Lecture 17 Announcements:

- Revision due by march $4^{\text {th }}$

Recall:
Def: (Weak solution of continuity eon): Given $v: \mathbb{R}^{d} \times(0, T) \rightarrow \mathbb{R}^{d}$ meas; $\mu_{0} \in \mathcal{M}\left(\mathbb{R}^{d}\right)$, $\mu:(0, T) \rightarrow M\left(\mathbb{R}^{d}\right)$ is a weak solution of the continuity equation

$$
\left\{\begin{array}{l}
\partial_{t} \mu+\nabla \cdot(\mu v)=0 \\
\mu(0)=\mu_{0}
\end{array}\right.
$$

if

- $\mu(t)$ is narrowly cts, $\lim _{t \rightarrow 0^{+}} \mu(t)=\mu_{0}$ narrowly
- the PDE holds in distribution, that is

$$
\begin{array}{r}
\int_{0}^{T} \int_{\mathbb{R}^{d}}\left(\partial_{t} \varphi(x, t)+\nabla \Phi(x, t) \cdot v(x, t)\right) d \mu_{t}(x) d t=0 \\
\forall Q \in C_{c}^{\infty}\left(\mathbb{R}^{d} \times(0, T)\right) .
\end{array}
$$

Del: (solution of ODE): Given $v \mathbb{R}^{d} \times(0, T) \rightarrow \mathbb{R}^{d}$ meas and $x_{0} \in \mathbb{R}^{d}$, $x:(0, T) \rightarrow \mathbb{R}^{d}$ is a solution of

$$
\left\{\begin{array}{l}
x^{\prime}(t)=v(x(t), t) \\
x(0)=x_{0}
\end{array}\right.
$$

if

- $x(t)$ is locally abscts, $\lim _{t \rightarrow 0^{+}} x(t)=x_{0}$.
- the ODE holds in the integral sense, i.e.

$$
x(t)=x_{0}+\int_{0}^{t} v(x(s), s) d s, \quad \forall t \in[0, T] .
$$

Fix $v(x, t)$. Suppose that a solution of (ODE) exists $\forall x_{0} \in \mathbb{R}^{d}$. In this case, we may consider the flow map induced by v,
$X_{+}(y)=X(y, t)=x(t)$, where $x(t)$ is $\operatorname{soln} \omega / x(0)=y$.

Prop: Fix $v(x, t)$ and $\mu_{0} \in P_{2}\left(\mathbb{R}^{d}\right)$. Suppose that soling of (ODE) exist $\mu_{0}-a . e$. $x_{0} \in \mathbb{R}^{d}, \forall t \in[0, T]$.
Let x_{t} be the corresponding flow map, which is defined $\mu_{0}-a d$. .

Then define $\mu_{t}=x_{t} \# \mu_{0}$.
Then, if $\int_{0}^{T} \int_{\mathbb{R}^{d}}|v(x, t)|^{2} d \mu(x) d t<+\infty$,

$$
\text { - } \mu_{t} \in P_{2}\left(\mathbb{R}^{d}\right) \quad \forall t \in[0, T]
$$

- (μ, v) is a soln of $(C E)$ on $\mathbb{R}^{d} \times[0, T]$.

Pf: Last time, we showed second bullet. Furthermore, $\mu_{t} \in P\left(\mathbb{R}^{d}\right) \forall t \in[0, T]$.
To see that $S|x|^{2} d \mu_{t}(x)<+\infty \quad \forall t \in[0, T]$, recall that, by def n of $O D E$,

$$
\begin{aligned}
& \left|x_{t}(y)\right| \leq|y|+\int_{0}^{T}\left|v\left(x_{s}(y), s\right)\right| d s \quad \mu_{0}-a \cdot e \cdot y_{0} \\
& S|x|^{2} d \mu_{t}(x)=\int\left|x_{t}(y)\right|^{2} d \mu_{0}(y) \\
& \leq 2 \int_{\mathbb{R}^{d}}|y|^{2} d \mu_{0}(y)+2 C_{T} \int_{0}^{T} \int_{\mathbb{R}^{d}} \int^{2} v\left(x_{s}(y) \mid s\right) \mid d \mu_{0}(y) d s
\end{aligned}
$$

$$
\begin{aligned}
& =2 \int_{\mathbb{R}^{2}}|y|^{2} d \mu_{0}(y)+2 C_{T} \int_{0}^{T} \int_{\mathbb{R}^{d}}^{T}|v(x, s)|^{2} d \mu_{t}(x) d s \\
& <+\infty
\end{aligned}
$$

