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Factoring Motions into Reflections

In this final talk, I’d like to analyze all possible ways to factor a

spherical or affine isometry into a minimal number of reflections.

There are many similarities between the two cases; the spherical

case is essentially a warm-up for the affine case.

Main Question: What is the global structure of this poset and

is it locally a lattice?

When an interval in this poset is a lattice, then pulling the isom-

etry group apart at this element results in a Garside structure

and a Garside group.
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Bipartite Cayley Graphs

Because reflections are orientation reversing, for any symmetric

space Xn, the Cayley graph of Isom(Xn) with respect to re-

flections is a bipartite graph. In particular, every edge has one

endpoint closer to the origin and every edge occurs in a minimal

length factorization of some element.

Said differently, if we pick up the Cayley graph at a point and

shake, then the resulting graded graph is the poset we’re inter-

esting in.

Ex: The Cayley graph for O(2) is an easy to visualize example.

[Blackboard]
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Subspace posets

For convenience we first define several elementary posets.

Def: Let Xn be either Sn, Rn or Hn. There are many isometri-
cally embedded copies of Xk inside Xn that we order by reverse
inclusion (X ≤ Y iff X ⊃ Y ). Call the resulting poset Sub(Xn).
The space Xn is the minimal element in Sub(Xn).

The subspaces of Rn that go through the origin (i.e. the linear
ones) form a subposet of Sub(Rn) that we call Lin(Rn). Notice
that Lin(Rn) = Sub(Sn−1) (if we include S−1) and that the origin
is its unique maximal element.

These posets are locally lattices. Joins are intersections and
meets are spans of unions.

4



Up and Down

Let α be a motion and let r be a reflection.

Lem: If rα fixes a point not fixed by α, then Fix(α) ⊂ Fix(r).

Proof: [Picture]

Cor 1: If Fix(α) 6⊂ Fix(r) then no new fixed points, Fix(rα) =

Fix(r) ∩ Fix(α), and codim(Fix(rα)) = codim(Fix(α)) + 1.

Cor 2: If Fix(α) ⊂ Fix(r) then there are new fixed points and

codim(Fix(rα)) = codim(Fix(α))− 1.
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Reflection Length

From these corollaries, we find:

Prop: The word length of α with respect to reflections is equal

to codim(Fix(α)).

Proof: |α| ≥ codim(Fix(α)) since k reflections have at least n−k

dimensions that they all fix. Conversely, |α| ≤ codim(Fix(α))

since given a motion that fixes n − k dimensions we can find a

length k path to the identity by fixing an additional direction

each time.

Cor: A product of reflections is a minimal factorization of their

product iff their normal vectors are linearly independent.
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The Combinatorial Model: Spherical version

Thm (Sherk,T.Brady-Watt) If α is a fixed point free isometry

of the n-sphere, then the poset of minimal factorizations of α

into reflections is isomorphic to Lin(Rn+1). In particular, the

isomorphism is given by sending each β ≤ α to Fix(β).

Rem: For each linear subspace Y in Rn there are several motions

β in Isom(Sn) with Fix(β) = Y . The point is that there is one

and only one of these β’s that lies under α.

[Blackboard]
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Lattice and Labels

Q: Is the interval below α in Isom(Sn) a lattice?

A: Yes. It is isomorphic to some Lin(Rk) and Lin(Rk) is a lattice.

Rem: Notice that for every α with |α| = k, the structure of the

factorization poset is the same. The differences only become

apparent once we remember the edge labels.

Cor: For every α, the orthogonal group Ô(n) pulled apart at α

has a Garside structure.

Next, we turn to understanding Isom(Rn) and affine Artin groups

which is joint work with Noel Brady and John Crisp.
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Classifying Isometries

The translation length of an isometry α is the infimum of the

distances that points are moved. If it is positive, then α is called

hyperbolic. If α has a fixed point it is called elliptic. If α does

not fix a point but its translation length is zero, then it is called

parabolic.

Rem: Parabolic isometries can only occur in hyperbolic and

higher rank symmetric spaces. All spherical and affine isometries

are either elliptic or hyperbolic.

Sometimes elliptic and hyperbolic isometries are lumped together

under the heading semisimple.
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Minsets

If α is a hyperbolic isometry on a complete non-positively curved

space, then its translation length is achieved by some point and

the Minset of α is the set of all such points.

This is the hyperbolic isometry analog of the fixed set of an

elliptic isometry.

Rem: In Rn the Minset of a hyperbolic isometry is always an

affine subspace on which α acts by translation. [Bridson-Haefliger]
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Pure Translations

Def: A pure translation is one that is the product of two
distinct parallel reflections.

