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1. INTRODUCTION. Certain mathematical structures make a habit of turning up in
the most diverse of settings. Some obvious examples exhibiting this intrusive type of
behavior include the Fibonacci numbers, the Catalan numbers, the quaternions, and the
modular group. In this article, the focus is on a lesser known example: the noncrossing
partition lattice. The focus of the article is a gentle introduction to the lattice itself in
three of its many guises: as a way to encode parking functions, as a key part of the
foundations of noncommutative probability, and as a building block for a contractible
space acted on by a braid group. Since this article is aimed primarily at nonspecialists,
each area is briefly introduced along the way.

The noncrossing partition lattice is a relative newcomer to the mathematical world.
First defined and studied by Germain Kreweras in 1972 [33], it caught the imagination
of combinatorialists beginning in the 1980s [20], [21], [22], [23], [29], [37], [39],
[40], [45] and has come to be regarded as one of the standard objects in the field. In
recent years it has also played a role in areas as diverse as low-dimensional topology
and geometric group theory [9], [12], [13], [31], [32] as well as the noncommutative
version of probability [2], [3], [35], [41], [42], [43], [49], [50]. Due no doubt to its
recent vintage, it is less well known to the mathematical community at large than
perhaps it deserves to be, but hopefully this short paper will help to remedy this state
of affairs.

2. A MOTIVATING EXAMPLE. Before launching into a discussion of the non-
crossing partition lattice itself, we quickly consider a motivating example: the Catalan
numbers. The Catalan numbers are a favorite pastime of many amateur (and profes-
sional) mathematicians. In addition, they also have a connection with the noncrossing
partition lattice (Theorem 3.1).

Example 2.1 (Catalan numbers). The Catalan numbers are the numbers Cn given by

Cn = 1

n + 1

(
2n
n

)
,

and they have a number of different interpretations. See, for example, Richard Stan-
ley’s list of more than one hundred distinct ways in which this sequence arises [44].
Some of the most common interpretations are as the number of triangulations of an
(n + 2)-sided polygon (illustrated in Figure 1), as the number of binary parenthesiza-
tions of a string of n + 1 letters (Figure 2), or as the number of rooted trivalent plane
trees with 2n + 2 vertices (Figure 3). With these examples to whet the reader’s ap-
petite, we direct the interested reader to [44] and [47, Exercise 6.19], and we continue
on to a description of noncrossing partitions.

3. NONCROSSING PARTITIONS. We are now ready to define a noncrossing
partition. Following traditional combinatorial practice we use [n] to denote the set
{1, . . . , n}.
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Figure 1. The fourteen triangulations of a hexagon.

(1(2(3(45)))) (1(2((34)5)))

(1((23)(45))) (1((2(34))5))

(1(((23)4)5)) ((12)(3(45)))

((12)((34)5)) ((1(23))(45))

((1(2(34)))5) ((1((23)4))5)

(((12)3)(45)) (((12)(34))5)

(((1(23))4)5) ((((12)3)4)5)

Figure 2. The fourteen ways to asssociate five numbers.

Figure 3. The fourteen rooted trivalent plane trees with six leaves and ten vertices.

Recall that a partition of a set is a collection of pairwise disjoint subsets whose
union is the entire set and that the subsets in the collection are called blocks. A non-
crossing partition σ is a partition of the vertices of a regular n-gon (labeled by the
set [n]) with the property that the convex hulls of its blocks are pairwise disjoint. Fig-
ure 4 illustrates the noncrossing partition {{1, 4, 5}, {2, 3}, {6, 8}, {7}}. The partition
{{1, 4, 6}, {2, 3}, {5, 8}, {7}}, by contrast, would be crossing.

1

2

3

45

6

7

8

Figure 4. A noncrossing partition of the set [8].

