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Normalized Angles

Let F be a face of a polytope P .

a

b

• The normalized internal angle α(F, P ) is the
proportion of unit vectors perpendicular to F

which point into P (i.e. the measure of this
set of vectors divided by the measure of the
sphere of the appropriate dimension).

• The normalized external angle β(F, P ) is the
proportion of unit vectors perpendicular to F

so that there is a hyperplanes with this unit
normal which contains F and the rest of P is
on the other side.

Thm:
∑
v∈P

β(P, v) = 1.
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Curvature in PE complexes

Following Cheeger-Müller-Schrader (and Charney-

Davis), we can think of the curvature of a

piecewise Euclidean cell complex X as concen-

trated at its vertices.

χ(X) =
∑
P

(−1)dimP

=
∑
P

∑
v∈P

(−1)dimPβ(v, P )

=
∑
v

∑
P3v

(−1)dimPβ(v, P )

=
∑
v

κ(v)

where κ(v) :=
∑
P3v

(−1)dimPβ(v, P ).

Rem: This equation led to the Charney-Davis

conjecture.
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An Example

If X is the boundary of a dodecahedron, then

κ(v) = β(v, v)−
∑
e3v

β(v, e) +
∑
f3v

β(v, f)

= 1− 5
(
1
2

)
+ 5

(
1
3

)
= 1

6

Since χ(X) =
∑
v

κ(v) there must be 12 vertices

(2 = V/6).
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Combinatorial Gauss-Bonnet

An angled 2-complex is one where we arbitrar-
ily assign normalized external angles β(v, f) for
each vertex-face pair.

Define κ(v) as above. Define κ(f) as a correc-
tion term which measures how far the external
vertex angles are from 1.

κ(f) = 1−
∑
v∈f

β(v, f)

Thm(Gersten,Ballmann-Buyalo,M-Wise)

If X is an angled 2-complex, then

∑
v

κ(v) +
∑
f

κ(f) = χ(X)

Rem: In all these papers the sum was 2πχ(X)
since the angles were not normalized. As we
shall see normalization is crucial for the equa-
tions in higher dimensions.
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Angle Sums

The sum of the internal angles in a triangle

is π, but the sum of the dihedral angles in a

tetrahedron can vary. The relations between

the various internal and external angles in a

Euclidean polytope are best described via inci-

dence algebras.
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Posets and Incidence Algebras

Let P be a finite poset on [n] numbered

according to some linearization of P , and let

I(P ) be its incidence algebra.

Rem: The elements of I(P ) can also be thought

of as functions from P × P → R.

The identity matrix is the delta function where

δ(x, y) = 1 iff x = y.

The zeta function is the function ζ(x, y) = 1

if x ≤P y and 0 otherwise (i.e. 1’s wherever

possible).

The möbius function is the matrix inverse of

ζ. Note that µζ = ζµ = δ.
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Incidence Algebras for Polytopes

The faces of a Euclidean polytope under in-

clusion (including the empty face) is its face

lattice.

The set of all normalized internal (external)

angles of a polytope P forms a single element α

(β) of the incidence algebra of its face lattice—

once we extend these notions so that α(∅, F )

and β(∅, F ) have well-defined values.

One possibility is

α(∅, F ) =

{
1 if dimF ≤ 0
0 if dimF > 0

}

β(∅, F ) =

{
1 if dimF < 0
0 if dimF ≥ 0

}
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Equations for Angles

The most interesting of angle identity is the

one discovered by Peter McMullen.

Thm(McMullen) αβ = ζ, i.e.

∑
F≤G≤H

α(F, G)β(G, H) = ζ(F, H)

Proof Idea:

• Look at (a polytopal cone) × (its dual cone)

• Integrate f(~x) = exp(−||~x||2) over this R2n in

two different ways.
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Möbius Functions for Polytopes

Because the value of the möbius function is the
reduced Euler characteristic of the geometric
realization of interior of the interval, we have:

Lem: The möbius function of the face lattice
of a polytope is µ(F, G) = (−1)dimG−dimF .

Proof: The geometric realization of the por-
tion of the face lattice between F and G is a
sphere.

Def: Let ᾱ(F, G) = µ(F, G)α(F, G), [Hadamard
product] (i.e. ᾱ is a signed normalized internal
angle.

Thm(Sommerville) µα = ᾱ i.e.∑
F≤G≤H

µ(F, G)α(G, H) = µ(F, H)α(F, H)

Cor: ᾱβ = µαβ = µζ = δ.
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Combinatorial Gauss-Bonnet Revisited

General CGB Thm Every factorization αβ =

ζ, gives rise to a Gauss-Bonnet type formula.

In particular, χ̃(X) is

=
∑

P≥∅
(−1)dimP =

∑
P≥∅

(−1)dimP ζ(∅, P )

=
∑

P≥∅
(−1)dimP

 ∑
Q∈[∅,P ]

α(∅, Q)β(Q, P )


=

∑
Q≥∅

(−1)dimQ α(∅, Q)

 ∑
P≥Q

β̄(Q, P )


=

∑
Q≥∅

(−1)dimQ α(∅, Q) κ↑(Q)

where κ↑(Q) is defined as the obvious signed

sum implicit in the final equality.

Rem 1: Factorizations with lots of 0s are best.

Rem 2: Both earlier theorems are special cases.
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