Lecture 11 Announcements:

- First wiki articles due this Friday 211
- No class Tuesday 2/15, reschedule d to Friday 2/18, 1:30-2:45 pm
Suppose x acpt Polish space.
The: For all $\mu, v \in P(x), c: \chi \times \chi \rightarrow[0,+\infty) c+s$,

Furthermore, the maximum is attained.

$$
F((\varphi, \psi), u)=-\int \varphi_{d \mu}-j \psi d v+\chi_{\left\{u+\varphi_{\oplus \psi} \psi \ll\right\}}(((, \psi), u)
$$

"Double convexification trick"
Prop: Suppose $c: x \times x \rightarrow[1,+\infty)$ is continuous Given

$$
\begin{aligned}
& \left\{\left(\varphi_{i}, \psi_{i}\right)\right\}_{i \in I} \leq C(x) \times C(x), \quad \psi_{i} \geq 0 \\
& \left\{u_{i}\right\}_{i} \in I \subseteq C(x \times \chi) \text { uni bd, e-cts. } \\
& F\left(\left(\varphi_{i}, \psi_{i}\right), u_{i}\right)<+\infty \quad \forall i \in I .
\end{aligned}
$$

define.

0

$$
\begin{aligned}
& \ddot{\varphi}_{i}\left(x^{1}\right)=\ln _{x^{2}}{ }^{2} x c\left(x^{1}, x^{2}\right)-u_{i}\left(x^{1}, x^{2}\right)-\psi_{i}\left(x^{2}\right) \\
& \widetilde{\psi}_{i}\left(x^{2}\right)=\inf _{x^{11} \in x} c\left(x^{1}, x^{2}\right)-u_{i}\left(x^{1}, x^{2}\right)-\widetilde{\varphi}_{i}\left(x^{1}\right) .
\end{aligned}
$$

Then $\{\widetilde{\varphi}\}_{i \in I},\{\tilde{\psi}\}_{i \in I}$ are unif. bed, e-cts, and

$$
F\left(\left(\widetilde{q}_{i}, \widetilde{\psi}_{i}\right), u_{i}\right) \leq F\left(\left(\varphi_{i}, \psi_{i}\right), u_{i}\right)
$$

Recall: By Argelá-Ascoli, for $\mathcal{F} \leq C\left(x^{\text {com }}\right)$,
Fl unif bed FI unit bed, equicontinuows \Leftrightarrow Fr compact.

Proof (Kantorovich Duality):

$$
\begin{aligned}
& F((\varphi, \psi), u)=-\int \varphi_{d \mu}-\int \psi d \nu+\chi_{\{u+\varphi \oplus \psi \leq c\}}[(\varphi, \psi), u) \\
& P(u):=\inf _{(\varphi, \psi) \in((x) \times C(x)} F((\varphi, \psi), u)
\end{aligned}
$$

Bu theorem on equivalence of primal and
dual problems, it suffices to show that dual problems, it suffices to show that...
Step 1: F is convex
Step 2: $P(0)<+\infty$
Step $3: P$ is Is at 0
... to conclude $P_{0}=D_{0}$.
Step 4: Prove the primal problem has a solution.
Step 1
Since the first two terms in F are linear, hence convex, it suffices to show $x_{c}((\varphi, \psi), u)$ is convex, where

$$
c=\{((\varphi, \psi), u): u+\varphi \oplus \Psi \psi \leq c\} .
$$

Thus it suffices to show C is convex. Fix $\left(\left(\varphi_{0}, \psi_{0}\right), u_{0}\right),\left(\left(\varphi_{1}, \psi_{1}\right), u_{1}\right) \in C$. Their convex combination is

$$
\begin{aligned}
& (1-\alpha)\left(\left(\varphi_{0}, \psi_{0}\right),_{1} u_{0}\right)+\alpha\left(\left(\varphi_{1}, \psi_{1}\right), u_{1}\right) \\
& =((\underbrace{(1-\alpha) \varphi_{0}+\alpha \varphi_{1}}_{a_{\alpha}}, \frac{(1-\alpha) \psi_{0}+\alpha \psi_{1}}{1}), \underbrace{\left.(1-\alpha) u_{0}+\alpha u_{1}\right)}_{\psi_{\alpha}} .
\end{aligned}
$$

Then, for all $\alpha \in[0,1]$,

$$
\begin{aligned}
u_{\alpha} & +\varphi_{\alpha} \oplus \psi_{\alpha} \\
& =(1-\alpha)\left[u_{0}+\varphi_{0} \oplus \psi_{0}\right]+\alpha\left[u_{1}+\varphi_{1} \oplus \psi_{1}\right] \\
& \leq(1-\alpha) c+\alpha c \\
& =c
\end{aligned}
$$

So C is convex.

