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I. Iteration

Bill Thurston

[Story about Thurston at the 1999 Cornell Topology Festival]
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Calculator Iteration

Let sin[n](x) denote sin(sin(sin(· · · sin(x)) · · · ))

Q: What is limn→∞ sin[n](x)?

A: 0.

Q: What about limn→∞ cos[n](x)?

A: 0.7390851332151606416553120876. . . (independent of x!!!)

Why! [Actually it matters whether your calculator is in radian or

degree mode]
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A Pictorial Explanation
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Towers

Q: If xxxxxetc

= 2 what is x?

A: First the only possible answers are the solutions to x2 = 2.

Thus we focus on x = ±
√

2. Moreover, x = −
√

2 is questionable

since (−
√

2)−
√

2 is usual left undefined! Even negative bases

with rational exponents are dodgy:

−1 = 3√−1 = (−1)
1
3 = (−1)

2
6 = ((−1)2)

1
6 = 6

√
(−1)2 = 6√1 = 1

Of course, we would need to decide what xxxxxetc

means for

x =
√

2 before we declare it a solution. Definitions matter.
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II. Fractions

Freshman addition is defined as a
b ⊕

c
d = a+c

b+d. This definition is

surprisingly useful.

Start with 0
1 and 1

0 and repeatedly insert new fractions in the list.

• They stay in increasing order

• They are always in least terms

• Every positive fraction eventually shows up

For example, after three iterations we have 0
1, 1

3, 1
2, 2

3, 1
1, 3

2, 2
1, 3

1, 1
0
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Farey Tiling

This pattern can be labeled so
that the corners of the triangles
are rationals in reduced form and
the third corner is found by doing
freshman addition or subtraction.

This is secretly a tiling of the
hyperbolic plane.
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Continued Fractions

Restricted continued fractions are those with positive integer
denominators and unit numerators. The set of finite restricted
continued fractions = the set of positive rational numbers
(a fact that is intricately related to the Euclidean algorithm).

25
7 = 3 + 4

7 = 3 + 1
7/4 = 3 + 1

1+3
4

= 3 + 1
1+ 1

4/3

= 3 + 1
1+ 1

1+1
3

More generally every non-rational positive real number can be
uniquely represented as

π = 3 + 1
7+ 1

15+ 1
1+ 1

292+ 1
1+···

e = 2 + 1
1+ 1

2+ 1
1+ 1

1+ 1
4+···
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Continued Fractions: General Definition

In general we let each ai and bi represent a complex number and
consider

a1
b1+

a2
b2+

a3
b3+

a4
b4+···

Convergence is determined by looking at the limit of the se-
quence of finite answers:

{a1
b1

, a1
b1+

a2
b2

, a1
b1+

a2
b2+

a3
b3

, . . .}

Repeating patterns converge to numbers that solve quadratic
equations.
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Continued Fractions: Examples

Special Numbers and Entire Functions:

π = 4

1+ 12

2+ 32

2+ 52

2+ 72
2+···

e = 2 + 2
2+ 3

3+ 4
4+ 5

5+ 6
6+···

tan−1(x) = x

1+ x2

3+
(2x)2

5+
(3x)2

7+
(4x)2

9+···

tan(x) = x

1− x2

3− x2

5− x2

7− x2
9−···

In general, a nice power series implies a nice continued fraction.
(These last two are convergent and true for every complex x

where the function is defined.)
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Ramanujan’s Continued Fraction

If u := x

1+ x5

1+ x10

1+ x15

1+ x20
1+···

and v :=
5√x

1+ x

1+ x2

1+ x3

1+ x4
1+···

then

v5 = u · 1−2u+4u2−3u3+u4

1+3u+4u2+2u3+u4

About this and two other continued fraction evaluations Hardy

wrote “A single look at them is enough to show that they could

only be written down by a mathematician of the highest class.

They must be true because if they were not true, no one would

have had the imagination to invent them.”
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III. Continued Radicals

Q: Let x =

√√√√
2 +

√
2 +

√
2 +

√
2 +

√
2 + · · ·.

What is x?

(Convergence is based on the sequence
√

a0,
√

a0 +
√

a1, . . ..)

A: As before the only possibility is where x =
√

2 + x, so

x2 = 2 + x and x2 − x − 2 = (x − 2)(x + 1) = 0. Thus x = 2 or

x = −1. Since x = −1 doesn’t make sense the only reasonable

answer is x = 2.

Now the hard work begins. The approximations are strictly in-

creasing, they stay below 2, but they get arbitrarily close. Done.
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Continued Radicals

For a > 0 let r(a) =

√√√√
a +

√
a +

√
a +

√
a +

√
a + · · ·.