We will now use this Lagrangian perspective to connect hasserstein geodesics to $(C E)$.
Def: Given a metric space (x, d), $\bar{x}[0,1] \rightarrow x$ is a (constant speed) geodesic if

$$
d(x(t), x(s))=|t-s| d(x(0), x(1))
$$

Prop: Given $\mu_{0}, \mu_{1} \in P_{2}\left(\mathbb{R}^{d}\right), \mu_{0}, \mu_{1} \ll j^{d}$, there exists a constant speed geodesic between them.
Furthermore, there exists a velocity v s.t. (μ, v) is a sol (CE) and

$$
\left(\int|v(x, t)|^{2} d \mu_{t}(x)\right)^{1 / 2} \equiv W_{2}\left(\mu_{0} \mu_{1}\right) \quad \forall t \in[0,1]
$$

The proof of this proposition relies on the following:
Prop: Suppose $\mu \nu \nu \in P_{2}\left(\mathbb{R}^{2}\right)$ are abscts w.r.t. Lebesgue. Let T denote the OT map from μ to ν (for the quadratic cost).
(i) $\gamma=(i d \times T) \# \mu$ is the unique $O T$ plan.
(ii) If \tilde{T} is the OT map from ν to μ,

$$
T_{0} \tilde{T}=i d \quad v a . e ., \quad \tilde{T} \cdot T=i d \text { p-a.e. }
$$

In particular, T is left invertible μ are. with $T^{-1}=\tilde{T}$.

Pl: First show (i). We have already remains to show it is unique.
By Brenier's theorem, $\exists Q \in L 1 / \mu)$ proper, convex, Is s.t. $T=\nabla Q$.
Thus by defln, $x^{2}=\nabla \varphi\left(x^{2}\right) \in \partial \varphi\left(x^{2}\right)$ γ-ae.
Fix another OT plan γ^{\prime}.

By Knott-Smith theorem,

$$
x^{2} \in \partial \varphi\left(x^{1}\right) \quad \gamma^{\prime}-\text { ae. }
$$

Since Q is diff $\mu-a . e$.

$$
x^{2}=\nabla \varphi^{\prime}\left(x^{1}\right) \quad \gamma^{\prime}-a . e .
$$

Thus $\gamma^{\prime}=(i d \times T)+\mu=\gamma$.
Pow, show (ii).
Since $\gamma^{\prime}=(\tilde{T} \times i d) \# v$ is an $O T$ plan, by part (i),

$$
\gamma^{\prime}=(\tilde{T} \times i d) \# \nu=(i d \times T) \# \mu=\gamma
$$

Thus,
Sly -T0 $(y) \mid d v(y)$

$$
\begin{aligned}
& =\int\left|x^{2}-T\left(x^{1}\right)\right| d \gamma^{\prime}\left(x^{1}, x^{2}\right) \\
& =\int\left|x^{2}-T\left(x^{1}\right)\right| d \gamma\left(x^{1}, x^{2}\right) \\
& =\int|T(y)-T(y)| d \mu(y)=0 .
\end{aligned}
$$

Arguireg symmetrically then gives
the result.

Mow, we prove main geoclesic hm.
Pe:
Since $\mu_{0}, \mu_{1} \ll \mathcal{L}^{d}, \exists$ OT map T from μ_{0} to μ_{1}.

$$
i d(x)=x
$$

Define $\mu(t):=\frac{((1-t) i \alpha+t T)}{T_{t}} \# \mu_{0}$
Note that, if $T=\nabla \varphi, T_{t}=\nabla\left((1-t) \frac{x^{2}}{2}+t Q(x)\right)$.
Thus, by change of variables formula,

$$
d \mu_{t}(y)=\left.\frac{\mu_{0}}{\left|\operatorname{det} D T_{t}\right|} \circ T_{t}^{-1}(y) d \mathcal{L}^{d}(y)\right|_{T_{t}\left(\mathbb{R}^{d}\right)}
$$

Thus $\mu_{t} \ll \mathcal{L}^{d}$ for all $t \in[0,1]$.