Step 2:

$$
\begin{gathered}
P(0)=\inf _{(q, 4) \in(x) \times(x)} F((\varphi, \psi), 0) \leqslant F((0,0), 0)=0<+\infty . \\
t^{c(x+x)}
\end{gathered}
$$

Step 3: Suppose $u_{n} \rightarrow 0$ uniformly on $\chi \times x$. We must show liming $P\left(u_{n}\right) \geq P(0)$.

Case $1: \operatorname{liming}_{n \rightarrow \infty} P\left(u_{n}\right)=+\infty$. Then the inequality automatically holds.
Case ${ }^{*} 2: \operatorname{liming}_{n \rightarrow \infty} P\left(u_{n}\right)<+\infty$. Choose a subsequence $u_{n_{k}}$ st. $\lim _{k \rightarrow \infty} P\left(u_{n_{k}}\right)=\operatorname{limining}_{n \rightarrow \infty} P\left(u_{n}\right)$. If sufficesto show $\lim _{k \rightarrow \infty} P\left(u_{n_{k}}\right) \geq P(0)$. For simplicity of notation, denote the subsequence by $P\left(u_{n}\right)$.
By def of infimum, $\forall n \in \mathbb{N}$, $J\left(\varphi_{n}, \psi_{n}\right) \in((x) \times C(x)$ s.t.

$$
+\infty>P\left(u_{n}\right) \geq F\left(\left(Q_{n}, \psi_{n}\right), u_{n}\right)-\frac{1}{n} .
$$

Note that, $\forall C \in \mathbb{R}$, defining
$\bar{\varphi}_{n}=\varphi_{n}+c, \bar{\psi}_{n}=\psi_{n}-c$, we have

$$
F\left(\left(\varphi_{n}, \psi_{n}\right), u_{n}\right)=F\left(\left(\bar{q}_{n}, \bar{\psi}_{n}\right), u_{n}\right)
$$

So we may assume, WLOG, $\psi_{n} \geq 0 \quad \forall n \in \mathbb{N}$.
Furthermore, since $u_{n} \rightarrow 0, \overline{\left\{u_{n}\right\}} \subseteq C(x \times x)$ is cpt, so $\left\{u_{n}\right\}$ bdd, e-cts.

Thus, by Double Convexification Prop, $\exists\left\{\tilde{q}_{n}\right\},\left\{\widetilde{\psi}_{n}\right\}$ unif bdd e-cts so that

$$
\begin{aligned}
+\infty>P\left(u_{n}\right) & \geq F\left(\left(Q_{n}, \psi_{n}\right), u_{n}\right)-\frac{1}{n} \\
& \geq F\left(\left(\widetilde{a}_{n}, \widetilde{\psi}_{n}\right), u_{n}\right)-\frac{1}{n} .
\end{aligned}
$$

Arzelá-Ascoli guarantees \exists subsegvences

Furthermore, since by defn

$$
u_{n_{k}}+\widetilde{q}_{n_{k}} \oplus \widetilde{\psi}_{n_{k}} \leqslant c
$$

we have
$\lim _{n \rightarrow 0} P\left(u_{n}\right)$

$$
\varphi_{*} \oplus \psi_{\star} \leq c
$$

$$
\begin{aligned}
& \lim _{k \rightarrow \infty} P\left(u_{n}\right) \geq \operatorname{liming}_{k \rightarrow \infty} F\left(\left(\widehat{\varphi}_{n}, \widetilde{\psi}_{n}\right), u_{n}\right)-\frac{1}{n} \\
&= \liminf _{k \rightarrow \infty}-\int \varphi_{n_{k}} d \mu-\int \psi_{n_{k}} d v-\frac{1}{n_{k}} \\
& \nabla^{T} l \\
&=-\int \varphi_{*} d \mu-\int \psi_{\rightarrow d} d v \\
&= F\left(\left(\varphi_{\infty}, \psi_{s}\right), 0\right) \\
& \geq \inf F\left(\left(\varphi_{\infty}, \psi_{>}\right), 0\right) \\
&\left(\varphi_{9}\left(\psi_{+}\right) \in((x) \times C(x)\right. \\
&= P(0) .
\end{aligned}
$$

Thus P is (sc at zero, so $P_{0}=D_{0}$.
Step 4: It remains to show \exists optimizer for primal problem.
Consider un $\equiv 0$ in the previous argument. Taking φ_{*}, ψ_{*} as above,

$$
P(0)=\lim _{k \rightarrow \infty} P\left(u_{n_{k}}\right)=F\left(\left(\varphi_{\infty}, \psi_{\infty}\right), 0\right) \geq P(0)
$$

Thus $P_{0}=F\left(\left(\varphi_{*}, \psi_{*}\right), 0\right)$, so $\left(\varphi_{*}, \psi_{\infty}\right)$ attains the optimum for the primal problem.