Given partitions σ and τ of [n] we say that σ < τ if each block of σ is contained in
a block of τ . This ordering on the set of all partitions of [n] defines a partially ordered
set (or poset) called the partition lattice and is usually denoted �n. When restricted
to the set of noncrossing partitions on [n], it called the noncrossing partition lattice
and denoted NCn . The poset �4 is shown in Figure 5. For n = 4 the only difference
between the two posets is the partition {{1, 3}, {2, 4}}, which is not noncrossing.

The poset of noncrossing partitions has a number of nice combinatorial properties
that we record in the following theorem:
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1 2

34
Figure 5. The figure shows the partition lattice for n = 4. If the vertex surrounded by a dashed line is removed,
the result is the noncrossing partition lattice for n = 4.

Theorem 3.1. For each n the poset NCn is a graded, bounded lattice with Catalan
many elements (Cn to be exact). In addition, it is self-dual and locally self-dual.

The fact that the number of noncrossing partitions is a Catalan number is part of the
lore of the Catalan numbers, and we refer the reader again to [44] and [47]. For the
other properties we now review their definitions.

A poset is bounded if it has both a minimum element and a maximum element.
For the noncrossing partition lattice, the discrete partition (i.e., the one in which each
block contains a single element) and the partition with a single block fulfill these roles.
A chain in a poset is a subset in which any two elements are comparable, its length is
one less than the size of this subset, and a maximal chain is a chain that is not properly
contained in any larger chain. A poset in which any two maximal chains have the
same length is called graded. In any graded bounded poset there is a height function
that keeps track of the level in which elements are contained. The level of an element
x can be defined as the number of elements strictly below x in any maximal chain
containing x . In �n or NCn , for example, the height of a partition is n minus the
number of blocks. For later use we also note that if σ < τ in �n or NCn and if their
heights differ by one, then there are blocks B and B ′ in σ whose union is a block in
τ . Moreover, all other blocks in σ and τ are identical. In this situation we say that τ

covers σ . A chain in which each element covers the previous one is called a saturated
chain.

A poset is a lattice if each pair of elements has a least upper bound and a greatest
lower bound. The greatest lower bound σ ∧ τ of partitions σ and τ of [n] is simply
the largest refinement of the two partitions. In other words, define i and j to be in the
same block of σ ∧ τ if and only if they lie in the same blocks in both σ and τ . It is now
easy to see that this is a lower bound for σ and τ and that this is greater than any other
lower bound. To find the least upper bound σ ∨ τ of σ and τ from NCn , superimpose
the convex hulls of all the blocks for σ and for τ and then take the convex hulls of the
connected components that result.
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Finally, a poset is self-dual if there is an order-reversing bijection from it to itself,
and it is locally self-dual if this is true for each of its intervals. Recall that an interval
[x, y] in a poset is simply the subposet containing all the elements greater than or equal
to x and less than or equal to y. Since this property is easier to establish once we make
the connection to the symmetric groups, we postpone its proof until the next section.

4. SYMMETRIC GROUPS. Before connecting the noncrossing partition lattice
with low-dimensional topology and noncommutative probability, it will be helpful to
establish first its close connection with the symmetric group.

The group Sn. A permutation of a set X is a bijection from X to itself. We use Sn to
signify the group of all permutations of the set [n] under function composition. (We
refer to Sn as the symmetric group on n elements.) There are two natural generating
sets for a group of permutations. If the underlying set is unordered, then the most
natural generating set is the set of permutations that interchange two elements and
leave the rest fixed (ususally called transpositions or two-cycles). If, on the other hand,
the underlying set itself has a natural linear ordering, as is the case for [n], then the
smaller generating set using only adjacent transpositions (i, i + 1) is often preferred.

One of the more mysterious properties of permutations for students in an abstract
algebra class is the fact that they are naturally classified as either even or odd. Since
many of the standard proofs of this are unenlightening and since there is an elementary
geometric proof, we digress slightly to present it. The following result is, of course,
the heart of the matter:

Theorem 4.1. Every product of transpositions that equals the identity permutation
has an even number of factors.