Since $T_{t} \# \mu_{0}=\mu_{t} \quad \forall t \in[0,1]$, $\left(T_{t} \times T_{s}\right) \# \mu_{0} \in \Gamma\left(\mu_{t}, \mu_{s}\right)$.
Thus,

$$
\begin{aligned}
W_{2}^{2}\left(\mu_{t}, \mu_{s}\right) & \leq \int\left|x^{1}-x^{2}\right|^{2} d\left(\left(T_{t} \times T_{s}\right) \# \mu_{0}\left(x^{1}, x^{2}\right)\right. \\
& =\int\left|T_{t}(x)-T_{s}(x)\right|^{2} d \mu_{0}(x) \\
& =|t-s|^{2} \int|x-T(x)|^{2} d \mu_{0}(x) \\
& =|t-s|^{2} W_{2}^{2}\left(\mu_{0}, \mu_{1}\right)
\end{aligned}
$$

For the other direction of the inegreality, note that, $t \geq 5$

$$
\begin{aligned}
W_{2}\left(\mu_{0}, \mu_{1}\right) & \leq W_{2}\left(\mu_{0}, \mu_{s}\right)+W_{2}\left(\mu_{s}, \mu_{t}\right) \\
& \leq[s+(t-s)+(1-t)] W_{2}\left(\mu_{t}, \mu_{1}\right) \\
& =W_{2}\left(\mu_{1}\right)
\end{aligned}
$$

Thus, we must have " $=$ " throughout

Thus, between any μ_{0}, μ_{1}, a constant speed geodesic exists.
To now show that this constant speed geodesic solves (CE), recall from previous prop, T_{t} is lefter invertible $\mu_{0}-a \cdot e$. and T_{t}^{-1} is OT map from μ_{t} to μ_{0}.
Define,

$$
v(x, t)=T \circ T_{t}^{-1}(x)-T_{t}^{-1}(x)
$$

Note that

$$
\begin{aligned}
S|v(x, t)|^{2} d \mu_{t} & =\int\left|v\left(T_{t}(y), t\right)\right|^{2} d \mu_{0}(y) \\
& =\int|T(y)-y|^{2} d \mu_{0}(y) \\
& =W_{2}^{2}\left(\mu_{0}, \mu_{1}\right)
\end{aligned}
$$

Note that, by defn of T_{t} and v

$$
T_{t}:=((1-t) i d+t T),
$$

$$
\begin{aligned}
\frac{d}{d t} T_{t} & =T-i d \\
& =v\left(T_{t}, t\right)
\end{aligned}
$$

Thus, $\mu_{t}:=T_{t} \# \mu_{0}$, is a weak solution of $(C E)$.

Mow, we will use this PDE characterization of constant speed geodesics to
characterize abs cts curves in characterize abs cts curves in $\left(P_{2}\left(\mathbb{R}^{d}\right), \omega_{2}\right)$ and prove Benamou-Brenier the.

We will do this via approximating abs cts carves by (p.w.) geodesics, and we will need a way to conclude the limit is also a sold to (C).

$$
m=v \mu
$$

Def: If $\mu_{d} \in P\left(\mathbb{R}^{d}\right), m^{i} \in \mu_{s}^{d}\left(\mathbb{R}^{d}\right)$, μ, m $<\alpha d$, the kinetic energy is

$$
B(\mu, m)=\frac{1}{2} \int \frac{|m(x)|^{2}}{\mu(x)} d x-\int|v|^{2} d \mu
$$

How to extend to general $\mu \in P\left(\mathbb{R}^{d}\right)$?
Def: For $r \in \mathbb{R}, x \in \mathbb{R}^{d}$

$$
\begin{aligned}
& \text { For } r \in \mathbb{R}, x \in \begin{array}{ll}
\left.\frac{1}{2}|\mathbb{R}|\right|^{2} / r & \text { if } r>0 \\
0 & \text { if } r=x=0 \\
+\infty & \text { if } r=0, x \neq 0 \\
\text { or } r<0 .
\end{array}
\end{aligned}
$$

Def(abscts): Given a metric space (x, d) $x:(0, T) \rightarrow \chi$ is absolutaly ots, dendted $x \in A C(0, T ; T)$ if $\exists g \in L^{1}([\subseteq, T])$ s.t.

$$
d\left(x\left(t_{0}\right), x\left(t_{1}\right)\right) \leq \int_{t_{0}}^{t_{1}} g(s) d s \quad \forall u<t_{0} \leqslant t_{1} \leqslant T
$$

Rmk: if thisholds for $g(s) \equiv c \in \mathbb{R}$, then $x(t)$ is Lipschity continaons.

