Lecture 20

Recall :

Suppose (X, d) is a complete metric space. $\frac{\partial e}{\partial b}(abs\ cts): \times:(a,b) \rightarrow \chi \text{ is abs\ cts}, \\ dedoted \ \chi \in AC(a,b;\chi) \text{ if } g \in L^{1}(a,b) \text{ s.t.}$ $d(x(t_0), x(t_0)) \leq \int g(s) ds \forall a < t_0 \leq t_0 < b.$ Furthermore, if $g \in L^{p}(a,b)$, then we say $x \in A(\mathcal{O}(a,b; X))$. Def: (metric derivative): The metric derivative of x:(a,b) > X rs $|\chi'|(t) := \lim_{h \to 0} \frac{d(\chi(t+h), \chi(t))}{\|h\|}$

Theorem (characterization of abycts curves in W2): $AC^{2}(0,T; B(\mathbb{R}^{q}))$ (i) Suppose $\mu:[0,T] \rightarrow P_2(\mathbb{R}^{Q})$ is also cts. Then $\exists v s.t. (\mu,v)$ is a weak soln of ((E) and $\left(\int_{\mathbb{R}^{Q}}\int_{\mathbb{R}^{Q$ (ii)Conversely, suppose $\mu:[0,T] \rightarrow P_2(\mathbb{R}^d)$ and $\exists OV s.t.$ $\frac{1}{2} \left(\int h_{\mathcal{T}}(x,t) |^2 d\mu_{\mathcal{T}}(x) \right) dt < +\infty$ and (μ, ν) is a soln of (CE). $AC^{2}(0,T; B(R^{0}))$ Then, $\mu(t)$ is abscts and $|\mu'|(t) \in \left(\frac{\int |\nabla(x,t)|^2 d\mu_t(x)}{R^2} \right)^{1/2} \mathcal{L}_{a.e.} t \in [0,1]$

Our proof of (i) relies on this Lemma:

Lemma: Given E5KJEMd(X) with SUP 15Kl(X)<+00, E5KJ is tight iff it is relatively narrowly cpt. UL : Last time ... For simplicity, suppose $\exists R^{20} s.t.$ $\mu_{t}(B_{R}^{c}) \equiv 0$ and $T \equiv 1$. For KEIN, consider the "discrete time sequence" $\mu(k), \mu(k), \dots, \mu(k), \dots, \mu(k), \dots, \mu(k)$ and the mollified sequence $\mathcal{M}_{i/k}^{K} = \mathcal{P}_{i/k} * \mu(i/k).$ Then, by chaining to gether the Wasserstein geodesics connecting these points, we constructed

 $\mu^{k}: [0,1] \rightarrow (P(\mathbb{R}^{d}))$ 1rk: $\mathbb{R}^{d} \times [0,1] \rightarrow \mathbb{R}^{d}$ measurable

where $\mu_t^k(B_{R+1}^c)=0$, $(\mu_t^k v^k)$ is a weak solution of (CE) and for $t \in [1/k, 1/k]$,

 $\int |v^{k}(x,t)|^{2} d\mu_{t}(x) \leq \left(k \int |\mu'|(s)ds\right) \leq k \int |\mu'|^{2} (s) ds$

Note that, for any
$$f \in L^{1}(0,1)$$
, if
 $f_{k}(t) = k \int f(s) ds \quad f(r t) f(s) ds$

then, i''/k $\int f_{k}(t)dt = \int f(s)ds$ i'/ki'/k

Thus, for any
$$(a,b) \in (0,1)$$
, if $a \in \begin{bmatrix} ia-1 & ia \\ k & j \end{bmatrix}$
and $b \in \begin{bmatrix} ib \\ k & j \end{bmatrix}$,
 $\int f_{k}(t)dt = \int f(s)ds + \int f_{k}(t)dt$
 $ia/k \quad (a,ia/k) \cup (ib/k,b)$
 $= \int f(s)ds + \int f_{k}(t)dt$
 $(a,ia/k) \cup (ib/k,b)$,

where

$$\int f_{K}(t)dt = (\frac{i_{a}}{K} - a)K \int f(s)ds \leq \int f(s)ds$$

 $(a, i_{a}/k)$
 i_{a}/k
 i_{a}/k
 i_{a}/k
 i_{a}/k
 i_{a}/k
 i_{a}/k
 i_{a}/k
 i_{a}/k
 i_{a}/k

