Lecture 3
Recall:

$$
\begin{aligned}
& t \# \mu=\nu \Leftrightarrow \nu(B)=\mu\left(t^{-1}(B)\right) \quad \forall B \in \mathbb{B}(M) \\
& \Leftrightarrow \int_{x} \varphi(t(x)) d \mu(x)=\int_{x} \varphi(y) d \nu(y) \quad \forall \varphi \in L^{1}(\nu) \\
& \text { Morel meas. }
\end{aligned}
$$

Mange's Optimal Transport Problem: Given $\mu, \nu \in P(x)$, solve

$$
\begin{gathered}
\text { constraint } \\
\text { set }
\end{gathered} \min _{t: t \neq \mu=\nu} \underbrace{\int d(x, t(x)) d \mu(x)}_{\text {objective function }}
$$

Reasons the Mange problem is difficult:
Difficulty \#1: the constraint set can be empty
Def: $\mu \in P_{R}(x)$ is an empirical measure if $\mu=\frac{1}{N} \sum_{i=1}^{N} \delta_{x_{i}}$ for $\left.\left\{x_{i}\right\}\right\}_{i=1}^{N} \in \mathbb{R}^{d}$.
Exercise: If μ is an empirical measure, then for any transp. map. $t, t \# \mu$ is an emp. meas.

Difficulty \#2: solutions may not be unique
Difficulty \#3: the constraint set is nonconvex (along linear interpolations)
Recall:
Def: A subset C of a vector space X is convex, if, $\forall x_{0}, x, \in C$,
(alonglin. inters.)

$$
x_{\alpha}:=(1-\alpha) x_{0}+\alpha x_{1} \in C, \quad \forall \alpha \in[0,1] .
$$

Generally, in optimization, we want ow constraint set C to be convex, since our normal strategy is to take an initial guess, pertarb it, and see if the objective function decreases.
(linear) perturbations can kick us out of the constraint set

Ex: Consider "books on a shelf" example from last time.

$$
\begin{aligned}
& t_{0}(x)=x+\frac{1}{4} \\
& t_{1}(x)= \begin{cases}x+1 & \text { if } x \in[0,1 / 4) \\
x & \text { otherwise }\end{cases}
\end{aligned}
$$

Consider a convex combination:

$$
t_{\alpha}(x)=(1-\alpha) t_{0}(x)+\alpha t_{1}(x)
$$

For example, $t_{\frac{1}{2}}(x)= \begin{cases}x+\frac{5}{8} & \text { if } x \in\left[0 \frac{1}{14}\right] \\ x+\frac{1}{8} & \text { otherwise }\end{cases}$
Then,

Moral: Even though to $\# \mu=\nu$ and $t_{1} \# \mu=\nu$, we do not have $t^{2} \# \mu=v$ for all $\alpha \in[0,1]$.

That is, $\{t: t \# \mu=\nu\}$ is not convex.
Solution: consider transport plans

In fact, finding t s.t. $t \# \mu=\nu$ relates to well-known problems in geometric PDE.

Prop (change of variables formula): Suppose $\overline{\mu \in} L^{1}\left(\mathbb{R}^{d}\right) \& P\left(\mathbb{R}^{d}\right)$ and $t: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ is C^{1}, one to one and $\operatorname{det} D t \neq 0$. Then,

$$
\begin{aligned}
& t^{-10} t=i d \\
& t^{-1}(t(x))=x
\end{aligned}
$$

$$
d(t \neq \mu)(y)=\frac{\mu}{|\operatorname{det} D t|} \cdot t^{-1}(y) \underbrace{\frac{1}{2}(y) d y}_{t\left(\mathbb{R}^{d}\right)}
$$

Pl: By definition of the pushforward, for all bounded, meas φ,

$$
\begin{aligned}
& \int_{\mathbb{R}^{d}} \varphi(y) d(t \# \mu)(y) \\
& =\int_{\mathbb{R}^{d}} \varphi \cdot t(x) d \mu(x) \\
& =\int_{\mathbb{R}^{d}} \varphi_{0} t(x) \mu(x) d x \\
& =\int_{\mathbb{R}^{d}} \varphi_{0} t(x) \mu^{0} t^{-1} \cdot t(x) \frac{\frac{\text { set } D t(x)}{\text { detDtlot-10t(x)}}}{\text { change of variables tum }} \\
& \begin{aligned}
& i \text { change of variables } \\
& y=t(x)
\end{aligned} \\
& =\int_{t\left(\mathbb{R}^{d}\right)} \Phi(y) \mu^{0} t^{-1}(y) \frac{1}{\mid \operatorname{det}+D t^{0} t^{-1}(y)} d y \quad \begin{array}{l}
\quad y=t(x) \\
d y=(\operatorname{det}|D t|(x) d x
\end{array} \\
& =\int_{\mathbb{R}^{d}} \Phi(y)\left(\frac{\mu}{(\operatorname{det} D t)}\right) \cdot t^{-1}(y) 1_{t\left(\mathbb{R}^{d}\right)}(y) d y
\end{aligned}
$$

In particular, for $Q=1 B, B \in B(x)$.
Note that if $B \subseteq t\left(\mathbb{R}^{d}\right)^{c}$, then $\left(t^{*} \mu\right)(B)=0$.