Def (metric derivative): Given a m.s. (x, d), $x:(0, T) \rightarrow x$, the metric derivitive is

$$
\begin{aligned}
\left|x^{\prime}\right|(t):=\lim _{h \rightarrow 0} \frac{d(x(t+h|, x(t)|}{|h|} & \begin{array}{ll}
\left|\frac{d}{d t} x(t)\right| \\
& \text { for } x(t) \\
& \text { ina } \\
& \text { vectorspace }
\end{array}
\end{aligned}
$$

Fact (Rademacher Thm): Given $x \in A C(0, T ; x)$ |x'l(t) exists for a.e. t and

$$
d\left(x\left(t_{0}\right), x\left(t_{1}\right)\right) \leq \int_{t_{0}}^{t_{1}^{\prime}}\left|x^{\prime}\right|(s) d s \quad \forall u<t_{0} \leqslant t_{1} \leqslant T_{0}
$$

Theorem (characterization of absctsicurves in ω_{2})
(i) Suppose $\mu:[0, T] \rightarrow P_{2}\left(\mathbb{R}^{d}\right)$ is abs cts.

Then $7 v$ st. (μ, v) is a dist som of ctr eqn and $\|v(\cdot, t)\|_{L^{2}(\mu t)} \leqslant\left|\mu^{\prime}\right|(t)$ a.e. $t \in[0, \uparrow]$. $\sqrt{ }$ kinetic energy time t
(ii) Conversely, suppose $\mu:[0, T] \rightarrow P_{2}\left(\mathbb{R}^{d}\right)$ and \exists of $s \cdot t \int_{0}^{1}\|v(, t)\|_{\left.L^{2} / \mu(t)\right)} d t<+\infty$ and (μ, v) is a dist sol of ctyegn. Then $\mu(t)$ is abs cts and $\mid \mu^{\prime}(t) \leq\|v(\cdot t)\|_{\left.L^{2} \mid \mu(t)\right)}$ ace. $t \in[0, T]$.

Pf: " \Rightarrow "
Will prove in special cause that $\mu(t)$ is concentrated on a cpl set $K \subseteq \mathbb{R}^{2}$.
LOG $T=1$.
Strategy: construct a segqence of simple solus to ctr ign that converge to μ.

$$
{ }_{11} \frac{1}{\varepsilon}{ }^{1} \varphi\left(\frac{x}{\varepsilon} d\right)
$$

Let $q_{\varepsilon}^{\prime \prime \varepsilon^{\alpha}}$ be a mollifier with $m_{2}\left(\ddot{\varphi}_{1}\right)<+\infty$ coplysuip

Given $k \in \mathbb{N}$, consider discrete time sequence

$$
\mu(0 / k), \mu(1 / k), \ldots, \mu(1 / k), \ldots, \mu(k / k)
$$

and the mollified sequence

$$
\mu_{i / k}^{k}:=\varphi_{1 / k} * \mu(1 / k), i=0, \ldots, k
$$

B / c this sequence is $\ll \mathcal{L}^{2}$, the geodesics between each two elements of the sequence are sons to cty gre Chaining
these geodesics toyether we aet a^{\prime} : these geodesics toyether, we get a^{\prime} : dist som of cty egn ($\mu^{k}, \sim^{(k)}$ repaciametrize

$$
\begin{aligned}
\left\|v^{k}(, t)\right\|_{L^{2}\left(\mu_{t}^{k}\right)}^{2} & =k^{2} W_{2}^{2}\left(\mu_{i / k}^{k}, \mu_{i+1 / k}^{k}\right) \text { for } t \in\left[\frac{i}{k}, \frac{i+1}{k}\right] \\
& \leq k^{2} W_{2}^{2}(\mu(1 / k), \mu(i+1 / k)) \\
& \left.\leq\left(k \int_{i / k}^{i+1 / k}\left|\mu^{\prime}\right|(s) d s\right)^{2}\right) \text { Jensen's } \\
& \leq k \int_{1 / k}^{1+k / k}\left|\mu^{\prime}\right|^{2}(s) d s
\end{aligned}
$$

Define $m^{k}(t):=v^{k}(, t) d u^{k}(t)$, which is a vector measure on \mathbb{R}^{2} concentrated on a compact set.

