \rangle \forall \chi' \in \chi\}}{\chi \in \chi\}}$

 $\frac{Prop}{Given f: X \rightarrow 1RU_{2}^{*} \rightarrow 3} \text{ proper and convex,} \\ u \in \partial f(x_{\delta}) \iff f(x_{\delta}) + f^{*}(y_{\delta}) = \langle y_{\delta}, x_{\delta} \rangle$

° U U '

Prop: Suppose f is convex and it is lsc at $x_0 \in D(f)$. Then $x_0 \in Jf^*(y_0) \Longrightarrow$ $y_0 \in Jf(x_0)$

<u>Thim</u>: Suppose f is proper, convex, and lsc. Then $y \in \partial f(x) \in \mathcal{F} \times \mathcal{E} \partial f^*(y)$.

 $\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \\ \begin{array}{l} \begin{array}{l} \begin{array}{l} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \atop \begin{array}{l} \begin{array}{l} \begin{array}{l} \end{array} \end{array} \end{array} \atop \begin{array}{l} \end{array} \end{array}$

Primal/Dual Optimization Problems

Goal of convex optimization: given f convex, C convex, solve

 $inf f(x) = inf f(x) + \chi_c(x)$ $x \in \chi$

Key trick: observe the behavior of this optimization problem under perturbations.

Def: Given normed vector spaces Xand U and a convex function $F: X \times U \longrightarrow \mathbb{R} \cup \{+\infty\}$.

 $\frac{\text{primal problem}}{\text{xe} \chi} = \frac{1}{2} \frac{1}$ dual problem: $D_0:=\sup_{v \in \mathcal{U}} g(v), g(v) = -F'(0,v).$

Remark: X×U is a nors with dual X*×U* and duality pairing $\langle (y,v), (x,u) \rangle = \langle (y,x) + \langle v,u \rangle$

In this case, Young's inequality is F(x, u) + F'(y, v) = (y, x) + (v, u).

In particular,

$$f(x) - g(v) \ge 0 \iff f(x) \ge g(v) \quad \forall x \in X, v \in U^*$$

 $(\Longrightarrow) P_0 \ge D_0$
Thus, we will seek conditions on F
that ensure $P_0 = D_0$, i.e. "there is
no duality gap"

The (Equivalence of Primal and Dual Problems):
Given
$$F: X \times U \rightarrow (R \cup E + \infty)^2$$
 convex, suppose
 $P < + \infty$. "The primal problem is feasible"
Define the inf-projection $P(u) := \inf_{x \in X} F(x, u)$.
Then
(i) $P_0 = D_0 \iff P$ is Isc at $n = 0$.
(ii) $P_0 = D_0$ and a maximizer of dual problem exists
 $\iff \partial P(0) \neq \emptyset$.

$$P_{f}$$
 (1) Show $P(u)$ is proper and convex.
By assumption $P(o) = P_{o} < +\infty$.

$$P((1-\alpha)u_{0} + \alpha u_{2}) = \inf_{x \in I} X F(x, u_{\alpha})$$

$$= F(x_{0}, u_{\alpha}) \quad \forall x_{0} \in X$$

$$= F((1-\alpha)x_{0} + \alpha u_{1}), \forall x_{0}$$

$$= (1-\alpha)F(x_{0}, u_{0}) + \alpha F(x_{0}, u_{1}), \forall x_{0}$$
Taking inf over x_{0} , $P(u_{\alpha}) = (1-\alpha)P(u_{0}) + \alpha P(u_{1})$.
(2) $P_{0} = D_{0} \Leftrightarrow P(0) = P^{**}(0)$
By definition,

$$P^{*}(u) = \sup_{u \in U} \langle v, u \rangle - P(u)$$

$$= \sup_{u \in U} \langle v, u \rangle - F(x, u)$$

$$= F^{*}(0, v)$$

$$= -g(v)$$

$$P^{**}(u) = \sup_{v \in U^{*}} \langle v, u \rangle + g(v)$$

$$P^{**}(0) = \sup_{v \in U^{*}} g(v) = D_{0}.$$

Since $P(0) = P_{0}$, this gives the result.
(3) We now show (i).
Since P is convex, $O \in D(P)$, Fenchel-Moreau
ensures $P(0) = P^{**}(0) \Leftrightarrow P$ is lsc at O.
(4) We now show (ii).
Suppose $v_{*} \in \partial P(0)$.
Since P is convex, $O \in D(P)$, for any
sequence $un \Rightarrow O$, we have

$$\lim_{n \to \infty} P(un) \ge \lim_{n \Rightarrow d} P(0) + (v_{*}, un = 0)$$

 $\ge P(0)$
Thus, P is lsc at geno, so by part (i), P_{0} = D_{0}.
Furthermore, $v_{*} \in \partial P(0)$ ensures
 $P(0) + P^{*}(v_{*}) = \langle v_{*}, 0 \rangle = 0$
Thus,
 $v_{*} \cdot U^{*} g(v) = D_{0} = P_{0} = -P(v_{*}) = g(v_{*}).$