The only possibility for r(a) is the solution of x =
√

a + x which
implies that x2−x− a = 0. Thus x = 1±

√
1+4a
2 and, in fact, only

the plus sign is possible.

Ex: Golden ratio =

√√√√√1 +

√√√√
1 +

√
1 +

√
1 +

√
1 +

√
1 + · · ·

Ex: 2 =

√√√√√2 +

√√√√
2 +

√
2 +

√
2 +

√
2 +

√
2 + · · ·.
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Iterated Square Roots with Signs

What about x =

√√√√√2±

√√√√
2±

√
2±

√
2±

√
2±

√
2± · · ·

where the signs are chosen once and for all.

If the signs repeat +−− forever, then x = 2cos(π/7)! In other

words

2 cos(π/7) =

√√√√√√2 +

√√√√√2−

√√√√
2−

√
2 +

√
2−

√
2−

√
2 + · · ·

If the signs repeat +− forever, then x = 2cos(π/5).

What’s going on here?
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Main Theorem

Thm: Let ε : N → {±1} be a fixed sequence of signs and

abbreviate ε(i) as εi.

• For every sequence ε0

√
2 + ε1

√
2 + ε2

√
2 + ε3

√
· · · converges.

• It converges to a real number in [−2,2].

• Every x ∈ [−2,2] is the answer for some set of signs.

• Every x ∈ [−2,2] is the answer for at most 2 sets of signs.

• The signs eventually repeat iff x = 2cos(aπ) for some a ∈ Q.

• Finally, and most surprisingly, these claims heavily depend on

the fact that we are using 2’s under the square root.
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IV. Fractals

A fractal is an object that has
some type of self-similarity.
Consider a fern.

This picture was produced with
iterated linear transformations.
It’s not a real fern.
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Iterating Functions

What happens when you iterate the function fc(z) = z2 + c

where c is a fixed complex number.

The Mandelbrot set M is the set of c ∈ C where the forward

iterates of 0, {0, fc(0), fc(fc(0)), . . .}, stay bounded.

The Julia set for c in M is the set of starting points whose

forward iterates stay bounded.

This makes the Mandelbrot set something like an index for the

Julia sets. [The next several images are from Wikipedia]
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Julia Sets

Julia set for c = −(0.7268953477 . . .) + (0.188887129 . . .)i.
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Mandelbrot Set
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Mandelbrot Set: Zoom 1
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Mandelbrot Set: Zoom 2
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Mandelbrot Set: Zoom 3
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Mandelbrot Set: Zoom 4
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Mandelbrot Set: Zoom 5
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Mandelbrot Set: Zoom 6
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Mandelbrot Set: Zoom 7
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IV. Conclusion: Mandelbrot, Radicals and Ramanujan

A double angle formula for cosine is cos 2θ = 2cos2 θ − 1. This
can be rewritten as 2 + (2 cos 2θ) = (2 cos θ)2. For a fixed θ,
let x0 = 2cos θ, x1 = 2cos2θ, x2 = 2cos4θ, x3 = 2cos8θ,
xi = 2cos(2iθ).

By the double angle formula, 2 + xi+1 = (xi)
2. In other words,

xi+1 = (xi)
2− 2 = f−2(xi), and xi’s are the sequence of forward

iterates of the function f−2(x) = x2 − 2. This is known as the
tip of the Mandelbrot set and f−2 is called the doubling map.
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Connections

There are strong connections between:

• the double angle formula for cosine,

• the doubling map x 7→ x2 − 2,

• its (multivalued) inverse xi = ±
√

2 + xi+1, and

• binary decimal expansions for real numbers
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An Explanation

The explanation of the Main Theorem is that iterated square

roots with 2’s under the radical are closely connected to iterates

of the doubling map, and the Julia set for the doubling map,

the map indexed by the tip of the Mandelbrot set, is the interval

[−2,2].

If we replace 2 by another number c in the Mandelbrot set, we

get convergence to essentially arbitrary point in ITS Julia set.
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Ramanujan and Continued Radicals

In Chapter 12 in his notebooks, Ramanujan claims that

2 cos θ = (2 + 2cos 2θ)1/2 = (2 + (2 + 2cos 4θ)1/2)1/2

= (2 + (2 + (2 + 2cos 8θ)1/2)1/2)1/2 = · · ·

Bruce Berndt comments “We state Entry 5(i) as Ramanujan
records it. But, as we shall see, Entry 5(i) is valid only for θ = 0.
[...] We suggest to the readers that they attempt to develop
more thoroughly the theory of infinite radicals”

If Ramanujan’s +’s are replaced by appropriate + or − signs,
what he wrote is correct for every θ and connected to some very
interesting mathematics.
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Another Corner of the Mandelbrot Set

(Thank you for your attention)
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