Lecture 19
Recall:
Def: For $r \in \mathbb{R}, x \in \mathbb{R}^{d}$

Prop: Given $\mu \in P\left(\mathbb{R}^{d}\right), m \in M_{s}^{d}\left(\mathbb{R}^{d}\right)$, define

$$
\begin{aligned}
B(\mu, m):= & \sup \left\{S f d \mu+\int g \cdot d m\right\} \\
& f \in C_{b}(\mathbb{R}, \mathbb{R}), g \in C_{b}\left(\mathbb{R}^{Q}, \mathbb{R}^{Q}\right) \\
& f+\frac{1}{2}|g|^{2} \leq 0
\end{aligned}
$$

Then,
(i) B(μ, m) is convex, Is wry narrow convergence
(ii) if $\mu, m \ll \omega$, ω Bowel meas on \mathbb{R}^{d},

$$
B(\mu, m)=\int f_{B}(\mu(x), m(x)) d \omega(x)
$$

Where $d \mu(x)=\mu(x) d w(x)$, $d m(x)=m(x) d \omega(x)$

$$
\text { (iii) } B(\mu, m)= \begin{cases}\frac{1}{2} \int|v|^{2} d \mu & \text { if } m \ll \mu \\ +\infty & \text { atm }=v d \mu \\ \text { otherwise }\end{cases}
$$

We now have everything we need to characterize absolutely continuous curves in $\left(P_{2}\left(\mathbb{R}^{d}\right), w_{2}\right)$. except the definition of what it means to be an absolutely continuous carve!

Suppose (x, d) is a complete metric space.
Def $(a b s c t s): x:(a, b) \rightarrow \chi$ is abs $c t s$, devoted $x \in A C(a, b ; x)$ if $g^{\in} L^{1}(a, b)$ s.t. $d\left(x\left(t_{0}\right), x\left(t_{1}\right)\right) \leq \int_{t_{0}}^{t_{1}} g(s) d s \quad \forall a<t_{0} \leq t_{1}<b$.

Remark: If this holds for $g(s) \equiv c$, for $c \in \mathbb{R}$, then x is Lipschitg $c t s$.

Rok: if x is abs cts, it is cts
Def: (metric derivative): The metric deburative of $x:(a, b) \rightarrow X$ is

$$
\left|x^{\prime}\right|(t):=\lim _{h \rightarrow 0} \frac{d(x(t+h), x(t))}{|h|}
$$

generalizes $\left|\frac{d}{d t x}(t)\right|$, for
$x(t)$ a curve in a vector space
Prop: For any $x \in A C(a, b ; x)$,
(i) $\mid x^{\prime}(t)$ exist for \mathcal{L}-are. $t \in(a, b)$, (ii) $g(t)=\left|x^{\prime}\right|(t)$ is admissible in (*) (iii) $\mathcal{X}^{\prime}(t) \leq g(t) \mathcal{L}$-a.e. for all g satisfying $(*)$.

Pf:
Since $x:(a, b) \rightarrow x$ is cts and (a, b) is separable, $x(a, b)$ is separable. Let $\{y n\}_{n=1}^{+\infty}{ }^{1}$ be a dense sequence, and consider

$$
d_{n}(t)=d\left(y_{n}, x(t)\right)
$$

By the reverse triangle inequality, fec any choice of g in the def(of $A C, \underset{(*)}{\text { we have }(t+)}$

$$
\left.\left|d_{n}(t)-\ln (s)\right| \leq d x(t), x(s)\right) \leq \int_{s}^{t} g(r) d r
$$

