Lecture 7	I will attempt to have a
Recall:	sychronows zoom option starting next week.

Lemma: Given Polish spaces (X, dx), (Y, dy), and $y_{unsn=i} \in P(X)$ narrowly converging to μ , then for any continuous function $t: X \rightarrow Y$, $t \neq y_{un}$ narrowly converges to $t \neq \mu$.

Prop: Given a Polish space (χ, ϱ) and $\mu, \nu \in P(\chi)$, $\overline{\Gamma}(\mu, \nu)$ is compact in the narrow topology.

Lemma: Suppose q: X > IRU{ta} is lsc and bounded below. Then J Egrik=1=(blx) s.t. 123+00 gr(x) 7g(x) Y x e X.

Thm (Portmanteau): For any g: X-> RUE+03 Isc and bounded below, the functional u+> Sqdu is Isc with narrow conv in (P(x), that is un ~ u narrowly => lim Sgdun 2 Sgdu.

Combining these results, by the Direct Method of the Calculus of Pariations, we obtain... "cost function"

Thm: Given a Polish (space (X, d), for any function $C: X \times X \rightarrow IRU \{\pm \omega\}$ that is isc and bounded below and $u, v \in P(X)$, there exists $\forall_{\pi} \in \Gamma(u, v)$ satisfying $\forall_{\pi} \in \min_{X \in T(u, v)} Sc(x^{2}, x^{2}) dX(x^{1}, x^{2}).$ In particular, taking $c(x^2, x^2) = d(x^2, x^2)^p$, we obtain that a solution to Kantorovich's problem exists.

Thus, for any $\mu, \nu \in P(X)$, there exists an optimal transport plan \mathcal{X}_*

Why was narrow topology the "right" topology? Recall:

(X, d) locally compact metric space Banach space $(C_0(X), || \cdot ||_{\infty})$ $(C_b(X), || \cdot ||_{\infty})$ Dual space $(\mathcal{M}^{s}(X), || \cdot ||_{\tau v})$ [big space, containing $(\mathcal{M}(X), || \cdot ||_{\tau v})$] Weak-* topolgy wide topology narrow topology

Mu, v) is narrowly cpt
$$\Rightarrow$$
 widely cpt
But the objective function may not
be $1sc$ in wide topology.
Let $c(x^2, x^2) = d(x^2, x^2) - 1$.
Consider $\forall n := \delta(n, n) \in P(\mathbb{R} \times \mathbb{R})$.
Exercise: $\forall n \Rightarrow O$ in the wide topology
However, $\lim_{n \to \infty} Sc(x^2, x^2) d \delta n(x^3, x^2)$
 $= \lim_{n \to \infty} S(d(x^2, x^2) - 1) d \delta n(x^2, x^2)$
 $= -1$
 $< O$
 $= Sc(x^2, x^2) d \delta (x^2, x^2)$.

Moral: Wile convergence can allow mass to escape to infinity.

However ...

Prop: Given a locally compact Polish space X and Eµnsn=1 and µ in P/X) satisfying $\lim_{n \to \infty} Sfd\mu n = Sfd\mu \text{ for all } fe(c(X)).$ Then, un ju narrowly. In particular, wide convergence + mass conservation (=) narrow conv. increasing seguence of compactsets Pf: Fix fe(b(X). Since {µ} is tight, ¥ kelN, ∃ K_kCCX s.t. µ(X \ K_k)= k. By Tietze extension theorem, ∃ lk ∈ C(XO) s.t. lk=1 on K_k, supp lk CCX, O≤ lk ≤ 1 and lk/1 pointwise. Then, YKEIN, $\lim_{n \to \infty} Sf + \|f\|_{\infty} d\mu n \ge \lim_{n \to \infty} S(f + \|f\|_{\infty}) \mathbb{I}_{k} d\mu n$ $= S(f + \|f\|_{\infty}) \mathbb{I}_{k} d\mu$

 $\lim_{n \to \infty} Sf - \|f\|_{\infty} d\mu n \leq \lim_{n \to \infty} S(f - \|f\|_{\infty}) \mathbb{I}_{k} d\mu n$ $= S(f - \|f\|_{\infty}) \mathbb{I}_{k} d\mu$

Rmk: The distinction between narrow and wide convergence is especially important when X is not locally compact, e.g. $X = C(E_0, I_j; IR)$ or $X = P(IR^d)$.

So we solved Kantorovich's problem... ... how does this help us solve monge's problem? via the Kantorovich dual problem. Crash course in convex analysis and optimization Let (X, II. II.x) be a normed vector space.

Let (X*, II. IIx*) be its dual space, that is, the set of all bounded linear functionals on X with $\|y\|_{X^*} = \sup_{x \in X} y(x)$ $\|x\| \le 1$

Given $x \in X, y \in X^*$, let $\langle y, x \rangle = : y(x)$

Exercise: • For any collection of convex functions (fi)iEI on X, ieffi(x) is convex. • For any collection of lsc functions (fi)iEI on X, iEI fi(x) is lsc. Def: Given f: X > IRUEtag propen, its conjugate f*: X* > IRUEtag is $f^*(y) = x \in \chi \{ \langle y, \chi \rangle - f(\chi) \}.$

Ex: Suppose $X = \mathbb{R}$ and $f(x) = e^{x}$. Then $f^{*}(y) = \sup_{x \in \mathbb{R}} \{yx - e^{x}\} = -\inf_{x \in \mathbb{R}} \{e^{x} - yx\}.$ If y < 0, $f^{*}(y) = +\infty$. If y = 0, $f^{*}(y) = 0$. If y>0... then $x \mapsto e^{x} - yx$ is a convex, differentiable fin, so a critical point is a global minimizer $e^{\chi_{*}} - y = 0 \iff \chi_{*} = \log[y] \iff - \{e^{\chi_{*}} - y\chi_{*}\} = -y + y \log y$ Thus, $f^*(y) = (+\infty)$ if y < 0, $(y \log y - y)$ if y > 0.

Exercise: If $f(x) = \frac{1}{p} |x|^p$, find $f^*(y)$.

An immediate consequence of the defn is ...

Proplyoung's Inequality): YXEX, YEX* $f^{*}(y) + f(x) \ge \langle y, x \rangle$

Another immediate consequence of the defn and the above exercises is...

Lemma: For any f:X->TRUE+23 proper, f* is convex and ISC.

In a similar way, we may define

Def: Given a nors X and f: X-> RUE of proper, its biconjugate f**: X-> RUE toog $f^{**}(x) = \sup_{y \in X^*} \{(y, x) - f^*(y)\}.$ Note that, for all f proper, $x \in X$, $f^*(y) + f(x) \ge \langle y, \chi \rangle$ $\forall y \in X^*(Y_{oung})$ $f(x) \ge \langle y, \chi \rangle - f^*(y) \forall y \in X^*$ $f(x) \ge f^*(\chi)$

Note that, since f^{**} is always convex and lower semicontinuous, a necessary condition for $f = f^{**}$ is that \$ is convex and lsc. In fact, this is sufficient!

Thm (Fenchel-Moreau): Given a nors X and f: X -> IRUE+22 proper, (i) f convex and Isc (=) f=f** (ii) If f is convex and f(xo) <+ ∞, then f is Isc at xo (=) f(xo) = f**(xo).

Pf: by Hahn-Barach : D

Exercise: • If xo is a minimizer of f, what is f*(0)? • If xo is a local minimizer of f, that is, there exists a neighborhood $U of x_0 s.t. f(x_0) \leq f(y_1) \forall y \in U$, and f is convex, prove that xo is