Lecture 15
Recall:
Ohm: Giver $x \subset \subset \mathbb{R}^{d}, \mu_{i} \in P(x)$,

$$
\inf _{\gamma \in \Phi(\mu, \nu)} \mathbb{K}_{1}(\gamma)=\sup _{\varphi \in C(x),\|\varphi\|_{L i p} \leq 1} S \Phi d(-\nu)
$$

and $\exists Q^{*}$ that achieves maximum.
Remark: More generally, if $x=\mathbb{R}^{2}$,

$$
\inf _{\partial \in \Phi(\mu, \nu)} \mathbb{K}_{1}(\gamma)=\sup _{\varphi \in C_{b}\left(\mathbb{R}^{d}\right),\|\varphi\|_{L i p} \leq 1} \int \phi d(x-\nu)
$$

Exercise: $\omega_{p}(\mu, \nu) \leq \omega_{q}(\mu, \nu) \quad \forall p \leq q$.
If supp μ, supp are compact, $\exists C$ s.t.

$$
W_{q}(\mu, \nu) \leq C \omega_{p}^{0}(\mu, \nu) \quad \forall p \leq q \text {. }
$$

Goal: Prove ω_{2} is a metric on $P_{2}\left(\mathbb{R}^{d}\right)$.

Our proof will use Brerier's theorem... which requires $\mu \ll \mathcal{L}^{d}$.
We need a way to approximate $\mu \in P_{2}\left(\mathbb{R}^{d}\right)$ by μ_{ε} that are abs cts.

Prop: (ω_{2} jointly Is wace
Suppose μ_{n}, $i_{n} \in P(X)$ sorrow convergence. $\rightarrow \mu_{n} \rightarrow \mu$ and $\nu_{n} \rightarrow v$ narrowly. $\mu_{n} \rightarrow \mu$ and $\nu_{n} \rightarrow \nu$ narrowly.
Then $\liminf _{n \rightarrow \infty} W_{2}(\mu n, \nu n) \geq W_{2}(\mu, \nu)$.

Approximation by comolution
Def: (mollifier) $\varphi: \mathbb{R}^{d} \rightarrow[0,+\infty)$, td, meas

$$
\begin{aligned}
& \varphi(x)=\varphi(-x), \int \varphi(x) d x=1 \\
& \varphi_{\varepsilon}(x)=\frac{1}{\varepsilon^{e}} \varphi\left(\frac{x}{\varepsilon}\right) \quad \ldots \int \varphi_{\varepsilon}(x) d x=1
\end{aligned}
$$

Def: Given $\mu \in P\left(\mathbb{R}^{d}\right)$, define

$$
\varphi_{\varepsilon^{\star} \mu}(x)=\int \varphi_{\varepsilon}(x-y) d \mu(y)
$$

We will often abuse notation and write

$$
\begin{aligned}
& \begin{aligned}
\text { clensity } & =512 \mu \mu \mathrm{Cu} \\
& =1
\end{aligned}
\end{aligned}
$$

Lemma: Suppose $\mu \in P\left(\mathbb{R}^{d}\right)$.
(i) For any $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ meas, bod below,

$$
\int f d\left(\varphi_{\varepsilon^{*}} \mu\right)=\int\left(\varphi_{\varepsilon} \neq f\right) d \mu
$$

"associativity of convolution"
(ii) $\varphi_{\varepsilon} * \mu \rightarrow \mu$ narrowly, as $\varepsilon \rightarrow 0$.

Now, we consider behavior of ω_{2} and convolution.

