Lecture 12 Announcements:

- First wiki articles due this Friday 211
- No class Tuesday 2/15, rescheduled to Friday 2/18, 1:30-2:45pm, SH 6635
Suppose χ cit Polish space.
The: For all $\mu, \nu \in P(x), c: \chi \times \chi \rightarrow[0,+\infty) c+s$,

$$
\begin{aligned}
& \text { inf } \mathbb{K}(\gamma)=\sup _{\gamma \in \rho} \varphi_{d \mu}+\int \psi d \nu
\end{aligned}
$$

Furthermore, the maximum is attained.

From Kantorovich back to monge
Questions:
(1) When doesan OT map $t(x)$ exist?
(2) When do the optima of monge and Kantorovich's problems coincide?
(3) When does $t(x)=\nabla \Phi(x)$ for φ convex?

The (Knott-Smith Optimality (riterion):
Fix $x \subset \subset \mathbb{R}^{d}, \mu, \nu \in P(x)$. Let $c\left(x^{1}, x^{2}\right)=\left|x^{1}-x^{2}\right|^{2}$.
(i) There exists $f_{*} \in L^{1}(\mu)$ proper, Is, convex st.
(i.a) sup $\int \varphi d \mu+\int \psi d \nu=-P_{0}=\int|x|^{2}-2 f_{p}(x) d \mu(x)$ $a_{1} \psi \in C_{b}\left(\mathbb{R}^{d}\right)$
$\varphi \oplus \psi \leqslant C$

$$
+\int|x|^{2}-2 f_{*}^{*}(x) d v(x)
$$

(i.b) For any optimal transport plan $\gamma_{ \pm}$,

(ii) Conversely, if $\gamma \in \Gamma(\mu, \nu)$ and $f \in L^{7}(\mu)$ proper, Is 1 , convex for which $x^{2} \in \partial f\left(x^{1}\right)$ for γ-are. $\left(x^{1}, x^{2}\right)$ then...
(ii.a) γ is optimal

$$
(i i . b)-P_{0}=\int|x|^{2}-f(x) d \mu(x)+\int|x|^{2}-2 f^{*}(x) d v(x)
$$

Remark: More generally, the result continues to Ohold for $\mu, \nu \in P_{2}\left(\mathbb{R}^{d}\right)$, ie,

$$
P_{2}\left(\mathbb{R}^{d}\right)=\left\{\mu \in P_{2}\left(\mathbb{R}^{d}\right): S|x|^{2} d_{\mu}(x)<\infty\right\}
$$

Lemma (Double convexification for quadratic cost on \mathbb{R}^{d})

$$
\begin{aligned}
& \text { Given } \\
& \{(\varphi, \psi)\} \subseteq C\left(\mathbb{R}^{d}\right) \times C\left(\mathbb{R}^{d}\right), \\
& F((\varphi, \psi), 0)<+\infty
\end{aligned}
$$

define

$$
\begin{aligned}
& \widetilde{\Phi}\left(x^{1}\right)=\inf _{x^{2} \in \mathbb{R}^{d}\left|x^{1}-x^{2}\right|^{2}-\psi\left(x^{2}\right)} \\
& \widetilde{\psi}\left(x^{2}\right)=\inf _{x^{1} \in \mathbb{R}^{d}\left|x^{1}-x^{2}\right|^{2}-\widetilde{\varphi}\left(x^{1}\right)}
\end{aligned}
$$

Then,
(i) $f\left(x^{1}\right)=\frac{1}{2}\left(\left|x^{1}\right|^{2}-\widetilde{\varphi}\left(x^{1}\right)\right) \in L^{1}(\mu)$ is proper, ISC, and convex
(ii) $f^{*}\left(x^{2}\right)=\frac{1}{2}\left(\left|x^{2}\right|^{2}-\psi\left(x^{2}\right)\right)$
(iii) $F((\widetilde{q}, \tilde{\psi}), 0) \leq F((\phi, \psi), 0)$

Remark: $\widetilde{\Phi}_{i}, \widetilde{\psi}_{i}$ are the Moreau-Mosida regularization of $-\psi_{i},-\bar{\phi}_{i}$ with respect to the square distance
Pf:
First, note that

$$
\begin{aligned}
& \varphi\left(x^{1}\right)+\psi\left(x^{2}\right) \leq\left|x^{1}-x^{2}\right|^{2} \\
& \Phi\left(x^{1}\right) \leq\left|x^{1}-x^{2}\right|^{2}-\psi\left(x^{2}\right) \\
& \varphi\left(x^{1}\right) \leq \widetilde{\Phi}\left(x^{1}\right)
\end{aligned}
$$

