Lecture 2
Recall:
Given $\mu \in P(x), B \in B(x)$,
$\mu(B)=$ amt. of dirt in the pile μ that lies in B.
If $(x, d)=\left(\mathbb{R}^{d}, 1 \cdot 1\right)$ and $\mu \ll \lambda, d \mu(x)=\mu(x) d x$ and $\mu(B)=\int_{B} \mu(x) d x=$ amt. of dirt in B.
What does it mean to "rearrange one probability measure to look like another"?
\qquad

$$
\forall B \in B(x), t^{-1}(B) \in B(x)
$$

Def (transport map): Given : $\mu \in P(x), v \in P(Y)$, a Pheasurable function $n t: x \rightarrow 4$ transports μ to ν if

$$
\nu(B)=\mu\left(t^{-1}(B)\right) \quad \forall B \in B(Y)
$$

We call ν the push forward of μ under t, writing $\nu=t \# \mu$, and we coll t The transport map_from μ to v

"the amount of mass that ν assigns to B equals the amount of mass sent there from μ "
Informally, "mass starting at location x in μ is sent to location $t(x)$ in $v^{\prime \prime}$

Sanity check: if $\mu \in P(x)$ and $t: x \rightarrow 4$ is measurable, is $t \# \mu$ always a prob measure?

$$
\left(t^{\#} \mu\right)(u)=\mu\left(t^{-1}(u)\right)=\mu(x)=1
$$

Ex(translation/dilation): Suppose $(x, d)=\left(\mathbb{R}^{d}, \cdot \mid 1\right)$. Fix $a>0, b \in \mathbb{R}^{d}$ and $t(x)=a x+b$.
dilation \cdots translation
Then for any $\mu \in P(x)$, t\# μ satisfies

$$
(t \neq \mu)(B)=\mu\left(t^{-1}(B)\right)=\mu\left(\frac{B-b}{a}\right)=\mu\left(\left\{\frac{y-b}{a}: y \in B\right\}\right), \forall B \in B(x) .
$$

Lemma (equiv characterization of transp. map) Given $\mu \in P(x), \nu \in P(M)$ and $t: X \rightarrow Y$ measurable, then $t \# \mu=\nu$ if and only if

$$
\int_{x} \varphi(t(x)) d \mu(x)=\int_{4} \varphi(y) d v(y) \quad \begin{aligned}
& \text { for all } \varphi: 4 \rightarrow \mathbb{R} \\
& \text { measurable, } \varphi \in L^{1}(v)
\end{aligned}
$$

Before we prove the lemma, recall:

- For any $B \in B(x)$, define the indicator $f n$

$$
I_{B}(x)=\left\{\begin{array}{lll}
0 & \text { if } & x \notin B \\
1 & \text { if } & x \in B
\end{array}\right.
$$

nonneg, integrable

- For any bod, meas fr φ, there exists a sequence of simple functions $f_{n}(x)=\sum_{i=1}^{n} C_{i, n} 1_{B_{i, n}}(x)$ s.t. f_{n} / φ pointwise.

De: First, note that if Q is an inclicatorfn, then, using the fact

$$
\Phi(t(x))=1_{B}(t(x))= \begin{cases}0 & \text { if } t(x) \notin B=1_{t^{\prime \prime}(B)}(x), \\ 1 & \text { if } t(x) \in B\end{cases}
$$

equation (*) becomes

$$
\begin{aligned}
& \int 1_{B}(t(x)) d \mu(x)=\int 1_{t^{-1}(B)}(x) d \mu(x)=\mu\left(t^{-1}(B)\right) \\
& \int 1_{B}(y) d \nu(y)=\nu(B)
\end{aligned}
$$

Thus:
(i) If egn (\Leftrightarrow) holds for all Q measurable
with $Q \in L^{1}(\nu)$, then it must hold for
$\varphi=1_{B}$, so the above remark gives $\nu(B)=\mu\left(t^{-1}(B)\right)$.
(ii) If $t \# \mu=\nu$, the above remark shows that $(\$)$ holds for all indicator functions.

Thus, (x) for all Q meas $w / ~ Q \in L^{1}(v)$ implies $t \not{ }^{\#} \mu=v$.

