Lecture 2

Recall :

Given $\mu \in P(x)$, $B \in B(x)$, $\mu(B) = ant.$ of dirt in the pile μ that lies in B. If $(x,d) = (\mathbb{R}^d, 1\cdot 1)$ and $\mu < \lambda$, $d\mu(x) = \mu(x)dx$ and $\mu(B) = \int_B \mu(x)dx = ant.$ of dirt in B. What does it mean to "rearrange one probability measure to look like another"? $\forall B \in B(x), t'(B) \in B(x)$

Def (transport map): Given: $\mu^e P(X), \nu \in P(Y),$ a measurable function 5t: X > 4 transports μ to ν if

 $v(B) = \mu(t^{-1}(B)) \forall B \in B(4)$

We call v the pushforward of under t, writing v=t#µ, and we call t the transport map from u to v

"The amount of mass that & assigns to IS equals the amount of mass sent there from "

Informally, "mass starting at location x in µ is sent to location t(x) in V"

Sanity check: if $\mu \in P(X)$ and t: X > 4 is measurable, is $t \neq \mu$ always a prob measure? $(t \neq \mu)(4) = \mu(t^{-1}(4)) = \mu(X) = 1$.

Exitranslation/dilation): Suppose $(\chi, d) = (\mathbb{R}^{d}, 1 \cdot 1)$. Fix a > 0, be \mathbb{R}^{d} and $t(\chi) = a\chi + b$.

dilation translation Then for any $\mu \in P(X)$, $t = \mu$ satisfies $(t * \mu)(B) = \mu(t^{-1}(B)) = \mu(\frac{B-b}{a}) = \mu(\xi = \frac{y-b}{a}; y \in B\xi) + B \in B(A).$

Lemma (equiv characterization of transp. map)
Given
$$\mu \in P(X)$$
, $\nu \in P(M \text{ and } t: X \rightarrow Y)$ measurable,
then $t * \mu = \nu$ if and only if
 $S = P(t(X)) d\mu(X) = S = S = P(y) d\nu(y)$ for all $q: Y \rightarrow \mathbb{R}$
 χ measurable, $q \in L^2(\nu)$
(**)

Before we prove the lemma, recall:

$$\begin{aligned} & P: First, note that if $P \text{ is an indicator fn,} \\ & then, using the fact \\ & P(t(x)) = 1_{B}(t(x)) = \begin{cases} 0 & \text{if } t(x) \notin B = 1_{t'(B)}(x), \\ 1 & \text{if } t(x) \notin B \end{cases} \end{aligned}$$$

equation (**) becomes $S1_{B(1)}d\mu(x) = S1_{E'(B)}(x)d\mu(x) = \mu(E'(B))$ " $S1_{B(Y)}d\nu(Y) = \nu(B).$

Thus: (i) If egn (*) holds for all 9 measurable with 962²(v), then it must hold for

9=1B, so the above remark gives $\neg (B) = \mu(t^{-1}(B)).$ (ii) If t#µ=v, the above remark shows that (#) holds for all indicator functions. Thus, Et) for all q meas w/ lel²(v) implies t # u=v.

Now, assume 2# n=v. We have (#) for all indicator fns, 9=18. Furthermore, by linearity of the integral, (#) holds for all simple functions 9. nonneg integrable Next, suppose quis a bold, mass fr. Choose a sequence qui of simple fris so that qui q pointwise. Thus by the dominated convergence theorem, S P(t(x)) duk = "" S Pult(x)) dulx) $= \lim_{n \to \infty} \int \Pr(y) d v(y)$ = SP(y)dv(y)

Thus, 6th holds for all 9 bdd, meas. nonneg integrable Noxt, suppose q is a nonnegative, meas fin in 2¹(v), and define $f(x) = Q(x) \wedge n = min(Q(x), n)$ Then, by the monotone convergence theorem, S P(t(x)) detet in S Putt(x)) dulx) Elim Jen (y)dvly = SP(y)dvly)Finally, for q an arbitrary meas fn in L²(v), the result holds by writing, $\varphi(x) = \varphi_{+}(x) - \varphi_{-}(x) = \varphi(x) \vee O - (-\varphi) \vee O \square$ max(Q(x), 0)Now, we know what it means to rearrange one measure to look like another", or, more precisely, to transport one measure to another. Back to original question: how can this be done in the most efficient way?

Monae's Optimal Transport Problem; Giver M, V E P(X), Solve how for dift is moved Jdbx, t(x) dp(x) min t: X->X measurable how much dirt 七#ル=ン effort to rearrange in to look like ~ via the transport map t

Throughout the course, we'll see many optimization problems of this form: min F(t) teC F. constraint set

Mental image: +(++)

Unfortunately, Monge's problem is a horrible optimization problem!

Sudakov 1979, Ambrosio and Pratelli 2001 Evans and Gangbo 1999

Reasons the Monge Problem is difficult: Difficulty #1: the constraint set can be empty. That is, given $\mu, \nu \in P(x)$, there doesn't necessarily exist any time as s.t. $t*\mu=\nu$. Recall: S_x is the probability measure S_x(B)={0 if x #B (1 if x *B

 $\frac{1}{2} = \frac{1}{2} \sqrt{2} \sqrt{2} \sqrt{2}$ If $t^{\#}\mu = \sqrt{2}$, then $\lambda(B \cap [0,0]) = \sqrt{2}(B) = \mu(t^{-1}(B)) = \begin{cases} 0 & \text{if } t(\frac{1}{2}) \notin B \\ 1 & \text{if } t(\frac{1}{2}) \in B \end{cases}$

There is no such I for which this holds.

Heuristically, the problem is that a transport map t sends all mass starting at a location x. to t(x.). In particular, mass cannot split.

On the other hand, note that $t(x)=\frac{1}{2}$ satisfies

 $(t + v)(B) = -i(t'(B)) = S_v(B) \quad if \neq B = S_1(B) = u(B).$ $v(\chi) \quad if \neq eB$

Iwo potential solutions to empty constraint set: (a) don't allow source measure to concentrate mass on "small sets" (b) instead of considering transport maps, consider transport plans.

Difficulty #2: Solutions may not be unique. That is, given unv EP(x), there may exist multiple, distinct optimal transport maps. Ex: "books on shelf" $1 + \frac{1}{1} +$

Consider $t_0(x) = x + \frac{1}{4}$ "shifting all bookstoright" $t_2(x) = (x + 1) \quad \text{if } x \in [0, \frac{1}{4})$ "shift first $(x) \quad \text{otherwise}$ book to end"

Exercise: to# u=v and ti# u=v, so both to and to belong to the constraint set. Fact (will show later): to and t, are both optimal transport maps.

Difficulty #3: The constraint set is nonconvex

Recall:

 \mathcal{D}_{ef} : A subset C of a vector space X is <u>convex</u> if, $\forall x_{0,X_{1}} \in C$,

 $\chi_{\alpha} := (1 - \alpha)\chi_{0} + \alpha\chi_{1} \in C, \quad \forall \alpha \in [0, 1].$

Generally, in optimization, we want our constraint set 'C to be convex, since our normal strategy is to take an initial quess, perturbilit, and see if the objective function decreases.