Likewise, note that

$$
\begin{aligned}
& \widetilde{\varphi}\left(x^{2}\right)+\psi\left(x^{2}\right) \leq\left|x^{1}-x^{2}\right|^{2} \\
& \psi\left(x^{2}\right) \leq\left|x^{1}-x^{2}\right|^{2}-\widetilde{\varphi}\left(x^{1}\right)
\end{aligned}
$$

$$
\psi\left(x^{2}\right) \leq \widetilde{\psi}\left(x^{2}\right)
$$

Furthermore,
since, by definition $\left.\overline{\widetilde{q}} \mid x^{1}\right)+\widetilde{\psi}\left(x^{2}\right)=\left(x^{1}-\left.x^{2}\right|^{2}\right.$, we F((Q, y)

$$
\begin{gathered}
\widetilde{\phi}\left(x^{1}\right)=\inf _{\operatorname{in}^{2} \in(x)}\left|x^{1}-x^{2}\right|^{2}-\psi\left(x^{2}\right) \\
\underbrace{\frac{1}{2}\left(\left|x^{1}\right|^{2}-\widetilde{\varphi}\left(x^{1}\right)\right)}_{g^{*}\left(x^{1}\right)})=\sup _{x^{2} \in x}\left(x_{1}^{1}, x^{2}\right)-\frac{g\left(x^{2}\right)}{\frac{1}{2}\left(\left|x^{2}\right|^{2}-\psi\left(x^{2}\right)\right)}
\end{gathered}
$$

By def of convex conjugate,
$f\left(x^{1}\right)=g^{3}\left(x^{1}\right)$ is proper, Is, convex.
Likewise,

$$
\begin{array}{ll}
\text { Likewise, } & =g^{*}\left(x^{1}\right)=f\left(x^{1}\right) \\
\underbrace{\frac{1}{2}\left(\left|x^{2}\right|^{2}-\widetilde{\psi}\left(x^{2}\right)\right)}_{g^{*}\left(x^{2}\right)=f\left(x^{1}\right)}=\sup _{x^{1} \in x}\left\langle x^{1}, x^{2}\right\rangle-\frac{1}{2}\left(\left|x^{1}\right|^{2}-\widetilde{\varphi}\left(x^{1}\right)\right)
\end{array}
$$

To see $f \in L^{1}(\mu)$, note that Young's inequality implies

$$
g^{(}\left(x^{1}\right)+g\left(x^{2}\right) \geq\left\langle x^{1}, x^{2}\right\rangle
$$

Hence, $g^{\phi}\left(x^{1}\right) \geq\left\langle x^{1}, x^{2}\right)-\frac{1}{2}\left(\left|x^{2}\right|^{2} \psi\left(x^{2}\right)\right)$
OTOH, $g^{*}\left(x^{1}\right)=\frac{1}{2}\left(\left|x^{1}\right|^{2}-\widetilde{\varphi}\left(x^{1}\right)\right) \leqslant \frac{1}{2}\left(\left|x^{1}\right|^{2}-\varphi\left(x^{1}\right)\right)$
Thus, $f=g^{\otimes} \in L^{7}(\mu)$.

Now, we have everefthing we need to prove the Knott-Smath optimality
criterion.

Pf:
Part (i)
By Kantorovich Duality The \mathcal{A} Qt $\psi_{0} \in C(x)$ s.t. $\phi_{0}(x-0)+\psi_{0}\left(x^{2}\right)^{\prime} \leq\left|x^{1}-x^{2}\right|^{2}$ with

$$
-P_{0}=\int \varphi_{0} d \mu+\int \psi_{0} d \mu=-F\left(\left(\varphi_{0}, \psi_{0}\right), 0\right)
$$

By Double Convexification Lemma, $\left.f \in L^{1} / \mu\right)$ proper, ISc, convex where

$$
F\left(\left(\varphi_{0}, \psi_{0}\right), 0\right) \geq F\left(\left(\tilde{\varphi_{1}}, \tilde{\psi}, 0\right)\right.
$$

for $f\left(x^{7}\right)=\frac{1}{2}\left(\left|x^{1}\right|^{2}-\widetilde{\varphi}\left(x^{1}\right)\right)$

$$
f^{\vec{*}}\left(x^{2}\right)=\frac{1}{2}\left(\left|x^{2}\right|^{2}-\psi\left(x^{2}\right)\right) .
$$

Thus if γ is an $O T$ plan,

$$
\begin{aligned}
P_{0} & =F\left(\left(\varphi_{0}, \psi_{0}\right), 0\right) \\
& \geq F\left(\left(\overline{e_{1}}, \tilde{\psi}, 0\right)\right. \\
& =F\left(\left(\left|x^{1}\right|^{2}-2 f\left(x^{1}\right),\left|x^{2}\right|^{2}-2 f^{*}\left(x^{2}\right)\right), 0\right)
\end{aligned}
$$

$$
\begin{aligned}
& d=-\int\left|x^{1}\right|^{2}-2 f\left(x^{1}\right) d \mu\left(x^{4}\right)-\int\left|x^{2}\right|^{2}-2 f^{*}\left(x^{2}\right) d 2\left(x^{2}\right) \\
& f^{\prime}=-\int\left|x^{1}\right|^{2}-2 f\left(x^{1}\right)+\left|x^{2}\right|^{2}-2 f^{*}\left(x^{2}\right) d \gamma x\left(x^{1}, x^{2}\right) \\
& u_{\text {oung }} \\
& \geq-\int\left|x^{1}\right|^{2}+\left|x^{2}\right|^{2}-2\left\langle x^{1}, x^{2}\right\rangle d \gamma *\left(x^{1}, x^{2}\right) \\
&=-\int\left|x^{1}-x^{2}\right|^{2} d \gamma+\left(x^{1}, x^{2}\right) \\
&=D_{0} \\
&=P_{0}
\end{aligned}
$$