Now, assume t\# $\mu=v$.
We have (x) for all indicator f ns, $\varphi=1_{B}$. Furthermore, by linearity of the integral, (x) holds for all simple functions φ. nonneg, integrable
Next, suppose 9 is a boot, meas $f n$. Choose a seguence Q_{n} of simple f_{n} so that $\varphi_{n} \notin Q$ pointwise. Thus by the ctominated convergence theorem,
monotone

$$
\begin{aligned}
\int \Phi(t(x)) d \mu(x) & =\lim _{n \rightarrow \infty} \int \varphi_{n}(t(x)) d \mu(x) \\
& =\lim _{n \rightarrow \infty} \int \varphi_{n}(y) d \nu(y) \\
& =\int \Phi(y) d v(y)
\end{aligned}
$$

Thus, $(\mathbb{*})$ holds for all Q bd\&, meas. nonneg, integrable
Next, suppose Q is a nonnegative, meas fr in $L^{1}(v)$, and define

$$
\text { nth }_{\text {in }}^{\prime} \quad \min ^{2}(x)=\varphi(x) \wedge n \neq \min (\varphi(x), n)
$$

Then, by the monotone convergence theorerd,

$$
\begin{aligned}
\int \Phi(t(x)) d_{y}(x) & =\lim _{n \rightarrow \infty} \int \varphi_{n}(t(x)) d \mu(x) \\
& =\lim _{n \rightarrow \infty} \int \Phi_{n}(y) d v(y) \\
& =\int \Phi(y) d v(y)
\end{aligned}
$$

Finally, for Q an arlitivy meas f_{n} in $L^{1}(v)$, the result holds by writing,

$$
\varphi(x)=\varphi_{+}(x)-\varphi_{-}(x)=\underbrace{\Phi(x) \vee 0}_{\max (\varphi(x), 0)}-(-\varphi) \vee 0 . \square
$$

Now, we know what it means to "rearrange one measure to look like another", or, mare precisely, to transport one measure to another.
Back to original question: how can this
be done in the most efficient way?

Monge's Optimal Transport Problem:
Givers $\mu, \nu \in P(\chi)$ solve

$$
\min _{\substack{t: x \rightarrow x_{\text {measurable }}^{t \# \mu=\nu}}}\{\underbrace{\substack{\text { how far dirt is moved } \\ \nu(x, t(x)) d \mu(x)}}_{\substack{\text { effort to rearrange } \mu \text { to look k like } \\ \nu \text { via the transport map } t}}
$$

Throughout the course, weill see many optimization problems of ofecive function this former:
objective

$$
\min _{t \in C_{r}} \tilde{F}(t)
$$

Mental image:

Unfortunately, Mange's problem is a horrible optimization problem!
Sudakov 1979, Ambrosio and Pratell: 2001 Evans and Gangbo 1999

Reasons the Mange Problem is difficult:
Difficulty \# 1: the constraint set can be empty.
That is, given $\mu, \nu \in P(x)$, there doeon't necessarily exist any t meas s.t. $t^{*} \mu=\nu$.
Recall: $\delta_{x_{0}}$ is the probability measure $\delta x_{0}(B)=\left\{\begin{array}{l}0 \text { if } x_{0} \oplus B \\ 1 \\ 1\end{array} \mathrm{i}_{0} \in S\right\}$
Ex:

If $t^{\#} \mu=v$, then

$$
\lambda\left(B \cap[0, B)=\nu(B)=\mu\left(t^{-1}(B)\right)=\left\{\begin{array}{lll}
0 & \text { if } & t\left(\frac{1}{2}\right) \notin B \\
1 & \text { if } & t(1 / 2) \in B
\end{array}\right.\right.
$$

There is no such t for which this holds.

Heuristically, the problem is that a transport map t sends all mass starting at a location x_{0} to $t\left(x_{0}\right)$. In particular, mass cannot split.
On the other hand, note that $t(x)=\frac{1}{2}$ satisfies

$$
(t \nexists \nu)(B)=\nu\left(t^{-1}(B)\right)= \begin{cases}v(\phi) & \text { if } \frac{1}{2} \notin B=\delta_{1}(B)=\mu(B) \\ v(X) & \text { if } \frac{1}{2} \in B\end{cases}
$$

Two potential solutions to empty constraint set:
(a) don't allow source measure to
concentrate mass on "small sets"
(b) instead of considering transport maps, consider transport pldens.

Difficulty \#2: Solutions may not be unique.
That is, given $\mu, v \in P(x)$, there may exist multiple, distinct optimal transport maps.

Ex: "books on shelf"

Consider to $(x)=x+\frac{1}{4}$ "shifting all bookstoright" $t_{1}(x)=\left\{\begin{array}{lll}x+1 & \text { if } x \in\left[0_{1} / 4\right) & \text { "shift first } \\ x & \text { otherwise } & \text { booktoend" }\end{array}\right.$

Exercise: to $\# \mu=\nu$ and $t_{1} \# \mu=\nu$, so both to and t_{1} belong to the constraint set.
Fact (wil lshow later): t_{0} and t, are both optimal transport maps.

Potential solution to nonunigueness of optima modify effort to be "strictly convex"

Difficulty \#3: The constraint set is nonconvex

Recall:
Def: A subset C of a vector space X is cover if, $\forall x_{0}, x_{1} \in C$,

$$
x_{\alpha}:=(1-\alpha) x_{0}+\alpha x_{1} \in C, \quad \forall \alpha \in[0,1] .
$$

Generally, in optimization, we want our constrain g set C to be convex, since our normal strategy is to take an initial guess, perturb it, and see if the objective function decreases.

