Möbius inversion and combinatorial curvature

Jon McCammond U.C. Santa Barbara

Outline

- I. Two Theorems about Curvature
- II. Angle Sums in Polytopes
- III. A General Theorem

Normalized Angles

Let F be a face of a polytope P.

• The normalized *internal angle* $\alpha(F, P)$ is the proportion of unit vectors perpendicular to F which point into P (i.e. the measure of this set of vectors divided by the measure of the sphere of the appropriate dimension).

• The normalized external angle $\beta(F, P)$ is the proportion of unit vectors perpendicular to F so that there is a hyperplanes with this unit normal which contains F and the rest of P is on the other side.

Thm:
$$\sum_{v \in P} \beta(P, v) = 1.$$

Curvature in PE complexes

Following Cheeger-Müller-Schrader (and Charney-Davis), we can think of the curvature of a piecewise Euclidean cell complex X as concentrated at its vertices.

$$\chi(X) = \sum_{P} (-1)^{\dim P}$$

= $\sum_{P} \sum_{v \in P} (-1)^{\dim P} \beta(v, P)$
= $\sum_{v} \sum_{P \ni v} (-1)^{\dim P} \beta(v, P)$
= $\sum_{v} \kappa(v)$

where
$$\kappa(v) := \sum_{P \ni v} (-1)^{\dim P} \beta(v, P).$$

Rem: This equation led to the Charney-Davis conjecture.

An Example

If X is the boundary of a dodecahedron, then

$$\kappa(v) = \beta(v,v) - \sum_{e \ni v} \beta(v,e) + \sum_{f \ni v} \beta(v,f)$$
$$= 1 - 5\left(\frac{1}{2}\right) + 5\left(\frac{1}{3}\right) = \frac{1}{6}$$

Since $\chi(X) = \sum_{v} \kappa(v)$ there must be 12 vertices (2 = V/6).

Combinatorial Gauss-Bonnet

An angled 2-complex is one where we arbitrarily assign normalized external angles $\beta(v, f)$ for each vertex-face pair.

Define $\kappa(v)$ as above. Define $\kappa(f)$ as a correction term which measures how far the external vertex angles are from 1.

$$\kappa(f) = 1 - \sum_{v \in f} \beta(v, f)$$

Thm(Gersten, Ballmann-Buyalo, M-Wise) If X is an angled 2-complex, then

$$\sum_{v} \kappa(v) + \sum_{f} \kappa(f) = \chi(X)$$

Rem: In all these papers the sum was $2\pi\chi(X)$ since the angles were not normalized. As we shall see normalization is crucial for the equations in higher dimensions.

Angle Sums

The sum of the internal angles in a triangle is π , but the sum of the dihedral angles in a tetrahedron can vary. The relations between the various internal and external angles in a Euclidean polytope are best described via incidence algebras.

Posets and Incidence Algebras

Let P be a finite poset on [n] numbered according to some linearization of P, and let I(P) be its *incidence algebra*.

Rem: The elements of I(P) can also be thought of as functions from $P \times P \to \mathbb{R}$.

The identity matrix is the *delta function* where $\delta(x, y) = 1$ iff x = y.

The zeta function is the function $\zeta(x, y) = 1$ if $x \leq_P y$ and 0 otherwise (i.e. 1's wherever possible).

The *möbius function* is the matrix inverse of ζ . Note that $\mu \zeta = \zeta \mu = \delta$.

Incidence Algebras for Polytopes

The faces of a Euclidean polytope under inclusion (including the empty face) is its *face lattice*.

The set of all normalized internal (external) angles of a polytope P forms a single element α (β) of the incidence algebra of its face lattice once we extend these notions so that $\alpha(\emptyset, F)$ and $\beta(\emptyset, F)$ have well-defined values. One possibility is

$$\alpha(\emptyset, F) = \left\{ \begin{array}{l} 1 \text{ if } \dim F \leq 0\\ 0 \text{ if } \dim F > 0 \end{array} \right\}$$
$$\beta(\emptyset, F) = \left\{ \begin{array}{l} 1 \text{ if } \dim F < 0\\ 0 \text{ if } \dim F \geq 0 \end{array} \right\}$$

Equations for Angles

The most interesting of angle identity is the one discovered by Peter McMullen.

Thm(McMullen) $\alpha\beta = \zeta$, i.e.

$$\sum_{F \le G \le H} \alpha(F, G)\beta(G, H) = \zeta(F, H)$$

Proof Idea:

- Look at (a polytopal cone) \times (its dual cone)
- Integrate $f(\vec{x}) = \exp(-||\vec{x}||^2)$ over this \mathbb{R}^{2n} in two different ways.

Möbius Functions for Polytopes

Because the value of the möbius function is the reduced Euler characteristic of the geometric realization of interior of the interval, we have:

Lem: The möbius function of the face lattice of a polytope is $\mu(F,G) = (-1)^{\dim G - \dim F}$.

Proof: The geometric realization of the portion of the face lattice between F and G is a sphere.

Def: Let $\bar{\alpha}(F,G) = \mu(F,G)\alpha(F,G)$, [Hadamard product] (i.e. $\bar{\alpha}$ is a *signed* normalized internal angle.

Thm(Sommerville) $\mu \alpha = \overline{\alpha}$ i.e.

$$\sum_{F \le G \le H} \mu(F, G) \alpha(G, H) = \mu(F, H) \alpha(F, H)$$

Cor: $\bar{\alpha}\beta = \mu\alpha\beta = \mu\zeta = \delta$.

11

Combinatorial Gauss-Bonnet Revisited

General CGB Thm Every factorization $\alpha\beta = \zeta$, gives rise to a Gauss-Bonnet type formula.

In particular, $\tilde{\chi}(X)$ is

$$= \sum_{P \ge \emptyset} (-1)^{\dim P} = \sum_{P \ge \emptyset} (-1)^{\dim P} \zeta(\emptyset, P)$$
$$= \sum_{P \ge \emptyset} (-1)^{\dim P} \left(\sum_{Q \in [\emptyset, P]} \alpha(\emptyset, Q) \beta(Q, P) \right)$$
$$= \sum_{Q \ge \emptyset} (-1)^{\dim Q} \alpha(\emptyset, Q) \left(\sum_{P \ge Q} \overline{\beta}(Q, P) \right)$$
$$= \sum_{Q \ge \emptyset} (-1)^{\dim Q} \alpha(\emptyset, Q) \kappa^{\uparrow}(Q)$$

where $\kappa^{\uparrow}(Q)$ is defined as the obvious signed sum implicit in the final equality.

Rem 1: Factorizations with lots of 0s are best.Rem 2: Both earlier theorems are special cases.