Lemma: Given $\mu \in P\left(\mathbb{R}^{d}\right)$ and φ_{ε} as above rs
(i) $W_{2}\left(\mu_{1} a_{\varepsilon}+\mu\right) \leq \varepsilon\left(m_{2}(e)\right)^{1 / 2} \int|x|^{2} \varphi(x) d x$
(ii) $\omega_{2}\left(Q_{q} * \mu, Q_{\varepsilon} * \nu\right) \leq \omega_{2}(\mu, \nu)$
(iii) $\lim _{2 \rightarrow 0} \omega_{2}\left(\varphi_{\varepsilon} \neq \mu, \varphi_{\varepsilon} * \nu\right)=\omega_{2}(\mu, \nu)$

$$
m_{2}(\mu):=\int|x|^{2} d \mu(x)
$$

The $\left(\omega_{2}, P_{2}\left(\mathbb{R}^{d}\right)\right)$ is a metric space.
Pf:
Note that, since $\left|x^{1}-x^{2}\right|^{2} \leq 2\left|x^{1}\right|^{2}+2\left|x^{2}\right|^{2}$,

$$
\begin{aligned}
W_{2}(\mu, \nu) & =\int\left|x^{1}-x^{2}\right|^{2} d \gamma^{\delta^{\prime}} \gamma \text { is an ot plan } \\
& \leq 2 \int\left|x^{1}\right|^{2} d \gamma+2 \int\left|x^{2}\right|^{2} d \gamma \\
& =2 m_{2}(\mu)+2 m_{2}(\lambda) \\
& <+\infty
\end{aligned}
$$

Thus, $\omega_{2}: P_{2}\left(\mathbb{R}^{d}\right) \times P_{2}\left(\mathbb{R}^{d}\right) \rightarrow[0,+\infty)$.
Furthermore, ω_{2} is symmetric since γ is an $O T$ plan from μ to ν iff $\tilde{\gamma}$ is an $O T$ plan from v to μ where $\gamma(A \times B)=\gamma(B \times A)$.

$$
W_{2}(\mu, \nu)=\int\left(x^{1}-\left.x^{2}\right|^{2} d \gamma=\int\left|x^{2}-x^{1}\right|^{2} d \widetilde{\gamma} \leqslant W_{2}(\nu, \mu)\right.
$$

Interchanging roles of μ and ν, $\omega_{2}(\nu, \mu) \leqslant \omega_{2}(\mu, \nu)$.
Thus, $\omega_{2}(\mu, \nu)=\omega_{2}(\nu, \mu)$, so ω_{2} is symmetric.
To see that ω_{2} is nondegenerate, suppose $\omega_{2}(\mu, \nu)=0$. Then, if γ is an OT plan from μ to ν,

$$
\int\left|x^{1}-x^{2}\right|^{2} d \gamma=0
$$

Thus $x^{1}=x^{2} \gamma$-a.e.
Hence, for any $f \in C b\left(\mathbb{R}^{d}\right)$,

$$
\begin{aligned}
& \int f\left(x^{1}\right) d \mu\left(x^{1}\right)=\int f\left(x^{1}\right) d \gamma\left(x^{1}, x^{2}\right) \\
&=\int f\left(x^{2}\right) d \gamma\left(x^{1}, x^{2}\right) \\
&=\int f\left(x^{2}\right) d v\left(x^{2}\right) \\
& \Rightarrow \mu=v .
\end{aligned}
$$

Converselen, if $\mu=v, \gamma=\left(i d x_{i} d\right) \# \mu$ is a transport plan from μ to ν and

$$
\begin{aligned}
\hat{\omega}_{2}(\mu, \nu) & \leq\left(\delta\left|x^{2}-x^{2}\right|^{2} d \gamma\right)^{1 / 2} \\
& \left.=(\}|x-x|^{2} d \mu\right)^{1 / 2} \\
& =0
\end{aligned}
$$

It remains to show the triangle inequality.
First, suppose $\mu_{0}, \mu_{2}, \mu_{2} \in P_{2}\left(\mathbb{R}^{d}\right)$ are abs cts writ $\mathcal{L Q}$!

