Lecture 14 Announcements:

- Select Wiki Article for revision by mon 2/21.

Recall:
Brenier's theorem
The : For all $\mu, \nu \in P\left(\chi^{\chi^{\text {compact Polishspace }}, c: \chi \times \chi \rightarrow[0,+\infty) c+s,}\right.$

$$
\begin{aligned}
& \text { inf } \mathbb{\gamma \in P (\gamma) = \operatorname { s u p } _ { (\varphi \psi) \in C (x) \times ((x) } \int _ { (\varphi) } \varphi d \mu + \int \psi d \nu} \\
& \underbrace{\gamma \in \uparrow(\mu, \nu)} \quad(\varphi, \psi) \in C(x) \times C(x) \\
& \text {-Db } \\
& \varphi \oplus \psi \leq c \\
& -P_{0}
\end{aligned}
$$

Furthermore, the maximum is attained.
Ohm: Giver $x \subset \subset \mathbb{R}^{d}, \mu_{i}, \in P(x)$,

$$
\inf _{\gamma \in \varphi(\mu, \nu)} \mathbb{K}_{1}(\gamma)=\sup _{\varphi \in C(x),\|\varphi\|_{L i p} \leq 1} S \Phi(\mu-\nu)
$$

and $\exists Q^{*}$ that achieves maximum.

Pf: By our duality theorem; it suffices

$$
\begin{aligned}
& \begin{array}{ll}
\varphi, \psi \in((x) \\
\frac{\varphi\left(x^{1}\right)+\psi\left(x^{2}\right) \leq\left|x^{1}-x^{2}\right|}{L H S} & \varphi \in C(x),\|Q\|_{\text {Lip }} \leq 1 \\
\text { RmS }
\end{array} \\
& \text { "マ" } \\
& \operatorname{cre} x+" \leq "
\end{aligned}
$$

Take $\left(q_{*}, \psi_{\infty}\right)$ that attain maximum on LHS.

Double convexification trick:
Define $\tilde{\psi}\left(x^{2}\right)=\operatorname{ing}_{x^{1} c}\left(x\left|x^{1}-x^{2}\right|-Q_{x}\left(x^{1}\right)\right.$

- $\tilde{\psi} \geqslant \psi$

$$
\begin{aligned}
& \left.\widetilde{\psi}\left(x^{2}\right)-\widetilde{\psi}\left(y^{2}\right) \leq x^{2}, y^{2}\right) \exists y^{1} x^{2} \mid-q \text { set } \\
& \tilde{\psi}\left(x^{2}\right)-\widetilde{\psi}\left(y^{2}\right) \leq\left|y^{2}-x^{2}\right|-\varphi_{x}\left(y^{1}\right)^{2}-x^{2}\left|y^{1}-y^{2}\right|-\varphi_{x}\left(y^{1}\right)+\varepsilon \\
& \leq\left|x^{2}-y^{2}\right|+\varepsilon \\
& \|\widetilde{\psi}\|_{2 i p} \leq \frac{1}{*} \\
& \text { - } \mathscr{F}_{x}\left[x^{2}\right\}+\tilde{\psi}\left(x^{2}\right) \leq\left|x^{1}-x^{2}\right|
\end{aligned}
$$

Thus $\left(q_{*}, \tilde{\psi}\right)$ must also be optimal for original problem.
Define $\widetilde{\widetilde{q} \geq \varphi^{*}} \underline{\widetilde{\Phi}\left(x^{1}\right)}=\inf _{x_{2} \in x}\left|x^{1}-x^{2}\right|-\widetilde{\psi}\left(x^{2}\right)$

- $\|q\|_{2 ; p} \leqslant 1$
- $(\widetilde{q}, \widetilde{\psi})^{\prime}$ is optimal for original D.P.

Furthermare, $\widetilde{\phi}\left(x^{1}\right)$

$$
\begin{aligned}
& -\widetilde{\psi}\left(x^{1}\right) \geq \underset{x^{2} \& x\left|x^{1}-x^{2}\right|-\tilde{\psi}\left(x^{2}\right)}{\underset{\sim}{i} \geq-\widetilde{\psi}\left(x^{1}\right)} \\
& \|\widetilde{\psi}\|_{\text {Lip }} \leq 1 \Rightarrow \widetilde{\psi}\left(x^{2}\right)-\widetilde{\psi}\left(x^{1}\right) \leq\left|x^{1}-x^{2}\right| \\
& \left.-\widetilde{\psi}\left(x^{1}\right) \leq\left|x^{1}-x^{2}\right|-\widetilde{\psi}\left(x^{2}\right)\right)
\end{aligned}
$$