Exercise: Suppose $\mu \in L^{1}\left(\mathbb{R}^{d}\right)$ and $t(x)=a x+b$ for $a>0, b \in \mathbb{R}^{d}$. Prove that $d\left(t^{*} \mu\right)(y)=\frac{1}{a^{d}} \mu\left(\frac{y-b}{a}\right) d y$.

Thus, if $t=\nabla \varphi$, the above proposition ensures that $t^{\#} \mu=\nu$ iff

$$
\left.\frac{\mu(x)}{\left|\operatorname{det} D^{2} \varphi(x)\right|}=\nu(\nabla Q(x)) \underset{\text { if } \nu>0 \text { ont }\left(\mathbb{R}^{d}\right)}{\Leftrightarrow} \right\rvert\, D^{2} Q \|(x)=\frac{\mu(x)}{\nu(\nabla \Phi(x)}
$$

Given μ, v, we would seek to solve for Q such that the above equation holds. We will often restrict to ϕ s.t. $\operatorname{det} D^{2} \varphi(x)>0$.

This is a type of Mange Ampere equation: $\left\{\right.$ Find φ s.t. $\operatorname{det} D^{2} \varphi(x)=F(x, \varphi(x), \nabla \varphi(x))$. How can we get around the difficulties
of Monge's problem? of Mange's problem?

Relax the problem.
Leonid Kantorovich, 1942
Red Plenty
"On the translocation of masses"
Notation:
Projection maps: for $i=1,2$, define $\pi^{i:} \chi \times \chi \rightarrow \chi$ by $\pi^{1}\left(x^{1}, x^{2}\right)=x^{1}, \pi^{2}\left(x^{1}, x^{2}\right)=x^{2}$.
Marginals: for $\gamma \in P(x \times x)$, its first and second marginals are $\pi^{1} \# \gamma(A)=\gamma\left(\left(\pi^{1}\right)^{-1}(A)\right)$ $=\gamma(A \times X)$ and $\pi^{2 \#} \gamma(B)=\gamma(X \times B)$.

Def: Given $\mu, \nu \in P(\lambda)$, the set of transport plans from μ to ν is

$$
\Gamma(\mu, \nu)=\left\{\gamma \in P(x \times \chi): \pi^{1 \# \gamma}=\mu, \pi^{2} \# \gamma=\nu\right\} .
$$

We will use transport plans as a new way to model rearranging mass in μ to look like ν.
$\gamma(A \times B)=$ the amount of mass from $\mu(A)$ that is sent to $v(B)$.

How do transport plans relate to transport maps?
Lemma: Given $\mu, \nu \in P(x)$, if $t \# \mu=\nu$, then $\gamma:=(i d \times t) \# \mu \in \Gamma(\mu, \nu)$.

Pf: By definition,

$$
\begin{aligned}
\gamma(A \times B) & =\mu\left((i d \times t)^{-1}(A \times B)\right) \\
& =\mu(\{x:(x, t(x)) \in A \times B\}) \\
& =\mu(\{x \in A: t(x) \in B\})
\end{aligned}
$$

Then, for all $A \in B(\chi)$
$\left(\pi^{1} \# \gamma\right)(A)=\gamma(A \times X)=\mu(A)$, so $\pi^{1 \# \gamma}=\mu$.
Similarly, $\pi^{2} \# \gamma(B)=\gamma(X \times B)=\mu\left(t^{-1}(B)\right)=\nu(B)$ for all $\mathbb{B} \in \mathbb{B}(x)$, so $\pi^{2 \#} \gamma=\nu$.

Visualizing transport plans

Ex: For μ, ν as below, consider the transport plan "where all mass starting at location x_{0} in μ is distributed evenly in v."

$$
\gamma(A \times B)=\mu(A) \nu(B)
$$

Bird's eye view:

Side view:

Remark: This example illustrates the fact that, for any $\mu, \nu \in P(x)$, there exists $\gamma \in \Gamma(\mu, \nu)$ given by $\gamma:=\mu(\otimes)$,

$$
\mu(\otimes v(A \times B)=\mu(A) v(B)
$$

For any $\mu, \nu \in P(x)$, the transport plan $\gamma=\mu \otimes Q$ "takes mass from any location x_{0} in μ and distributes it across ν, in proportion to the amount of mass ν assigns to each location."

Moral: (1) $\forall \mu, \nu \in P(x), \quad \Gamma / \mu, \nu) \neq \varnothing$
(2) transport plans can "split mass"

Ex: For $\mu=\frac{1}{2}\left(1_{[0,1]}+1_{[2,3]}\right), \nu=\frac{1}{2}\left(1_{[0,2]}\right)$, consider the transport map

$$
t(x)=\left\{\begin{array}{lll}
x & \text { if } & x \in[0,1] \\
x-1 & \text { if } & \text { otherwise }
\end{array}\right.
$$

By lemma, $\quad \gamma:=(i d \times t) \# \mu \in \Gamma(\mu, \nu)$

Mass starting at x_{0} is only sent to $t\left(x_{0}\right)$.

Bird's eye view:

Side view:

Foreshadowing: When $\mu \ll \lambda^{d}$, we will see that γ is an optimal transport plan from μ to ν if it is supported on $\left\{(x, t(x)): x \in \mathbb{R}^{d}\right\}$ for an increasing
function $t(x)$.