1

1

2

2

3

3

4

4 (3, 4)

(2, 3)

(1, 2)

(3, 4)

(2, 3)

(1, 2)

(2, 3)

(3, 4)

(1, 2)

(2, 3)

Figure 6. Illustration of the proof of Theorem 4.1.

Proof. We first prove the theorem in the case where all of the transpositions involved
are adjacent ones. Given a sequence of adjacent transpositions, we can draw a set of
curves as illustrated in Figure 6. The intersections correspond to the transpositions as
follows. Arrange the transpositions from top to bottom in the order they are applied.
In the example, the first transposition is (3, 4), and the curves on the left are drawn
so that highest crossing occurs between the strands that are third and fourth from the
left. The next transposition is (2, 3), so the curves are drawn so that the next highest
crossing occurs between the strands that are currently second and third from the left.
This procedure can be used to convert any sequence of adjacent transpositions into
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smooth descending curves. (The procedure can also be reversed for smooth descending
curves in general position.)

If the product is indeed the identity permutation, then the curve that starts at position
i also ends at position i . Call this the i th curve. Now we simply change perspectives.
Each intersection is an intersection between two curves, say the i th and j th curves.
Since the i th and j th curves originally occur in a particular order and they also return
to the same order, these two curves must intersect an even number of times. Adding
up the intersections according to the curves involved gives the result. To convert this
to a result about products of arbitrary transpositions, it remains only to note that every
transposition can be written as a product of an odd number of adjacent transpositions,
so products over the larger generating set can be converted to products over the smaller
generating set without changing the parity of the factorization.

Using the usual trick of rewriting a pair of factorizations of a permutation as a single
factorization of the identity, the following corollary is immediate:

Corollary 4.2. The parity of a factorization of a permutation into transpositions is
independent of the factorization chosen.

Returning our attention to the noncrossing partition lattice, we find that NCn is
closely connected with the factorizations of an n-cycle into transpositions. First, we
introduce some definitions.

Minimal factorizations. A factorization of a permutation into transpositions is called
minimal if it has minimal length (i.e., the smallest number of factors) among all such
factorizations. We can then define an ordering on the set of permutations by declaring
that σ < τ if there is a minimal factorization of τ with a “prefix” that is a minimal
factorization of σ . In other words, there should be a minimal factorization of τ , say
t1 ◦ t2 ◦ · · · ◦ tk = τ , such that t1 ◦ t2 ◦ · · · t� = σ with � ≤ k.

One quick note about multiplication. There are two natural conventions for multi-
plying permutations: functional notation and algebraist notation. We use the algebraic
convention throughout, so that (1, 2)(1, 3) is (1, 2, 3) rather than (1, 3, 2). Because
of all the symmetries of the objects under consideration this is only of minor impor-
tance, but it means that we need to write “prefix” rather than “suffix” in the foregoing
definition.

Lemma 4.3. The poset of permutations that are less than or equal to the n-cycle
(1, 2, 3, . . . , n) is isomorphic with the noncrossing partition lattice NCn.