Thus, $\widetilde{\varphi}=-\widetilde{\psi}$.

$$
L H S=\int \widetilde{\varphi} d \mu+\delta \widetilde{\psi} d \nu=\int \widetilde{\varphi} d(\mu-\nu) \leq R H S
$$

We now have obtained characterizations of the dual problem for both ω_{1}, ω_{2}.
Exercise: Consider

$$
\omega_{p}(\mu, \nu):=\min _{\gamma \in \Gamma(\mu, \nu)}\left(\int d\left(x^{1}, x^{2}\right)^{p} d \gamma\left(x^{1}, x^{2}\right)\right)^{1 / p} .
$$

Use Holder's inequality to prove that

$$
p \leq q \Rightarrow \omega_{p}(\mu, \nu) \leq \omega_{q}(\mu, \nu)
$$

Furthermore, if $\operatorname{supp}(\mu) \operatorname{supp}(\nu)$ bounded, prove that \exists Cs.t.

$$
p \leq q \Rightarrow \omega_{q}(\underline{\mu}, \nu) \leq C \omega_{p}(\mu, \nu)
$$

We will now prove our earlier claim that ω_{2} is a metric on $P_{2}\left(\mathbb{R}^{d}\right)$.

Our proof will we Brevier's theorem... which requires $\mu \ll \mathcal{L}^{d}$.
We need a way to approximate $\mu \in P_{2}\left(\mathbb{R}^{d}\right)$ by $\mu \varepsilon$ that are abs cts.

Polish space
Prop: (ω_{2} jointly Is wrtinarrow convergence): $\mu_{n} \rightarrow \mu$ and $\nu_{n} \rightarrow v$ narrowly. $\mu_{n} \rightarrow \mu$ and $\nu_{n} \rightarrow v$ narrowly.
Then $\liminf _{n \rightarrow \infty} W_{2}(\mu n, \nu n) \geq W_{2}(\mu, \nu)$.
Recall:

The (Portmanteau): For any $g: X \rightarrow \mathbb{R}_{n},\{+\infty\}$ $\overline{S C}$ and bouncled below, $\mu n \xrightarrow{\text { nardoo }} \mu$ implies $\operatorname{liminff}_{n \rightarrow \infty} g d_{\mu_{n}} \geq S g d \mu$.

Exercise: Suppose $\mu_{n} \rightarrow \mu, v_{n} \rightarrow v$ narrowly:
Then, for any $\gamma_{n} \in \Gamma\left(\mu_{n}, \nu_{n}\right)$, there exists a subsequence $\gamma_{\eta_{k}}$ s.t. $\gamma_{n_{k}} \gamma$ narrowly, where $\gamma \in \Gamma(\mu, v)$.
Pf of Prop:
Choose a subsequence sothat

$$
\lim _{k \rightarrow+\infty} W_{2}\left(\mu_{n_{k}}, v_{n_{k}}\right)=\operatorname{limin}_{n \rightarrow \infty} W_{2}\left(\mu_{n}, \nu_{n}\right) .
$$

Let $\gamma_{n_{k}}$ be OT plans from $\mu_{n_{k}}$ to $\nu_{n_{k}}$.
By exercise, there exists a further subsequence (Clenoted still by $\gamma_{n_{k}}$) s.t.

$$
\gamma_{n_{k}} \rightarrow(\gamma \in \Gamma(\mu, \nu) .
$$

$\liminf _{n \rightarrow \infty} W_{2}\left(\mu_{n}, v_{n}\right)=\lim _{k \rightarrow+\infty} W_{2}\left(\mu_{n_{k}}, v_{n_{k}}\right)$

$$
=\lim _{k \rightarrow+\infty}^{k \rightarrow \infty}\left(\frac{\left(\int\left|x^{1}-x^{2}\right|^{2}\right.}{g} d r_{n_{k}}\right)^{1 / 2}
$$

Portmanteau

$$
\begin{aligned}
& \text { manteau } \\
& \geq\left(\int\left|x^{1}-x^{2}\right|^{2} d \gamma\right)^{g} \\
& \geq \omega_{2}(\mu, \nu)
\end{aligned}
$$

Approximation by Comolution
Def: (mollifier) $Q: \mathbb{R}^{2} \rightarrow[0,+\infty)$, td, meas

$$
\begin{aligned}
& \varphi(x)=\varphi(-x), \quad \int \varphi(x) d x=1 \\
& \varphi \varepsilon(x)=\frac{1}{\varepsilon^{\theta}} \varphi\left(\frac{x}{\varepsilon}\right)_{\varepsilon}-\int \varphi_{\varepsilon}(x) d x=1
\end{aligned}
$$