What about x noncompact?
Key difficulty: nomare Arzelá-Ascoli.

- For any Polish space (x, d), we still have $P_{0}=D_{0}$.
- In general, need to enlarge the space $C_{b}(x) \times C_{b}(x)$ to get existence of optimizers $\left(q * *, \psi^{*}\right)$.
$=$
Alert: common terminology abuse

$$
\inf _{\substack{\gamma \in(\mu, v)}} \mathbb{K}(\gamma)=\sup _{\substack{(\varphi, \psi) \in C(x) \times C(x) \\ \varphi \oplus \psi}} \int \varphi_{d} d \mu+\int \psi d \nu
$$

"Primal"
"Dual"
From Kantoravich back to monge Ex:

$$
(x, d)=(\mathbb{R}, 1 \cdot 1), \quad c\left(x^{1}, x^{2}\right)=\left|x^{1}-x^{2}\right|^{2}
$$

Kantorovich:

$$
\inf _{\gamma \boxminus \Gamma(\mu, \nu)} \int_{\mathbb{R} \times \mathbb{R}}\left|x^{1}-x^{2}\right|^{2} d \gamma\left(x^{1}, x^{2}\right)
$$

Mange:

Intuitively, if t is an optimal transport map from μ to ν, then "mass doesn't cross", that is

$$
x \leq y \Rightarrow t(x) \leq t(y) .
$$

In other words, t is increasing.

What is the appropriate generalization of this property in higher dimensions?
Note: define $\varphi(x)=\int_{-\infty}^{x} t(z) d z$.
Then (fort sufficiently smooth, decay at $+\infty$)
0
$t(x)$$\Phi^{\prime}(x)$ sh or - $t(x)=\Phi^{\prime}(x)$

- $t^{\prime}(x)=Q^{\prime \prime}(x) \geq 0 \Rightarrow \Phi$ convex x

In higher dimensions, we will see that an OT map t satisfies $t=" \nabla \varphi$ " for Q convex.

Questions:

(1) When doesan OT map $t(x)$ exist?
(2) When do the optima of monge and Kantorovich's problems coincide?
(3) When does $t(x)=\nabla \varphi(x)$ for φ convex?

The (Knott-Smith Optimality (riterion): Fix $x \subset \subset \mathbb{R}^{d}, \mu, \nu \in P(x)$. Let $C\left(x^{1}, x^{2}\right)=\left|x^{1}-x^{2}\right|^{2}$.
(i) There exists $f_{\#} \in L^{1}(\mu)$ proper, Iss, convex st.
(ia) Sup $\int \varphi d \mu+\delta \psi d \nu=-P_{0}=\int|x|^{2}-2 f_{\infty}(x) d \mu(x)$ $Q, \psi \in C_{b}\left(\mathbb{R}^{d}\right)$ $\varphi \oplus \psi \leq C$

$$
+\int|x|^{2}-2 f_{*}^{*}(x) d v(x
$$

(i.b)F or any optimal transport plan $\gamma \neq$, we have $x^{2} \in \partial f_{*}\left(x^{1}\right)$ for X_{*}^{-}ae. $\left(x^{1}, x^{2}\right)$
(ii) Conversely, if $\gamma \in \Gamma(\mu, \nu)$ and $f \in L^{7}(\mu)$ proper, Is 0 , convex for which $x^{2} \in \partial f\left(x^{1}\right)$ for γ-a.e. $\left(x^{1}, x^{2}\right)$ then...
(ii.a) γ is optimal

$$
\text { (ii.b) }-P_{0}=\int|x|^{2}-f(x) d \mu(x)+\int|x|^{2}-2 f^{*}(x) d v(x)
$$

Remark: Suprisingly, (ib) does not imply uniqueness of OT plans.
Exercise: Consider $(x, d)=\left(\mathbb{R}^{2}, \mid \cdot 1\right)$

$$
u=\frac{1}{2}(\delta(-1,-1)+\delta(1,1)), \nu=\frac{1}{2}(\delta(-1,1)+\delta(1,-1))
$$

Show that $f_{*}(\underline{x})=f_{*}\left(x_{1}, x_{2}\right)=\left|x_{1}-x_{2}\right|$ satisfies (i) above and find two distinct $O T$ plans satisfying (ii).