Thus, $t \mapsto d n(t)$ is abs cts, and

$$
d(t):=\sup _{n \in \mathbb{N}}\left|\cdot d_{n}^{\prime}(t)\right|
$$

is well-defined \mathcal{Z}-a.e. Furthermane, if it is defined $t \in(a, b)$,

$$
\begin{aligned}
t) & =\sup _{n \in \mathbb{N}} \liminf _{s \rightarrow t} \frac{\left|d_{n}(t)-d_{n}(s)\right|}{|t-s|} \\
& =\liminf _{s \rightarrow+} \frac{d(x(t), x(s) \mid}{|t-s|}
\end{aligned}
$$

by (**)
Thus ${ }^{2} d(t) \leqslant g(t) \quad \mathcal{I}$-ae, so $d \in L^{1}(a, b)$.
To obtain an upper bound on limsup, note that, by density of yo)

$$
\left.\begin{array}{rl}
d(x(t), x(s)) & \left.=\sup _{n \in \mathbb{N}} \mid d_{n}(t)-d(s)\right) \\
& =\sup _{n \in \mathbb{N}}\left|\int_{s}^{s} d_{n}^{\prime}(r) d r\right| \\
& \leq \sup _{n \in \mathbb{N}} \int_{t}^{t} \mid d_{n}^{\prime}(r|d r| \\
& \leq \int_{t}^{s} d(r) d r
\end{array}\right\}
$$

Thus, for \mathcal{L}-ae. t.

$$
\limsup _{s \rightarrow t} \frac{d(x(s), x(t))}{|s-t|} \leq d(t)
$$

Therefore $\left(x^{\prime}(t)\right.$ exists \mathcal{L}-ae. t, and $\left|x^{\prime}\right||t|=d|t|$.
-' ' $=$ shows $\left|x^{\prime}\right|(t)$ is admissible choice of g in deft of $A C$.
If shows that $\left|x^{\prime}\right||t|$ is minimal.

Theorem (characterigation of abscts curves in W_{2}):
(i) Suppase $\mu:[0, T] \rightarrow P_{2}\left(\mathbb{R}^{d}\right)$ is abs cts. Then $\exists v$ s.t. (μ, v) is a weak soln of $(C E)$ and

$$
\left(\int_{\mathbb{R}^{d}}|v(x, t)|^{2} d \mu_{t}(x)\right)^{1 / 2} \subseteq\left|\mu^{\prime}\right|(t) \quad \mathcal{L} \text {-a.e. } t \in[0, T]_{-}
$$

(ii) Conversely, suppsse $\mu:[0, T] \rightarrow P_{2}\left(\mathbb{R}^{d}\right)$ and $\exists \mathrm{J}$ s.t.

$$
\int_{0}^{1}\left(\int_{\mathbb{R}^{d}}|v(x, t)|^{2} d \mu_{r}(x)\right) d t<+\infty
$$

and (μ, v) is a sotn of $(C E)$.
Then, $\mu(t)$ is abscts and

$$
\left|\mu^{\prime}\right|(t) \leq\left(\left.\int_{\mathbb{R}^{d}} \operatorname{v}(x, t)\right|^{2} d \mu_{t}(x)\right)^{1 / 2} \mathcal{L} \text { a.e. }, t \in[0, T]
$$

Our proof of (i) relies on this Lemma:
Lemma: Suppose $m^{k}:[0, T] \rightarrow \mathcal{C}_{s}^{d}\left(\mathbb{R}^{d}\right)$,
$\exists K \ll \mathbb{R}^{d}$ st. $m^{k}\left(k^{c}\right) \equiv 0$, and $\exists f \in L^{\mathcal{I}}(0, T)$ s.t. $\operatorname{tm} m_{t}^{k} \mid\left(\mathbb{R}^{d}\right) \leq f^{t}(t) \quad \mathcal{L}$-a.e. $\quad t \in[0, T]$.

Then, up to a subsequence, there exists $m:[0, T] \rightarrow \mu_{s}^{p}\left(\mathbb{R}^{2 d}\right)$ s.t.
$\operatorname{dm}_{m_{t}^{k}(x)} d t \rightarrow d m_{t}(x) d t$ narrowly wit
$C_{b}\left(\mathbb{R}^{d} \times[0, T]\right)$.
Pe:
Today, we will show (i).
For simplicity, we will assume that $\exists K c c \mathbb{R}^{d}$ s.t. $\mu_{t}\left(K^{c}\right)=0 \forall t$ and that $T=1$.
Let $\varphi_{\varepsilon}(x)=\frac{1}{\varepsilon} d \varphi\left(\frac{x}{\varepsilon}\right)$, for a mollifier φ, with $m_{2}(\varphi)<+\infty$.