Sketch of proof. Instead of giving a complete proof we write down the isomorphism
and omit the details. The interested reader can find a complete proof in [12]. Given a
noncrossing partition σ , we convert it into a permutation π(σ ) by writing each block
as a disjoint cycle. The order in which the elements occur is the natural linear order,
or stated more geometrically, we read the labels of each convex hull clockwise. To
illustrate, the noncrossing partition σ pictured in Figure 4 corresponds to the permuta-
tion π(σ ) = (1, 4, 5)(2, 3)(6, 8). Showing that the permutations corresponding to non-
crossing partitions are prefixes of reduced factorizations of the n-cycle (1, 2, . . . , n) is
relatively easy, as is the correspondence between the two orderings. The only slightly
tricky part is showing that this map is onto.
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What Lemma 4.3 proves, in essence, is that the graph whose vertices are elements of
NCn and whose edges are its covering relations corresponds to a portion of the right
Cayley graph of Sn with respect to the set of all transpositions. We remind readers
that the Cayley graph of a group G with respect to a generating set A is a directed
graph with vertices labeled by the elements of G and edges indexed by the set G × A,
where the edge (g, a) connects g to g · a [27]. Because of this identification, not only
does every element of NCn have a permutation assigned to it, but if τ covers σ then
this edge is labeled by a transposition (equal to π(σ )−1π(τ)). We have illustrated this
labeling for NC3 in Figure 7. Notice that the Cayley graph interpretation also ensures
that the sequence of edge labels in a maximal chain, read from the bottom to the top,
multiply together to give (1, 2, . . . , n) and that these correspond exactly to its minimal
factorizations. For example, the minimal factorizations of (1, 2, 3) into transpositions
(in algebraist notation) are (1, 2)(1, 3) = (1, 3)(2, 3) = (2, 3)(1, 2) = (1, 2, 3) and
these are the labels on the three maximal chains seen in Figure 7.

1

23

(1, 2)

(1, 2)
(1, 3)

(1, 3)
(2, 3)

(2, 3)

(2, 3)(1, 3)(1, 2)

(1, 2, 3)

e

Figure 7. The noncrossing partition lattice for n = 3 with edge and vertex labels.

More generally, multiplying together the sequence of transpositions labeling the
edges in a saturated chain connecting σ to τ yields the permutation π(σ )−1π(τ). Using
Lemma 4.3 it is now easy to establish the following:

Proposition 4.4. If ρ < σ < τ in NCn and (α1, α2, . . . , αk) is a sequence of trans-
positions labeling a saturated chain from ρ to σ , then there is a unique element σ ′
in NCn and a saturated chain from σ ′ to τ with the exact same sequence of labels.
Similarly, if (β1, β2, . . . , βk) is a sequence of transpositions labeling a saturated chain
from σ to τ , then there is a unique element σ ′′ in NCn and a saturated chain from ρ to
σ ′′ with this same sequence of labels.

Proof. This statement is actually a consequence of the observation that the set of trans-
positions in Sn is closed under conjugation. Thus, if α and β are single transpositions
and αβ is a minimal factorization, then there is another minimal factorization γ α,
where γ is the transposition αβα (= αβα−1). Iterating this idea allows us to move
labeled chains up and down as much as we want. Finally, the partitions σ ′ and σ ′′ must
be unique since we know exactly the permutations to which they correspond under the
identification with the Cayley graph of Sn .
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The locally self-dual property is now almost immediate:

Proof that NCn is (locally) self-dual. Given σ and τ in NCn such that σ < τ , let P
be the poset of noncrossing partitions between them. Define a map f : P → P so that
for each ρ in P the labels on a saturated chain from σ to ρ are also the labels on a
saturated chain from f (ρ) to τ . By Proposition 4.4 a unique such element exists, and
it is easy to check that f is a well-defined order reversing isomorphism from P and P .

Finally, we note that the symmetric groups are examples of a broader class of groups
called finite reflection groups or finite Coxeter groups. In the same way that the non-
crossing partition lattice is closely connected with the symmetric group, there is an
entire series of lattices, one for each finite Coxeter group [7], [9], [13]. Each of these
general noncrossing partition lattices is graded, bounded, self-dual, and locally self-
dual, and the general proofs are essentially the same as the ones given here. Because
of these elegant patterns, the number of elements in these additional lattices have come
to be called generalized Catalan numbers. In the course of the article we occasionally
comment on properties that extend to these additional situations.

5. BRAID GROUPS. We are now ready to establish our first connection: noncross-
ing partitions and the braid groups. The braid groups are related to many areas of
mathematics including mathematical physics, quantum groups, von Neumann alge-
bras, and, not too surprisingly, three-manifold topology (see, for example, [26], [28],
[30], [34], [36], or [38]). The surprise is that they are also intimately related to non-
crossing partitions.