Furthermore,

$$
\begin{aligned}
& \text { Furthermore, } \\
& \begin{aligned}
\operatorname{Im} n^{k}(t)\left(\mathbb{R}^{d}\right) & \left.=\left(\int_{\mathbb{R}^{d}}\left|v^{k}(\cdot, t)\right| d \mu_{t}^{k}\right)^{2}\right)^{1 / 2} \\
& \leq \underbrace{\left(\int_{\mathbb{R}^{d}}\left|v^{k}(\cdot, t)\right|^{2} d \mu_{t}^{k}\right)^{1 / 2}}_{\in L^{1}[0,1]} \\
& \leq \underbrace{k \int_{i / k}\left|\mu^{\prime}\right|(s \mid d s}_{i / k} \quad \text { for } t \in\left[\frac{i}{k}, \frac{i+1}{k}\right)
\end{aligned}
\end{aligned}
$$

By Lemma, up to a subseg ${ }^{2} m^{k}(t) d t \rightarrow m(t) d t$
now roily art $C_{p}\left(\mathbb{R}^{d} \times[0,]^{2}\right)$ now rrowly wat $C_{p}\left(\mathbb{R}^{d} \times\left[0,1^{+}\right]\right)$
Similarly, μ_{t}^{k} converges to μ_{t} pointwise in time, since.
$\omega_{2}\left(\mu_{t}^{k}, \mu_{t}\right)^{\prime}$

$$
\begin{aligned}
& \left.\leq\left|t-\frac{i}{k}\right| W_{2}\left(\mu_{1 / k}^{k}, \mu_{i+1 / k}^{k}\right)+\frac{1}{k} m_{2}(\varphi)^{1 / 2}+\int_{i / k}^{T} \right\rvert\, \mu_{t}^{\prime}(l s) d s \\
& \left.\leq\left|t-\frac{i}{k}\right| W_{2}\left(\mu_{i / k}, \mu_{i+1 / k}\right)+\frac{1}{k} m_{2}(\varphi)^{1 / 2}+\int_{1 / k}^{t} \right\rvert\, \mu^{\prime}(s) d s
\end{aligned}
$$

$\xrightarrow{k \rightarrow+\infty} 0$, uniformlyint.

In particular, since $\mu_{t}^{k}\left(\mathbb{R}^{d}\right) \equiv 1 \in L^{1}[0, \pi]$, $\mu_{t}^{k} d t \rightarrow \mu_{t} d t$ narrowly writ $C_{s} \mathbb{R}^{d \times}[0, T]$.
Thus, $\forall Q \in C_{c}^{\infty}\left(\mathbb{R}^{d \times}[0, T]\right)$

$$
\begin{aligned}
& \int_{0}^{T} \int_{\mathbb{R}^{2}}\left(\partial_{t} \varphi(x, t)+v^{k}(x, t) \cdot \nabla \varphi(x, t)\right) d \mu_{t}^{k} d t=0 \\
& \quad \downarrow k \rightarrow \infty \\
& \int_{0}^{T}\left(\int_{\mathbb{R}^{2}} \partial_{t} \varphi(x, t) d \mu_{t}+\nabla \varphi(x, t) \Delta n_{t}\right) d t=0 .
\end{aligned}
$$

Since $m_{t}^{k}=v_{t}^{k} d \mu_{t}^{k}, m^{k} \ll \mu_{t}^{k}$, and

$$
B\left(\mu_{t 1}^{k} m_{t}^{k}\right)=\int_{i+1 / k}\left|v^{k}\right|^{2} d \mu_{t}^{k}
$$

$$
\leq k \int_{i / k}\left|\mu^{\prime}\right|(s) d s \quad \text { for } t \in\left[\frac{i}{k}, \frac{i+1}{k}\right] \text {, }
$$

we have,

$$
\begin{aligned}
& \int_{0}^{1}\left|\mu^{\prime}\right|(s) d s \geq \liminf _{k \rightarrow \infty} \int_{0}^{1} B\left(\mu_{t}^{k}, m_{t}^{k}\right) d t \\
& \text { Fatou,liscos } \\
& \geq \int_{0}^{0} B\left(\mu_{t}, m_{t}\right) d t .
\end{aligned}
$$

Thews $B\left(\mu_{t}, m_{t}\right)<+\infty$ a.e., so $\exists v_{t}$ s.t.

$$
B\left(\mu_{t}, m_{t}\right)=\int\left|v_{t}\right|^{2} d \mu_{t}, \quad m_{t}=v_{t} d \mu_{t}
$$