For $k \in \mathbb{N}$, consider the "discrete time sequence"

$$
\mu(0 / k), \mu(1 / k), \ldots, \mu(1 / k), \cdots, \mu(k / k\}
$$

and the mollified sequence

$$
\mu_{i / k}^{k}=\varphi_{1 / k} * \mu(i / k)
$$

By ow r previous for position, since these measures are $\ll \mathcal{L}^{d}$, there exists a unique geodesic $\mu_{i}^{k}(t)$ from $\mu_{i}^{k}(0)=\mu_{i / k}^{k}$ to $\mu_{k}^{k}(1)^{\prime \prime}=1 / k^{(}$.

Furthermore $\left(\mu_{i}^{k}, v_{i}^{k}\right)$ is a som of C(E) and

$$
\left(J\left|v_{i}^{k}(x, t)\right|^{2} d\left(\mu_{i}^{k}\right)_{t}(x)\right)^{1 / 2}=W_{2}\left(\mu_{i / k}^{k} \mu_{i+1 / k}^{k}\right) \quad \forall t \in[0,1] .
$$

Now, we chain these geodesics together, defining

$$
\begin{aligned}
& \mu^{k}(t):=\mu_{i}^{k}(t k-i) \text { for } \quad t \in[i / k, i+1 / k) . \\
& v^{k}(t):=v_{i}^{k}(t k-i) \cdot k
\end{aligned}
$$

Then $\left(\mu^{k}, v^{k}\right)$ is a weak sorn of

$$
\partial x \mu^{k}+\nabla \cdot\left(\mu^{k} v^{k}\right)=0
$$

Furthermore, for $t \in[i / k, i / k]$

$$
\begin{aligned}
& \int\left|v^{k}(x, t)\right|^{2} d \mu_{t}^{k}(x)=k^{2} \omega_{2}^{2}\left(\mu_{i / v}^{k} \mu_{i+1 / k}^{k}\right) \\
& \omega_{2} \text { contracts under mollification } \\
& \leq k^{2} \omega_{2}^{2}(\mu(i / k), \mu(1+k / k)) \\
& \leq\left(k \int_{i+k}^{i+1 / k}\left|\mu^{\prime}\right|(s) d s\right)^{2} \\
& \leq k \int_{i / k}^{1 / y_{k} / k}\left|\mu^{\prime}\right|(s) d s
\end{aligned}
$$

Define $d m_{t}(x):=v^{x}(x, t) d \mu_{t}^{k}(x) \in \operatorname{cr}_{s}^{d}\left(\mathbb{R}^{d}\right)$. rote that, for $t \in[i / k, i+1 / k]$,

$$
\begin{aligned}
\left|m_{t}^{k}\right|\left(\mathbb{R}^{d}\right) & =\int\left|v^{k}(x, t)\right| d \mu_{t}^{k}(x) \\
& \leq\left(\int\left|v^{k}(x, t)\right|^{2} d \mu_{t}^{k}(x)\right)^{1 / 2} \\
& \left.\leq k \int_{i / k}^{1+1 / k}\left|\mu^{\prime}\right| \mid s\right) d s=f(t)
\end{aligned}
$$

Thus, defining

$$
f(t)=k \int_{i / k}^{1+/ k}\left|\mu^{\prime}\right|(s) d s \text { for } t \in[i / k, i+1 / k\rangle
$$

we have,

$$
\int_{1 / k}^{i+1 / k} f(t) d t \leq \int_{1 / k}^{i+1 / k}\left|\mu^{\prime}\right|(s) d s
$$

and

$$
\int_{0}^{1} f(t) d t \leq \int_{0}^{1}\left|\mu^{\prime}\right|(s)<+\infty
$$

so $f \in L^{1}(0,1)$.
To be continued...