By Brenier's Theorem, \exists OT maps

$$
\begin{aligned}
& t_{1} \# \mu_{0}=\mu_{1}, t_{2} \# \mu_{1}=\mu_{2} . \\
& (t \circ s) \# \mu=t \#(s \# \mu)
\end{aligned}
$$

Note that $\left(t_{2} \circ t_{1}\right) \# \mu_{0}=\mu_{2}$.

$$
\begin{aligned}
W_{2}\left(\mu_{0}, \mu_{2}\right) \leq & \left(S\left|t_{2} 0 t_{1}(x)^{+t_{1}(x)-t_{1}(x)}-x\right|^{2} d \mu_{0}(x)\right)^{1 / 2} \\
\leq & \left(S\left|t_{2} \circ t_{1}(x)-t_{1}(x)\right|^{2} d \mu_{0}(x)\right)^{1 / 2} \\
& +\left(S\left|t_{1}(x)-x\right|^{2} d \mu_{0}(x)\right)^{1 / 2}
\end{aligned}
$$

$$
\begin{aligned}
& =\left(S\left|t_{2}(x)-x\right|^{2} d \mu_{1}(x)\right)^{1 / 2} \\
& \quad+W_{2}\left(\mu_{0}, \mu_{1}\right) \\
& =W_{2}\left(\mu_{1}, \mu_{2}\right)+W_{2}\left(\mu_{0}, \mu_{1}\right) .
\end{aligned}
$$

Finally, for general $\mu_{0}, \mu_{1}, \mu_{2} \in P_{2}\left(\mathbb{R}^{d}\right)$, fix o mollifier Q_{ε}, so $\varphi_{\varepsilon \neq \mu_{i} \ll \mathcal{L}^{d}}$ for $i=0,1,2$. Then

$$
\begin{aligned}
W_{2}\left(\mu_{0}, \mu_{2}\right)= & \lim _{\varepsilon \rightarrow 0} W_{2}\left(\varphi_{\varepsilon} \pm \mu_{0}, \varphi_{\varepsilon} \star \mu_{2}\right) \\
\leq & \lim _{\varepsilon \rightarrow 0} W_{2}\left(\varphi_{\varepsilon^{ \pm}} \mu_{0}, \varphi_{\varepsilon^{\star}} \mu_{1}\right) \\
& +W_{2}\left(\varphi_{\varepsilon^{ \pm}} \mu_{1}, \varphi_{\varepsilon^{ \pm}} \mu_{2}\right) \\
= & W_{2}\left(\mu_{0}, \mu_{1}\right)+W_{2}\left(\mu_{1}, \mu_{2}\right)
\end{aligned}
$$

Now, we will characterize the topology
of $\left(\omega_{2}, P_{2}\left(\mathbb{R}^{d}\right)\right)$. of $\left(\omega_{2}, P_{2}\left(\mathbb{R}^{d}\right)\right.$).
The: Given $\mu_{n}, \mu \in P_{2}\left(\mathbb{R}^{d}\right)$,
$\lim _{n \rightarrow \infty} W_{2}\left(\mu_{n}, \mu\right)=0 \Leftrightarrow \operatorname{mn}_{n} \rightarrow \mu \operatorname{narrowly}$

Recall from Lee 7, narrow conv $\mu_{n} \rightarrow \mu$ is equivalent to
S fd $\mu_{n} \rightarrow$ added deter class $f \in\left(\mathbb{R}^{k}\right) \quad(*)$ $\iota^{\text {added after class }}$
$\frac{\text { Lemma }}{\forall f \in C_{c}^{\infty}\left(\mathbb{R}^{2}\right)} \mu_{n} \rightarrow \mu$ narrowly of $\int f d \mu n \rightarrow \int f d \mu$
Pf:

$$
\begin{aligned}
& " \Rightarrow \text { " obvious } \\
& " E^{\prime \prime} \\
& \text { Fix }^{\prime} f \in C_{c}\left(\mathbb{R}^{d}\right) \\
& F_{i x} \varphi_{\varepsilon} \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right) \text {. Know } \\
& \varphi_{\varepsilon}{ }^{*} f \rightarrow f \text { in } L_{\varepsilon^{*}}\left(\mathbb{R}^{d}\right) \text {. }
\end{aligned}
$$