Def: Given $\mu \in P\left(\mathbb{R}^{d}\right)$, define

$$
\varphi_{\varepsilon^{\star} \mu}(x)=\int \varphi_{\varepsilon}(x-y) d \mu(y)
$$

We will often abuse notation $\underset{\sim \text { Nope: } S \xi^{\prime} \varepsilon^{\prime} \mu(x) d x}{\text { and }}$ write

$$
\begin{aligned}
& \begin{aligned}
\text { density } & =512 \mu \mu(4) \\
& =1
\end{aligned}
\end{aligned}
$$

Lemma: Suppose $\mu \in P\left(\mathbb{R}^{d}\right)$.
$\overline{(i)}$ For any $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ meas, bod below,

$$
\int f d\left(\frac{\varphi_{\varepsilon^{*}} \mu}{}\right)=\int\left(\underline{\varphi_{2} * f}\right) d \mu
$$

"associativity of convolution"
(ii) $\varphi_{\varepsilon}{ }_{\mu} \rightarrow \mu$ narrowly, as $\varepsilon \rightarrow 0$.

Pf:
(i) $\exists m \in \mathbb{R}$ s.t. $\quad f \geq m$

$$
\begin{aligned}
& \int f d\left(\varphi_{\varepsilon * \mu}\right)=\int(f-m) d\left(\varphi_{\varepsilon} * \mu\right)+\overbrace{\int_{m d} d\left(\varphi_{\varepsilon} * \mu\right)}^{m} \\
& \int\left(\varphi_{\varepsilon} * f\right) d \mu=\int \varphi_{\varepsilon *(f-m) d \mu}+\underbrace{\int \varphi_{\varepsilon} * m d \mu}_{=m}
\end{aligned}
$$

By Tonelli,

$$
\begin{aligned}
\int(f-m) d\left(\varphi_{\varepsilon} \pm \mu\right) & =\iint(f(x)-m) \varphi_{\varepsilon}(x-y) d \mu(y) d x \\
& =\iint(f(x)-m) \varphi_{\varepsilon}(x-y) d x d \mu(y) \\
& =\int Q_{\varepsilon} *(f-m) d \mu
\end{aligned}
$$

(ii) Recall that for any $f \in C_{b}\left(\mathbb{R}^{d}\right)$, $\varphi_{\varepsilon}+f \rightarrow f$ uniformly on compact subsets of \mathbb{R}^{d}.
Fix $f \in C b\left(\mathbb{R}^{d}\right)$.
By Prokhorov, since $\{\mu\}$ is tight, $\forall \delta>0, \exists K_{\delta} \subset\left(\mathbb{R}^{d}\right.$ st.

$$
2\|f\|_{\infty} \mu\left(\mathbb{R}^{d} \backslash K_{\delta}\right)<\frac{\delta}{2}
$$

Furthermore, $\exists \varepsilon_{\delta}>0$ s.t. $0<\varepsilon<\varepsilon_{\delta}$,

$$
\left\|\varphi_{\varepsilon} \not f-f\right\|_{L^{\infty}\left(K_{\varepsilon}\right)}<\frac{\delta}{2}
$$

Thus,

$$
\begin{aligned}
& \text { |Sf d(} \left.\varphi_{\varepsilon^{*} \mu}\right) \text { - Seder| } \\
& =\left|S\left(\varphi_{\varepsilon} * f-f\right) d \mu\right| \\
& \leq\left|\int_{K_{\delta}}\left(\varphi_{\varepsilon} * f-f\right) d \mu\right|+\left|\int_{\mathbb{R}^{2}>K_{\delta}}\left(\varphi_{\varepsilon} * f-f\right) d \mu\right| \\
& \leq\left\|\varphi_{\varepsilon} \neq f-f\right\|_{2 \infty}^{\infty}\left(K_{8}\right) \int_{K_{8}^{\prime}} d \mu \\
& +\left(\left\|\varphi_{\varepsilon}{ }^{*} f\right\|_{\infty}+\|f\|_{\infty}\right) \mu\left(\mathbb{R}^{d} \backslash K_{8}\right) \\
& \leq \frac{\delta}{2} \cdot 1+\frac{\delta}{2} \\
& \leq \delta
\end{aligned}
$$

Since f was arbitrary, $\varphi_{\varepsilon^{\downarrow} \mu} \rightarrow \mu$ narrowly.