Converseley, suppose
$$P_0 = D_0$$
 and V_* is
a maximizer of the dual problem.
By (i), $P_0 = D_0 \Longrightarrow P$ (sc at 0.
By Fenchel-Mareau,
 $P(0) = P^{**}(0) = \sup_{v \in V^*} \langle v, 0 \rangle - P^{*}(v)$
 $= \sup_{v \in V^*} g(v)$
 $= q(v_*)$
 $= - P^{*}(v_*).$

_

Thus, equality must hold in Houng's inequality,
$$\tau_{+} \in \partial P(0)$$
.

min
$$\int c(x^{4}, x^{2}) dV(x^{4}, x^{2})$$
 (KP)
 $\gamma: \gamma \in \Gamma(\mu, \nu) \times \chi$

This is a convex optimization problem. To find its dual...

 Rewrite as unconstrained optimization problem.
 Identify "perturbation" function Flx, u) so that (KP) = Do.

We will do this via introducing a
Logrange multiplier.
Recall: Lagrange multipliers in Calculus...
Given
$$A \in Mm \times n(TR)$$
, $b \in IR^m$
 $inf_{Ax > b} f(x) = inf_{x \in IR^n} f(x) + \chi_{\xi_X:Ax = b_y^2}(x)$

$$= \underset{\substack{\chi \in \mathbb{R}^{m} \\ \chi \in \mathbb{R}^{m}}{\overset{\text{sup}}{\underset{\substack{\lambda \in \mathbb{R}^{m} \\ f(\chi) \\$$

Relation to Primal / Dual Problem:

$$\frac{\text{primal problem}}{\text{xe} \chi} (P_{0} := \inf f(x)), \quad f(x) = F(x, 0)$$

$$\frac{\text{dual problem}}{\text{bo}} D_{0} := \sup g(w), \quad g(w) = -F'(0, w).$$

$$\frac{\text{ve} \chi}{\text{ve} \chi}$$

Note that

$$g(v) = -F^*(0,v) = -\sup_{(x,v) \in X} \langle 0,x \rangle + \langle v,v \rangle - F(x,v) \\ (x,v) \in X \cdot U$$

$$= \inf_{(x,v) \in X \cdot U} F(x,v) - \langle v,v \rangle$$

$$(x,v) \in X \cdot U$$

-1

Moral: Introducing a Lagrange multiplier to remark constraint can shed light on how to choose perturbation function F(x, u).

How to do this for (KP)? Recall: for (X,d) locally compact, Banachspace $(C_0(X), \|\cdot\|_{\infty})$ $(C_b(X), \|\cdot\|_{\infty})$ Dual space $(\mathcal{M}^{s}(X), ||\cdot||_{TV})$ [big space, containing $(\mathcal{M}^{s}(X), ||\cdot||_{TV})$] Weak-* topology wide topology narrow topology If (X, d) compact, all of above notions coincide. Given PE(b(X), MECHS(X), let $\langle \mu, \varphi \rangle = \int_{X} \varphi(x) d\mu(x).$ Fact: $\mu = \nu \Leftrightarrow \langle \mu, q \rangle = \langle \nu, q \rangle \quad \forall \quad q \in Cb(X).$ $\frac{\text{Zemma}: \text{Given }\mu, \nu \in \mathbb{P}(X), \quad X \in \mathcal{M}(X \times X)}{\sup \quad (\mu - \pi^{2} \# X, \Psi) + (\nu - \pi^{2} \# X, \Psi) = \chi_{\Gamma(\mu, \nu)}(X).}$

Of: The equality is clearly true if $\mathcal{EP}(\mu, \nu)$. If $\mathcal{E} \in \mathcal{M}(X \times X) \setminus \Gamma(\mu, \nu)$, then either $\pi^{1\#} \mathcal{E} \neq \mu$ or $\pi^{2\#} \mathcal{E} \neq \nu$. WLOG $\pi^{1\#} \mathcal{E} \neq \mu$, so $\exists \mathcal{P}_0 \in (\mathcal{L}(X))$ So that $(\mu - \pi^{1\#} \mathcal{E}, \mathcal{P}_0) = \mathcal{L}_0 \neq 0$.