Prop: Every hyperbolic isometry of Rn has a unique factoriza-
tion into an elliptic isometry and a commuting pure translation.
Moreover, the fixed set of the elliptic is equal to the minset of
the hyperbolic.

[Picture]

(this is a special case of a general Lie group factorization result)

Cor: A hyperbolic isometry α of Rn can be factored into
codim(Minset(α)) + 2 reflections.
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Sphere at Infinity

One of the ways to utilize the spherical results in the affine

setting is to notice that every affine isometry has a well-defined

motion of the sphere at infinity.

From this perspective we can show that the reflection length of

a hyperbolic isometry is exactly equal to codim(Minset(α)) + 2.

Prop: If α is an isometry of maximal length (hyperbolic and

minset is a line), then rα is elliptic iff the normal vector of α is

not perpendicular to the direction of the minset.

[Blackboard]
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Nearly independent

Def: Call a set of k vectors nearly independent if its span has

dimension k − 1.

Prop: A set of k distinct affine reflections form a minimal factor-

ization of a hyperbolic isometry iff they have no common fixed

point and their normal vectors form a nearly independent set.
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The Grid

We think of the factorization of δ as ordered pairs (α, β) and we

separate out the pairs of the form (hyp,ell) (ell,ell), and (ell,hyp).

The form (hyp,hyp) is ruled out since it is easily seen to not be

a minimal factorization.

Within each type stratify by dimenison of the min or fix set.

[Blackboard]

Once we have a combinatorial model, focusing on the second

coordinate instead of the first will produce an upside down ver-

sion of our model - thus proving that the poset is self dual.
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The Combinatorial Model: Affine version

• For each elliptic isometry, record its fixed set (or equivalently
the boundary sphere of its fixed set at infinity plus a choice of
coset inside Rn).
• For each hyperbolic isometry α record the boundary sphere
of its minset at infinity, with a red dot added indicating the
translation direction on the min set.

Rem: This data alone determines whether α ≤ β.
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The Intervals

Thm: If δ is a maximal length element of Isom(Rn) (hyperbolic

with a minset that is a line) and it is arranged so that its trans-

lation direction is the north pole, then

• for every possible fixed set Y there exists a unique α ≤ δ with

Fix(α) = Y , and

• for every possible fixed sphere at infinity S containing the north

pole and every possible northern hemisphere red dot x, there ex-

ists a unique α ≤ δ with ∂(Minset(α)) = S and translating in the

x direction.

[Blackboard]
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Structure of the Poset

The structure of the an interval in the affine factorization poset
is summarized by the following diagram.
[Extensive live explanations of the structure]
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Lattice

Q: Is it a lattice?

A: We can split the proof into 9 cases. In 8 out of 9 the answer

is yes, but the final case doesn’t work.

The only problem is that there are bowties when we have two

distinct hyperbolics and two distinct elliptics below δ with the

same fixed sphere at infinity.

[Blackboard]
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Dedekind-MacNeille completion

The method of Dedekind cuts that completes the rationals to

the reals has been generalized to the context of arbitrary posets.

Every poset P can be uniquely minimally completed to a com-

plete lattice. This result is called the Dedekind-MacNeille com-

pletion of P .

The continuous affine interval poset has a very simple Dedekind-

MacNeille completion. The problem is that the new edges arrive

without labels.
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Affine Coxeter Groups

When we restrict our attention to only those reflections that

occur in an affine Coxeter group, every reflection has only a finite

number of possible fixed sphere at infinity. And the translation

direction must be a root direction.

Combining these two facts, shows that both the (hyp,ell) row

and the (ell,hyp) row are finite.

Cor: There are only a finite number of pairs below δ that do

not have a well defined meet or join. In other words, it is nearly

a lattice.
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Affine Artin Groups

Obs: The factorization poset of affine type is a lattice iff the
root system perpendicular the translation direction of the Cox-
eter element is irreducible.

Not a lattice: An (sometimes), Bn, Dn, F4, E6, E7, E8
Lattce: An (sometimes), Cn, G2.

Moreover, when it is reducible there is a way to extend the gen-
erating set to pure translations of 1/2 (or 1/3) the translation
length so that the factorization poset over this larger generating
set is a lattice and very close to the original generating set.

From this it should follow that we can understand every affine
Artin group.
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Hyperbolic and Higher Rank: Crawl, Walk, Run

The obvious next step is to investigate the structure of the fac-

torization poset when α is an isometry of hyperbolic space. We

have made preliminary steps in this direction, but a number of

our previous lemmas break down in the new context.

We have learned to crawl (spherical) and we’re learning to walk

(affiine) but we still need to learn to run (hyperbolic and above).

Eventually, there should be a uniform proof which establishes the

structure of the factorization poset over an arbitrary generalized

orthogonal group.
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