1

1

2

2

3

3

4

4

Figure 8. An element of B4.

Roughly stated, a braid on n strings keeps track of how n strings can be twisted in
space so that each strand is a smooth embedded monotonically decreasing curve in R

3

(i.e., its partial with respect to z is always strictly negative). Various conventions need
to be established, such as that strands must start and end in some standardized con-
figuration, that strands cannot intersect, and that perturbations of a braid that maintain
these conventions are considered to be the same element. The collection of all braids
is turned into the braid group Bn once multiplication is defined by attaching one braid
to the top of another (see Figure 8 for a typical element of B4). Observe that there is a
group homomorphism from Bn onto Sn that simply forgets which way crossings took
place and merely records the permutation of the strings (compare, for example, Fig-
ures 8 and 6). The way the noncrossing partition lattice enters the picture is through
the structure of its order complex.
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Each partially ordered set P can be turned into a simplicial complex in a very simple
fashion. The vertices of the complex are labeled by the elements of the poset, and we
add a simplex corresponding to a set of vertices if and only if the elements that label
them form a chain in P . The result is called the order complex of P (or its geometric
realization).

Let 
(NCn) denote the order complex of NCn . Notice that the one-cells in 
(NCn)

correspond to two-element chains in NCn . In other words, they correspond to pairs
of noncrossing partitions σ and τ with σ < τ . We can carry over the labeling from
NCn to the one-cells in 
(NCn) as follows: we label the oriented edge from σ to τ in

(NCn) by the permutation π(σ )−1π(τ). Our final step is to identify certain simplices
in 
(NCn) with each other. The rule is that two simplices are identified if and only
if they have identically labeled, oriented one-skeletons (and they are identified so that
these labels match, of course). The resulting quotient is a complex we call the Brady-
Krammer complex BKn , since it was discovered independently by Tom Brady and
Daan Krammer. What Brady and Krammer proved in [12] and [31], respectively, was
that this procedure results in a complex whose fundamental group is the braid group
Bn and whose universal cover is contractible. In other words, they proved the following
result:

Theorem 5.1 (Brady, Krammer). The complex BKn is an Eilenberg-Maclane space
for the braid group Bn.

As in the previous section, the procedure described extends naturally to the general
noncrossing partition lattices associated with the other finite reflection groups. In each
case the resulting complex is an Eilenberg-Maclane space for a group, and this group
is related to the finite reflection group in the same way that the braid group is related to
the symmetric group. These other groups are called finite-type Artin groups. See [9] or
[13] for a proof of this extension or [10], [15], [16], or [17] for more about finite-type
Artin groups.

6. PARKING FUNCTIONS. For our second illustration we shift to a classic prob-
lem from combinatorics. Imagine a sequence of n cars entering a one-way street one at
a time with n parking spots available, as shown in Figure 9. Each driver has a preferred
parking spot and attempts to park there first. Failing that, he or she parks in the next
available space. If any of the drivers is forced out of the street, then this sequence of
preferences has failed. We refer to any sequence of preferences that enables all n of
the drivers to park successfully as a parking function.

1 2 3 4 5 6 7

Figure 9. A one-way street with 7 parking spots.

As an initial observation, it is easy to see that if two or more drivers prefer the final
parking space, the sequence fails. Similarly, if three or more drivers prefer either of
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the last two spaces, the sequence fails, etc. Perhaps surprisingly, these are the only
restrictions. Thus, an equivalent definition of a parking function would describe it as
a sequence (a1, . . . , an) of positive integers whose rearrangement (and relabeling) as
a nondecreasing sequence b1 ≤ b2 ≤ . . . ≤ bn satisfies the inequalities bi ≤ i for each
i in [n]. From this altered definition it is not hard to show that the number of parking
functions is (n + 1)n−1. Combinatorialists, of course, recognize this as the number that
counts labeled rooted trees on [n] (or, equivalently, the number of acyclic functions on
[n]). In order to see the connection with the noncrossing partition lattice, consider the
following definition due to Richard Stanley.

