Möbius inversion and combinatorial curvature

Jon McCammond
U.C. Santa Barbara

Outline

I. Two Theorems about Curvature II. Angle Sums in Polytopes
III. A General Theorem

Normalized Angles

Let F be a face of a polytope P.

- The normalized internal angle $\alpha(F, P)$ is the proportion of unit vectors perpendicular to F which point into P (i.e. the measure of this set of vectors divided by the measure of the sphere of the appropriate dimension).
- The normalized external angle $\beta(F, P)$ is the proportion of unit vectors perpendicular to F so that there is a hyperplanes with this unit normal which contains F and the rest of P is on the other side.

Thm: $\sum_{v \in P} \beta(P, v)=1$.

Curvature in PE complexes

Following Cheeger-Müller-Schrader (and CharneyDavis), we can think of the curvature of a piecewise Euclidean cell complex X as concentrated at its vertices.

$$
\begin{aligned}
\chi(X) & =\sum_{P}(-1)^{\operatorname{dim} P} \\
& =\sum_{P} \sum_{v \in P}(-1)^{\operatorname{dim} P_{\beta}} \beta(v, P) \\
& =\sum_{v} \sum_{P \ni v}(-1)^{\operatorname{dim} P} \beta(v, P) \\
& =\sum_{v} \kappa(v)
\end{aligned}
$$

where $\kappa(v):=\sum_{P \ni v}(-1)^{\operatorname{dim} P_{\beta}} \beta(v, P)$.
Rem: This equation led to the Charney-Davis conjecture.

An Example

If X is the boundary of a dodecahedron, then

$$
\begin{aligned}
\kappa(v) & =\beta(v, v)-\sum_{e \ni v} \beta(v, e)+\sum_{f \ni v} \beta(v, f) \\
& =1-5\left(\frac{1}{2}\right)+5\left(\frac{1}{3}\right)=\frac{1}{6}
\end{aligned}
$$

Since $\chi(X)=\sum_{v} \kappa(v)$ there must be 12 vertices ($2=V / \sigma$).

Combinatorial Gauss-Bonnet

An angled 2-complex is one where we arbitrarily assign normalized external angles $\beta(v, f)$ for each vertex-face pair.

Define $\kappa(v)$ as above. Define $\kappa(f)$ as a correction term which measures how far the external vertex angles are from 1.

$$
\kappa(f)=1-\sum_{v \in f} \beta(v, f)
$$

Thm(Gersten,Ballmann-Buyalo,M-Wise)

If X is an angled 2-complex, then

$$
\sum_{v} \kappa(v)+\sum_{f} \kappa(f)=\chi(X)
$$

Rem: In all these papers the sum was $2 \pi \chi(X)$ since the angles were not normalized. As we shall see normalization is crucial for the equations in higher dimensions.

Angle Sums

The sum of the internal angles in a triangle is π, but the sum of the dihedral angles in a tetrahedron can vary. The relations between the various internal and external angles in a Euclidean polytope are best described via incidence algebras.

Posets and Incidence Algebras

Let P be a finite poset on [n] numbered according to some linearization of P, and let $I(P)$ be its incidence algebra.

Rem: The elements of $I(P)$ can also be thought of as functions from $P \times P \rightarrow \mathbb{R}$.

The identity matrix is the delta function where $\delta(x, y)=1$ iff $x=y$.

The zeta function is the function $\zeta(x, y)=1$ if $x \leq_{P} y$ and 0 otherwise (i.e. 1's wherever possible).

The möbius function is the matrix inverse of ζ. Note that $\mu \zeta=\zeta \mu=\delta$.

Incidence Algebras for Polytopes

The faces of a Euclidean polytope under inclusion (including the empty face) is its face lattice.

The set of all normalized internal (external) angles of a polytope P forms a single element α (β) of the incidence algebra of its face latticeonce we extend these notions so that $\alpha(\emptyset, F)$ and $\beta(\emptyset, F)$ have well-defined values.
One possibility is

$$
\begin{aligned}
& \alpha(\emptyset, F)=\left\{\begin{array}{l}
1 \text { if } \operatorname{dim} F \leq 0 \\
0 \text { if } \operatorname{dim} F>0
\end{array}\right\} \\
& \beta(\emptyset, F)=\left\{\begin{array}{l}
1 \text { if } \operatorname{dim} F<0 \\
0 \text { if } \operatorname{dim} F \geq 0
\end{array}\right\}
\end{aligned}
$$

Equations for Angles

The most interesting of angle identity is the one discovered by Peter McMullen.

Thm(McMullen) $\alpha \beta=\zeta$, i.e.

$$
\sum_{F \leq G \leq H} \alpha(F, G) \beta(G, H)=\zeta(F, H)
$$

Proof Idea:

- Look at (a polytopal cone) \times (its dual cone)
- Integrate $f(\vec{x})=\exp \left(-\|\vec{x}\|^{2}\right)$ over this $\mathbb{R}^{2 n}$ in two different ways.

Möbius Functions for Polytopes

Because the value of the möbius function is the reduced Euler characteristic of the geometric realization of interior of the interval, we have:

Lem: The möbius function of the face lattice of a polytope is $\mu(F, G)=(-1)^{\operatorname{dim} G-\operatorname{dim} F}$.

Proof: The geometric realization of the portion of the face lattice between F and G is a sphere.

Def: Let $\bar{\alpha}(F, G)=\mu(F, G) \alpha(F, G)$, [Hadamard product] (i.e. $\bar{\alpha}$ is a signed normalized internal angle.

Thm(Sommerville) $\mu \alpha=\bar{\alpha}$ i.e.

$$
\sum_{F \leq G \leq H} \mu(F, G) \alpha(G, H)=\mu(F, H) \alpha(F, H)
$$

Cor: $\bar{\alpha} \beta=\mu \alpha \beta=\mu \zeta=\delta$.

Combinatorial Gauss-Bonnet Revisited

General CGB Thm Every factorization $\alpha \beta=$ ζ, gives rise to a Gauss-Bonnet type formula.

In particular, $\tilde{\chi}(X)$ is

$$
\begin{aligned}
& =\sum_{P \geq \emptyset}(-1)^{\operatorname{dim} P}=\sum_{P \geq \emptyset}(-1)^{\operatorname{dim} P} \zeta(\emptyset, P) \\
& =\sum_{P \geq \emptyset}(-1)^{\operatorname{dim} P}\left(\sum_{Q \in[\emptyset, P]} \alpha(\emptyset, Q) \beta(Q, P)\right) \\
& =\sum_{Q \geq \emptyset}(-1)^{\operatorname{dim} Q} \alpha(\emptyset, Q)\left(\sum_{P \geq Q} \bar{\beta}(Q, P)\right) \\
& =\sum_{Q \geq \emptyset}(-1)^{\operatorname{dim} Q} \alpha(\emptyset, Q) \kappa^{\uparrow}(Q)
\end{aligned}
$$

where $\kappa^{\uparrow}(Q)$ is defined as the obvious signed sum implicit in the final equality.

Rem 1: Factorizations with lots of Os are best. Rem 2: Both earlier theorems are special cases.