Thus, equality must hold throughout.
Ensures (ia).

$$
\int f\left(x^{1}\right)+f^{\prime}\left(x^{2}\right)-\left\langle x^{1}, x^{2}\right) d \gamma_{*}\left(x^{1}, x^{2}\right)=0
$$

Since Young's inequality guarantees the integrand is nonnegative, it must vanish γ-a.e.

Thus $x^{2} \in \partial f\left(x^{1}\right) \quad \gamma_{*}-$ a.e.

Part (ii)
Suppose

- $\gamma \in \Gamma(\mu, \nu)$
- $f \in L^{1}(\mu)$ proper, iss, convex
- $x^{2} \in \partial f\left(x^{2}\right) \quad \gamma-a . e$.

UTS
(ii.a) γ is optimal

$$
\text { (ii.b) }-P_{0}=\int|x|^{2}-f(x) d \mu(x)+\int|x|^{2}-2 f^{*}(x) d v(x)
$$

Since equality holds in Young's inequality
$\gamma-a . e$.

$$
\begin{aligned}
& -\int\left|x^{1}\right|^{2}-2 f\left(x^{1}\right) d \mu\left(x^{1}\right)-\int\left|x^{2}\right|^{2}-2 f^{*}\left(x^{2}\right) d \nu\left(x^{2}\right) \\
& =-\int\left|x^{1}\right|^{2}-2 f\left(x^{1}\right)+\left|x^{2}\right|^{2}-2 f^{*}\left(x^{2}\right) d \gamma\left(x^{1}, x^{2}\right)
\end{aligned}
$$

$\mu \nu$ young equality

$$
\begin{aligned}
& =-\int\left|x^{1}\right|^{2}-2\left\langle x^{1}, x^{2}\right\rangle+\left|x^{2}\right|^{2} d \gamma\left(x^{1}, x^{2}\right) \\
& =-\int\left|x^{1}-x^{2}\right|^{2} d \gamma\left(x, x^{1}, x^{2}\right)
\end{aligned}
$$

For arbitrary $\gamma^{\prime} \in \Gamma(\mu, \nu)$ we have" ${ }^{\prime 2}$ "at μ.
Thus

$$
\begin{aligned}
& -\int\left|x^{1}-x^{2}\right|^{2} d \gamma\left(x^{1}, x^{2}\right) \\
& =-\int\left|x^{1}\right|^{2}-2 f\left(x^{1}\right) d \mu\left(x^{1}\right)-\int\left|x^{2}\right|^{2}-2 f^{*}\left(x^{2}\right) d v\left(x^{2}\right) \\
& \geq-\int\left|x^{1}-x^{2}\right|^{2} d \gamma^{\prime}\left(x^{1}, x^{2}\right)
\end{aligned}
$$

Thus γ is optimal.
Finally, since γ is optimal, which shows (ii,b)

Applying M again shows (ii.a).

Dow, we have what we need to not only solve the Monge problem, but also to characterize its unique solution.

The (Brenier): Given $\mu, \nu \in P_{2}\left(\mathbb{R}^{d}\right), \mu \ll \mathcal{L} d$
(1) For any optimal transport plan γ_{*}, \ni an optimal transport map t_{*} s.t. $\gamma_{\otimes}=\left(i d x t_{*}\right) \not \# \mu$ "Any OT plan is induced by an OT map"
(2) Given t s.t. $t \# \mu=\nu$, \quad defined on \mathbb{R}^{2} eryuhere tisoptimal $\Leftrightarrow t=\nabla a$ for $\varphi^{\in} L^{1}(\mu)$ convex, $1 s c$ opined μ-ane. differentiable μ-are.
(3) the OT map is unique, up to μ-ae. equiv

The proof relies strongly on following
thecorein: theorem:

The: Given $\left.\mu \in P_{2}\left(\mathbb{R}^{d}\right), \mu \ll \mathcal{L}^{d}, \varphi \in L^{1} / \mu\right)$ convex, then

- Q is differentiable u-a.e.
- where it is differentiable, $\partial \varphi=\{\nabla \varphi\}$
- $\nabla \varphi$ coincides with the distribution gradient.
Sketch of Proof:
- Any convex function is locally Lip on Int (D(d)).
- $D(\theta)$ is convex, so $\partial D(\varphi)$ has Lebesgue meas 0 .
- Thus Q is differentiable a.e. on $D(\varepsilon)$.
$\circ \varphi \in L^{1}(\mu) \Rightarrow \mu(D(\varphi))=1 \Rightarrow \varphi$ is defferentiable $\mu-a . e$.
Now solve Mange's problem!

