Introduction to the Tensor Product
 James C Hateley

In mathematics, a tensor refers to objects that have multiple indices. Roughly speaking this can be thought of as a multidimensional array. A good starting point for discussion the tensor product is the notion of direct sums.

REMARK:The notation for each section carries on to the next.

1. Direct Sums

Let V and W be finite dimensional vector spaces, and let $\beta_{v}=\left\{e_{i}\right\}_{i=1}^{n}$ and $\beta_{w}=\left\{f_{j}\right\}_{j=1}^{m}$ be basis for V and W respectively. Now consider the direct sum of V and W, denoted by $V \oplus W$. Then

$$
\beta_{v} \cup \beta_{w}=\left\{e_{i}\right\}_{i=1}^{n} \cup\left\{f_{j}\right\}_{j=1}^{m}
$$

forms a basis for $V \oplus W$. Now it easy to see that if the direct sum of two vector spaces is formed, say $V \oplus W=Z$, then we have $V \cong V \oplus 0 \subset Z$ and $W \cong 0 \oplus W \subset Z$. So viewed as subspaces of Z, we have that V and W are orthogonal $(W \perp V)$. So if $z \in Z$, then we have the decomposition for z as

$$
z=v+w=\sum_{i=1}^{n} a_{i} e_{i}+\sum_{j=1}^{m} b_{j} f_{j}
$$

we can also write

$$
z=\left(\frac{v}{w}\right)
$$

2. The Dual Space and Dual Transformation

For completeness sake, if $T \in \mathcal{L}(V, W)$ then $T: V \rightarrow W$ and T is linear. The dual space of a vector space V^{*} is defined to be the space of all linear functions $v^{*}: V \rightarrow \mathbb{R}$. Now if $T \in \mathcal{L}(V, W)$, we can define the dual transformation T^{*}, by $T^{*}: W^{*} \rightarrow V^{*}$. This operation T^{*} is also commonly known as the adjoint. With this definition we have the following action, if $v \in V$ and $v^{*} \in V^{*}$ then we have

$$
\left(T^{*} v^{*}\right) v=v^{*}(T v) \quad \text { or } \quad\left(T^{*} v^{*}, v\right)=\left(v^{*}, T v\right)
$$

The following propositions are properties of a linear maps and their duals.
Proposition 1. If $I_{v}: V \rightarrow V$ is the identity on V, then $I_{v}^{*}: V^{*} \rightarrow V^{*}$ is the identity on V^{*}.
Proof: By a simple calculation using our action we have,

$$
\left(I_{v}^{*} v^{*}, v\right)=\left(v^{*}, I_{v} v\right)=\left(v^{*}, v\right)
$$

Proposition 2. If $T, S \in \mathcal{L}(V)$, then we have $(T \circ S)^{*}=S^{*} \circ T^{*}$.
Proof: Again by a simple calculation using our action we have,

$$
\left((T \circ S)^{*} v^{*}, v\right)=\left(v^{*}, T \circ S v\right)=\left(T^{*} v^{*}, S v\right)=\left(S^{*} \circ T^{*} v^{*}, v\right)
$$

\qquad
Proposition 3. If $T \in \mathcal{L}(V, W)$ is bijective then T^{*} is bijective, and we have the following compositions;

$$
\left(T^{-1} \circ T\right)^{*}=I_{v}^{*} \quad \text { and } \quad\left(T \circ T^{-1}\right)^{*}=I_{w}^{*}
$$

Proof: If T is invertible, then the compositions follow from the domain and range of definitions. To show that T^{*} is bijective consider the our action.

$$
\begin{aligned}
\left(\left(T^{-1} \circ T\right)^{*} v^{*}, v\right) & =\left(T^{*} \circ\left(T^{-1}\right)^{*} v^{*}, v\right) \\
& =\left(\left(T^{-1}\right)^{*} v^{*}, T v\right)=0 \\
\Leftrightarrow \quad v=0 & \Rightarrow\left(v^{*}, T^{-1} 0\right) \quad \Rightarrow \quad v^{*}=0
\end{aligned}
$$

Now if V is finite dimensional with basis β_{v} it's natural to wonder what the dimension of V^{*} is.
Definition 1. If $\beta_{v}=\left\{e_{i}\right\}$ is a basis for V, then the set of covectors $\beta_{v}^{*}=\left\{e^{i}\right\}$ as a basis for V^{*} if

$$
\left(e^{j}, e_{i}\right)=\delta_{i}^{j}
$$

If $v \in V, v$ can be expanded in terms of basis vectors. Consider our action on this expansion we observe that $\operatorname{dim}\left(V^{*}\right)=\operatorname{dim}(V)$.