Suppose that τ covers σ in NCn+1, that B and B ′ are the two blocks of σ that
combine to form a block in τ , and without loss of generality, that min B < min B ′. We
define a new label on this covering relation by the largest element of B that is below
each element of B ′. Using this edge-labeling Stanley was able to show the following
[45]:

Theorem 6.1 (Stanley). The labels on the maximal chains in NCn+1 are exactly the
parking functions of length n, each occurring once.

The reader wishing to read more about parking functions and noncrossing partitions
might want to consult [11], [29], [48], [51], or especially, [45].

7. FREE PROBABILITY. Our third sighting of the noncrossing partition lattice is in
a noncommutative version of probability. Because of the nature of the subject matter,
the discussion in this section is less detailed than in previous ones. Readers wishing
to read more about the connection between free probability and noncrossing partitions
should probably begin with the excellent survey article by Roland Speicher [42]. We
start with a brief discussion of classical probability.

Let X be a random variable having a probability density function f (x). For the
reader unfamiliar with probability theory, a good example of a probability density
function is a nonnegative continuous function from R to R whose integral over the
reals is 1. The expectation of a function u(X) is then defined as

E(u(X)) =
∫ ∞

−∞
u(x) f (x)dx .

The first expectations students usually encounter are the mean µ = E(X) and the
variance σ 2 = E((X − µ)2). In a mathematical probability and statistics course they
meet the higher moments E(X n) as well as the moment generating function

M(t) = E(et X ) =
∑
n≥0

E(X n)
tn

n! ,

which allows the calculation of all of the moments by evaluating a single integral.
The coefficents in the moment generating function are called the (classical) moments
of X . The coefficients of log M(t) are called the (classical) cumulants of X . The main
advantage of the cumulants is that they contain the same information as the moments
but that the nth cumulant of the sum of two random variables X and Y is the sum of
their nth cumulants—provided they are independent.

Before launching into the “noncommutative” version, we should say a brief word
about noncommutative geometry in general. Noncommuatative geometry is a philos-
ophy whereby standard geometric arguments on topological spaces are converted into
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algebraic arguments on their commutative C∗-algebras of functions. The motivation
comes from mathematical physics and the need to integrate quantum mechanics (which
is noncommutative) with classical physics. The main observation is that there is a nice
correspondence between “reasonable” topological spaces X and the collections of con-
tinuous maps from these spaces to the complex numbers. Each such collection has a
structure known as a C∗-algebra. In fact, the correspondence is strong enough that a
space X can be recovered from the commutative C∗-algebra to which it gives rise. The
philosophy, in short, is to reformulate each concept from classical topology, geome-
try, calculus of manifolds, and so forth in terms of properties of C∗-algebras and then
to turn these equivalent formulations into definitions for a “noncommutative” version
of this concept. Even though there are no longer any topological spaces or points or
open sets—only C∗-algebras—the classical structures can be used to develop intuition
and provide a guide to the types of theorems and results that should be expected from
the noncommutative world. To date this program has been remarkably successful. The
original book by Alain Connes [18] or the more recent (and shorter) survey articles
such as [19] are a good place for an inexperienced reader to begin.