Thus, $\forall \varepsilon>0, \lim _{n \rightarrow \infty} \int \varphi_{\varepsilon} \Rightarrow f d \mu_{n}=\int \varphi_{\varepsilon} \neq f d \mu$.

$$
F i x \delta>0 . \exists \varepsilon_{\delta} \text { st. }\left\|Q_{\varepsilon} \Rightarrow f-f\right\|_{2 \infty}<\frac{\delta}{4} .
$$

$$
\exists n_{\delta} \text { s.t. } \forall n>n \delta, i S \varphi_{\varepsilon_{8}} * d_{\mu_{n}}-\varphi_{\varepsilon_{8}} \ngtr f d<\frac{\delta}{2} \text {. }
$$

Thus, $\forall n>n \delta$,

$$
\begin{aligned}
& \left|S f d \mu_{n}-S f d \mu\right| \leq\left|S\left(\varphi_{\left.\varepsilon_{\delta} * f-f\right)}\right) \mu_{n n}\right|+\left|S\left(\varphi_{\varepsilon_{\delta}} \neq f-f\right) d \mu\right| \\
& +\left|\int \varphi_{\varepsilon_{\delta}} * d d_{n}-\int_{\delta} \varphi_{\varepsilon^{*}} * f d \mu\right| \\
& \leq 2\left\|\varphi_{\varepsilon_{8}} \neq f-f\right\|_{L^{\infty}}+\frac{\delta}{2} \\
& <\delta
\end{aligned}
$$

P8: (of Theorem)
Suppose $\lim _{n \rightarrow \infty} W_{2}(\mu n, \mu)=0$.
Note that, $\forall \nu \in P_{2}\left(\mathbb{R}^{d}\right)$,

$$
\begin{aligned}
& W_{2}^{2}\left(\nu, \delta_{0}\right)=\int\left|x^{1}-x^{2}\right|^{2} d \gamma^{\gamma}=\int\left|x^{1}\right|^{2} d \gamma=m_{2}(\nu) . \\
& \text { Thus, } \quad \gamma(A \times B) \leq \gamma\left(\mathbb{R}^{d} \times B\right)=\delta_{0}(B)
\end{aligned}
$$

$$
\begin{aligned}
\lim _{n \rightarrow \infty} m_{2}\left(\mu_{n}\right) & =\lim _{n \rightarrow \infty} W_{2}^{2}\left(\mu n, \delta_{0}\right) \\
& =W_{2}^{2}\left(\mu, \delta_{0}\right) \\
& =m_{2}(\mu) .
\end{aligned}
$$

It remains to show $\mu_{n} \rightarrow \mu$ narrowly. Fix $f \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$. Will show $(*)$ By exercise,

$$
\begin{aligned}
W_{2}(\mu n, \mu) & \geq W_{1}\left(\mu n_{1} \mu\right) \\
& =\operatorname{SUD} \int \psi d \mu_{n}-\int \psi d \mu
\end{aligned}
$$

$$
\psi \in^{\prime} C_{b}\left(\mathbb{R}^{d}\right),\|\psi\| \|_{L i p} \leq 1
$$

If $\|f\|_{\text {Lip }}=0, f=0$ and the result holds trivially.
Otherwise, define $\psi=\frac{ \pm}{\|+\|_{\text {Lip }}}$.

$$
\omega_{2}\left(\mu_{n}, \mu\right) \geq \frac{1}{\|f\|_{L i}}\left|S f d \mu_{n}-f d \mu\right|
$$

This shows $S f d \mu_{n} \rightarrow$ Std μ. Since $f \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$ was arbitrary, $\mu_{n} \rightarrow \mu$ narrowly.