Now, we consider behavior of ω_{2} and convolution.
Lemma: Given $\mu \in P\left(\mathbb{R}^{d}\right)$ and φ_{ε} as above s
(i) $\omega_{2}\left(\mu_{1} a_{\varepsilon} \pm \mu\right) \leq \varepsilon\left(m_{2}(e)\right)^{1 / 2} \int|x|^{2} \varphi(x) d x$
(ii) $W_{2}\left(Q_{\varepsilon} * \mu, Q_{\varepsilon} * \nu\right) \leq \omega_{2}(\mu, \nu)$
(iii) $\lim _{\varepsilon \rightarrow 0} \omega_{2}\left(Q_{\varepsilon} \rightarrow \mu, Q_{\varepsilon} * \nu\right)=\omega_{2}(\mu, \nu)$

Pf: Omitted for lack of time

$$
m_{2}(\mu):=\int|x|^{2} d \mu(x)
$$

Here is the proof from the last time I taught the course:
Pf: We begin with (i). Consider $\gamma_{\varepsilon} \in \mathcal{M}\left(\mathbb{R}^{2} \times \mathbb{R}^{2}\right)$ defined by $d \gamma_{\varepsilon}\left(x_{1}, x_{2}\right)=\varphi_{\varepsilon}\left(x_{2}-x_{1}\right) d x_{2} d \mu\left(x_{1}\right)$.
Then $\forall f$ bed, meas,

$$
\begin{aligned}
\int_{\mathbb{R}^{2} \times \mathbb{R}^{d}} f\left(x_{1}\right) d \gamma_{\varepsilon}\left(x_{1}, x_{2}\right) & =\int_{\mathbb{R}^{2} \times \mathbb{R}^{d}} f\left(x_{1}\right) \varphi_{\varepsilon}\left(x_{2}-x_{1}\right) d x_{2} d \mu\left(x_{1}\right) \\
& =\int_{\mathbb{R}^{d}} f\left(x_{1}\right) d \mu\left(x_{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
\int_{\mathbb{R}^{2} \times \mathbb{R}^{d}} f\left(x_{2}\right) d \gamma_{\varepsilon}\left(x_{1}, x_{2}\right) & =\int_{\mathbb{R}^{d} \times \mathbb{R}^{d}} f\left(x_{2} \varphi_{\varepsilon}\left(x_{2}-x_{1}\right) d x_{2} d \mu\left(x_{1}\right)\right. \\
& =\int_{\mathbb{R}^{d}} f \geqslant \varphi_{\varepsilon}\left(x_{1}\right) d \mu\left(x_{1}\right) \\
& =\int_{\mathbb{R}^{d}} f(x) d\left(\varphi_{\varepsilon} \not \mu\right)(x)
\end{aligned}
$$

Thus, $\gamma_{\varepsilon} \in \Gamma\left(\mu, Q_{\varepsilon} * \mu\right)$. So by def of ω_{2},

$$
\begin{aligned}
& W_{2}^{2}\left(\mu, Q_{\varepsilon \rightarrow \mu}\right) \leq \int\left|x_{2}-x_{1}\right|^{2} d \gamma_{\varepsilon}\left(x_{1}, x_{2}\right) \\
&=\int\left|x_{2}-x_{1}\right|^{2 \varphi} \varepsilon\left(x_{2}-x_{1}\right) d x_{2} d \mu\left(x_{1}\right) \\
& z=\frac{x_{2}-x_{1}}{\varepsilon} \downarrow=\int|\varepsilon z|^{2} \varphi(z) d z d \mu\left(x_{1}\right) \\
& d z=\frac{\frac{1}{\varepsilon}}{\varepsilon} d \alpha \varepsilon_{2} \\
&=\varepsilon^{2} \int|z|^{2} \varphi(z) d z \\
&=\varepsilon^{2} m_{2}(\varphi) .
\end{aligned}
$$

Now prove (ii). Define $\bar{\varphi}_{\varepsilon}\left(z_{1}, z_{2}\right)= \begin{cases}\varphi_{\varepsilon}\left(z_{1}\right) & \text { if } z_{z}=z_{z} \\ 0 & \text { otherwise }\end{cases}$ Consillen $\gamma_{\varepsilon} \in M\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right)$ defirech by

$$
\gamma_{s}:=\bar{\Phi}_{\theta} * x
$$

where γ is an optimal plan from μ to ν.

