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Math 147: Quiz 4

(5) 1. Let {f;} be a sequence of holomorphic functions on an open set U C C, suppose that f; — f
uniformly on compact subsets of U. Show that
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uniformly on compact subsets of U. Hint: D(p,r) C U is a compact subset of U.

Proof: Let p € U and let 7 > 0 such that D(p,7) C U. It suffices to show just for this disk D(p,r).
Using Cauchy’s integral formula we have
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Since p is arbitrary, we can conclude that 2 fi— P f on compact sets of U .
(5) 2. Let f: D(0,2) — C such that f(z) is analytic and |f| < 3 on D(0,2). Derive the good estimate
for
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Solution: If we apply the Cauchy estimates we have
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Another approach is to use Cauchy’s formula and the ML estimate (this is how of the Cauchy estimates
are proved).
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Where r = min |z — ] = 1, so we have
2€0D(0,2)
2
0z T Jap(0,2)