Returning to probability theory, we remark that researchers have defined a noncom-
mutative probability space to be a pair (A, φ), where A is a complex-unital-algebra
equipped with a unital linear functional φ called expectation. There is also a non-
commutative version of independence known as “freeness.” Without getting into the
details, the combinatorics of noncrossing partitions is very closely involved in the non-
commutative version of cumulants. In fact, some researchers who study free probabil-
ity have described the passage from the commutative to the noncommutative setting
of probability as a transition from the combinatorics of the partition lattice �n to the
combinatorics of noncrossing partitions NCn . The article by Roland Speicher [42] is
an excellent exposition of this topic. To give just one hint at the underlying argument,
we note that new counting problems that involve summing up an old counting problem
over all of the possible partitions of that problem into smaller problems of the same
type often lead to solutions that contain exponentials (see [47, chap. 5] for a precise
development of this theme). Thus the exponential function in the integral defining the
moment generating function gets converted into a sum over the elements in the parti-
tion lattice. In the noncommutative context, the crossing partitions are prevented from
playing a role, so the sum takes place over the noncrossing partition lattice instead.

8. SUMMARY. As we have seen, the lattice of noncrossing partitions might surface
in any situation that involves (1) the symmetric groups, (2) the braid groups, (3) free
probability, or (4) the Catalan numbers (say, in conjuction with the combinatorics of
trees or the combinatorics of parking functions). They also show up in real hyper-
plane arrangements, Prüfer codes, quasisymmetric functions, and Hopf algebras, but
detailing all of these connections would lead us too far afield (see [1], [4], [5], [6],
[8], [24], [46], [47], or [45] for details.) We conclude with one final illustration: the
associahedron.

Associahedron. As we remarked earlier, the Catalan numbers count the number of
ways to associate a list of numbers. If we also consider partial associations such as
(123)(45), we get a partial ordering of partial associations (where removing a pair of
matched parentheses corresponds to moving up in the ordering). This partial ordering
has been shown to be the lattice of faces for a convex polytope known as the associ-
ahedron (or Stasheff polytope). For example, the partial associations of four elements
form a pentagon (Figure 10). The full associations label the vertices as indicated, and
the partial associations label the edges. For example, ((12)34) is the partial associa-
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tion corresponds to the edge connecting the vertices labeled (((12)3)4) and ((12)(34))

since it can be obtained from either one by removing a pair of parentheses. Similarly,
the fourteen associations listed in Figure 2 can be identified with the fourteen vertices
of the polytope shown in Figure 11.

((12)(34))

(1(2(34)))

(1((23)4))

((1(23))4)

(((12)3)4)

Figure 10. The two dimensional associahedron.

It is the “Morse theory” of this polytope that has a close connection with the non-
crossing partition lattice. If we chose a height function (i.e., a linear map from the
Euclidean space containing the polytope onto the reals) so that none of the edges are
horizontal (i.e., none of the direction vectors of the edges lie in the kernel of this map),
then at each vertex we can count the number of edges pointing “up” and the num-
ber pointing “down.” For the pentagon pictured in Figure 10 (with a height function
that orthogonally projects onto the arrow shown) there is one vertex with both edges
pointing up, three vertices with one up and one down, and one vertex with both edges
pointing down. We can tally these results in a vector known as the h-vector of the
polytope. Thus, the h-vector of the pentagon is (1, 3, 1). Although it is not obvious
from this definition, this sequence is independent of the height function chosen.

Figure 11. The 3-dimensional associahedron.

The rank function for the noncrossing partition lattice NC3 (i.e., the number of
elements it contains at each height) can also be summarized by a vector. As seen in
Figure 7, the vector for NC3 is (1, 3, 1) since there is one element with height zero,
three elements with height one, and one element with height two. The recurrence of the
vector (1, 3, 1) is not a coincidence. Notice that the associahedron shown in Figure 11
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has an h-vector (1, 6, 6, 1) that corresponds nicely with the rank function for NC4

(Figure 5).
Fomin and Zelevinsky have recently defined for each finite crystallographic reflec-

tion group a Euclidean polytope known as a generalized associahedron [25], [14], and
in each case the h-vector for the general polytope matches the rank function for the
corresponding lattice [4]. These lattices and polytopes, and the observed connections
between them, are only a few years old at this point. They are the subject of many
ongoing research projects. I am sure that we will be discovering additional remarkable
properties of these objects for many years to come.
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