For any $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ bdd, meas, define $\widetilde{f}\left(x_{1}, x_{2}\right)=f\left(x_{1}\right)$.

Then,

$$
\begin{aligned}
& \int_{\mathbb{R}^{d} \times \mathbb{R}^{d}} f\left(x_{1}\right) d \gamma_{\varepsilon}\left(x_{1}, x_{2}\right)=\int_{\mathbb{R}^{2} \times \mathbb{R}^{d}} \tilde{f}\left(x_{1}, x_{2}\right) d\left(\Phi_{\varepsilon}+\gamma\right)\left(x_{1}, x_{2}\right) \\
& =\int_{\mathbb{R}^{d} \times \mathbb{R}^{d}} \tilde{f} \rightarrow \bar{\varphi}_{\varepsilon}\left(x_{1}, x_{2}\right) d \gamma\left(x_{1}, x_{2}\right) \\
& =\int_{\mathbb{R}^{2} \times \mathbb{R}^{2}} \int_{\mathbb{R}^{8} \times \mathbb{R}^{d}} \tilde{f}\left(x_{1}-z_{1}, x_{2}-z_{2}\right) \bar{\Phi}_{\varepsilon}\left(z_{1}, z_{2}\right) d \vec{z} \\
& =\int_{\mathbb{R}^{2} \times \mathbb{R}^{d}} \int_{\mathbb{R}^{d}} f\left(x_{1}-z\right) \varphi_{\varepsilon}(z) d z d \gamma\left(x_{1}, x_{2}\right) \\
& =\int_{\mathbb{R}^{d} \times \mathbb{R}^{d}} f \otimes \varphi_{\varepsilon}\left(x_{1}\right) d \gamma\left(x_{1}, x_{2}\right) \\
& =\int_{\mathbb{R}^{2}} f \rightarrow \varphi_{\varepsilon}\left(x_{1}\right) d \mu\left(x_{1}\right) \\
& =\int f d\left(\varphi_{\varepsilon \not} \mu\right)
\end{aligned}
$$

Similarly, $\int f\left(x_{2}\right) d \gamma_{\varepsilon}\left(x_{1}, x_{2}\right)=\int f\left(x_{2}\right) d\left(e_{\varepsilon}+\nu\right) x_{2}$

Thus, we conclude $\gamma_{\varepsilon} \in \Gamma\left(\varphi_{\varepsilon} \neq \mu, \varphi_{\varepsilon}+\nu\right)$.
Therefore,

$$
\begin{aligned}
W_{2}^{2} & \left(\varphi_{\varepsilon} \rightarrow \mu, \varphi_{\varepsilon} \rightarrow \nu\right) \\
& \leq \int\left|x_{1}-x_{2}\right|^{2} d \bar{\varphi}_{\varepsilon} \rightarrow \gamma\left(x_{1}, x_{2}\right) \\
& =\iint\left|\left(x_{1}-z_{1}\right)-\left(x_{2}-z_{2}\right)\right|^{2} \bar{\varphi}_{\varepsilon}\left(z_{1, z}\right) d z d \gamma\left(x_{1}, x_{2}\right) \\
& =\int S\left|\left(x_{1}-z\right)-\left(x_{2}-z\right)\right|^{2} \varphi_{\varepsilon}(z) d z d \gamma\left(x_{1}, x_{2}\right) \\
& =S \int\left|x_{1}-x_{2}\right|^{2} \varphi_{\varepsilon}(z) d z d \gamma\left(x_{1}, x_{2}\right) \\
& =W_{2}^{2}(\mu, \nu)
\end{aligned}
$$

Thus, $\left.W_{2}\left(q_{\varepsilon}{ }^{*} \mu, \varphi_{\varepsilon^{*}}\right)\right) \leq W_{2}(\mu, v)$.
Now part (iii).
By part (ii), $\limsup _{\varepsilon \rightarrow 0} W_{2}\left(\varphi_{\varepsilon^{ \pm}} \mu, \varphi_{\varepsilon} \neq \nu\right) \leq W_{2}(\mu, v)$.
Since $\varphi_{\varepsilon^{\phi} \mu} \rightarrow \mu, \varphi_{\varepsilon>\nu} \rightarrow \nu$ narrowly and W_{2} is jointly ls wot narrow convergence,

$$
\left.\liminf _{\varepsilon \rightarrow 0} W_{2}\left(Q_{\varepsilon^{*} \mu}, Q_{\varepsilon^{*}}\right)\right) \geq W_{2}(\mu, v)
$$

Combining these two limits gives the result.