Thus,

$$\lim_{x \to +\infty} \int_{a}^{b} f_{k}(t) dt \leq \int_{a}^{b} f(s) ds$$
.
The particular, for all $(a,b) \in (0,1)$,

• taking
$$f = |\mu'|^2$$
 and apply $*$
 $\lim_{k \to 0} \sup_{k \to 0} \int |\psi'|^2 \langle \chi, t \rangle|^2 d\mu_t |\chi \rangle = \int |\mu'|^2 \langle t \rangle dt$
• taking $f = |\mu'|$ and apply $*$
 $\lim_{k \to 0} \sup_{k \to 0} \int (\int |\psi'| \langle \chi, t \rangle|^2 d\mu_t (\chi))^2 dt = \int |\mu'| \langle t \rangle dt$
 $\lim_{k \to 0} \sup_{k \to 0} \int \int \int |\psi'| \langle \chi, t \rangle| d\mu_t (\chi) dt$
Define $\sigma_{\chi} \in \mathcal{M}_{S}^{d} (\operatorname{IR}^{d} \times [0,])$ by

By above, $\bigcup_{k \to +\infty}^{limsup} \log \log (\mathbb{R}^d \times [0, \mathbb{I})) \leq \int_{0}^{1} |\mu'|(t) dt < +\infty$

Since SK are compactly supported, by lemma, there exists a subsequence or and section (Rex[0,]) s.t. or) o narrowly. Similarly, we obtain that ut converges narrowly to uk, uniformly in t, since, for Ite [/k, i+1/k] $W_2(\mu_t^k, \mu_t)$ $\leq W_2(\mu_k^k, \mu_{i/k}^k) + W_2(\mu_{i/k}^k, \mu_{i/k}^k) + W_2(\mu_{i/k}, \mu_k)$ = 12- = 1 Wz (~ i/k 1 / k 1 / k) + + k Mz () /2 + 5, 1, 1, 1' (s) ds =H-klWz(µi/k1, µi+1/k) + km2(q)/2 $+ \int_{k} |\mu'|(s)ds$ $\leq |t-k| \int_{k} |\mu'|(s)ds +$ 11

In particular, we also can obtain dut dt -> dut dt. Thus, Y qecc(Ra×[0,1]) Thus, v, $\int_{R^2} \partial_t P(x,t) d\mu_t dt + \int_{R^2} \int_{R^2} V(x,t) \nabla P(x,t) d\mu_t dt + \int_{R^2} \int_{R^2} \int_{R^2} V(x,t) \nabla P(x,t) d\mu_t dt = 0$ We now seek to show I v s.t. do = vdµtdt. To see this, note that since dor = Vrdutdt, dor << dutdt. $B(\mu_t^k dt, d\sigma_k) = \int \int |v_k|^2 d\mu_t^k dt$

Using Isc of By B(Mtdt, ds) < liminfor B(Mtdt, dok) $\leq \lim_{k \to 1+\infty} \int \int |v^k(x,t)|^2 d\mu_t(x) dt$ = 51 /12 (t) dt <+ 00

Therefore, we may conclude that do << dyedt.

Hence, 3 v(x,t) meas s.t.

Thus, (m, vr) solved (CE).

Finally, for any interval
$$(a,b) \in (0,1)$$
,
arguing as above
 $do^{k}|_{\mathbb{R}^{d} \times [a,b]} \rightarrow vd\mu_{t}dt|_{\mathbb{R}^{d} \times [a,b]}$
 $d\mu_{t}^{k}dt|_{\mathbb{R}^{d} \times [a,b]} \rightarrow d\mu_{t}dt|_{\mathbb{R}^{d} \times [a,b]}$