3. Tensor Product

Now that we have an overview of a linear space and its dual we can start to define the tensor product.
Definition 2. Let $\left\{V_{i}\right\}_{i=1}^{k}$ be a set of vector spaces. The map $\tau: \prod_{i=1}^{k} V_{i} \rightarrow \mathbb{R}$ is multilinear or k-linear if τ is linear in each coordinate. i.e, the map $v_{i} \rightarrow \tau\left(v_{1}, \ldots, v_{i}, \ldots v_{k}\right)$ is linear, or

$$
\begin{aligned}
\tau\left(v_{1}, \ldots, a v_{i}, \ldots v_{k}\right) & =a \tau\left(v_{1}, \ldots, v_{i}, \ldots v_{k}\right) \quad \text { and } \\
\tau\left(v_{1}, \ldots, v_{1 i}+v_{2 i}, \ldots v_{k}\right) & =\tau\left(v_{1}, \ldots, v_{1 i}, \ldots v_{k}\right)+\tau\left(v_{1}, \ldots, v_{2 i}, \ldots v_{k}\right)
\end{aligned}
$$

Where $\prod_{i=1}^{k}$ denotes the k-fold Cartesian cross product.
Now that we have this definition of multilinear, it's natural to wonder what sort of object the collection of all these maps $\{\tau\}$ form.
Proposition 4. The set of all such k-linear maps $\tau: \prod_{i=1}^{k} V_{i} \rightarrow W$ form a vector space.
Proof: Check the vector space axoims
Now Suppose $V=V_{i}$ for $i=1$ to k, define the a set of linear maps by;

$$
\mathcal{T}^{k}(V), \quad \text { s.t. if } \quad \tau \in \mathcal{T}^{k}(V), \text { then } \tau: \prod_{i=1}^{k} V \rightarrow \mathbb{R}
$$

Now by a simple observation we see that $\mathcal{T}^{1}(V)=V^{*}$. We have just generalized the notion of a dual space, these spaces lead to the definition of a tensor. Before we go through the definition of tensor space, we need to define the another dual map, and the tensor product
Proposition 5. If $T \in \mathcal{L}(V, W)$, then there exists a map $T^{*}: \mathcal{T}^{k}(W) \rightarrow \mathcal{T}^{k}(V)$
Proof: OMIT: see [1] chapter 16.
Now let $\tau \in \mathcal{T}^{k}(V), \sigma \in \mathcal{T}^{k}(V)$, we can define the tensor product \otimes, between τ and σ by

$$
\tau \otimes \sigma \in \mathcal{T}^{k+l}(V) \text { and } \tau \otimes \sigma\left(v_{1}, \ldots, v_{k}, v_{k+1}, \ldots, v_{k+l}\right)=\tau\left(v_{1}, \ldots, v_{k}\right) \sigma\left(v_{k+1}, \ldots, v_{k+l}\right)
$$

Note with this definition we do not have commutativity, but we have associativity. i.e.,

$$
\tau \otimes \sigma \neq \sigma \otimes \tau \quad \text { and } \quad(\sigma \otimes \tau) \otimes \nu=\sigma \otimes(\tau \otimes \nu)
$$

Now let's digress from this formulation and give a more formal definition.
Definition 3. Let V and W be two vector spaces. The tensor product of V and W denoted by $V \otimes W$ is a vector space with a bilinear map

$$
\otimes: V \times W \rightarrow V \otimes W
$$

which has the universal property.
In otherwords, if $\tau: V \times W \rightarrow Z$, then there exists a unique linear map, up to isomorphism, $\tilde{\tau}: V \otimes W \Rightarrow Z$ such that $\otimes \circ \tilde{\tau}=\tau$. The diagram for universal property can be seen in figure 1 below. Another way to say this is that a map $\tau \in \mathcal{L}^{2}(V \times W, Z)$ induces a map $\tilde{\tau} \in \mathcal{L}(V \otimes W, Z)$
Proposition 6. The tensor product between V and W always exists.
Proof: OMIT: see [1] chapter 16.
Now that we have the a formal definition for the tensor product, using the notation from section 1 , we can define a basis for $V \otimes W$.
Definition 4. If β_{v} and β_{w} are basis for V and W respectively, then a basis for $V \otimes W$ is defined by

$$
\beta_{v} \otimes \beta_{w}=\left\{e_{i} \otimes f_{j}\right\}_{i, j=1}^{n, m}
$$

Figure 1. universal property for tensor product

With this definition we have that $\operatorname{dim}(V \otimes W)=m n$. Now if $\alpha \in \mathbb{R}$ the element $\alpha\left(e_{i} \otimes f_{j}\right)$ is called a simple tensor, and ff $v \in V$ and $w \in W$, the elements $v \otimes w$ are called tensors. Every tensor can be decomposed into simple tensors

$$
\begin{equation*}
v \otimes w=\sum_{i, j}^{n, m} a_{i j}\left(e_{i} \otimes f_{j}\right) \tag{3.1}
\end{equation*}
$$

Now if $v_{1}, v_{2}, v \in V, w_{1}, w_{2}, w \in W$ and α is a scalar, then the follow properties of tensor are easily observed.

$$
\begin{array}{ccc}
\left(v_{1}+v_{2}\right) \otimes w & = & v_{1} \otimes w+v_{2} \otimes w \\
v \otimes\left(w_{1}+w_{2}\right) & = & v \otimes w_{1}+v \otimes w_{2} \\
\alpha(v \otimes w)= & (\alpha v) \otimes w & =\quad v \otimes(\alpha w)
\end{array}
$$

4. General Tensors and Examples

Now that we have the a definition of the tensor product in general.
Definition 5. Let $\mathcal{T}_{s}^{r}(V)=\overbrace{V \otimes \cdots \otimes V}^{r} \otimes \overbrace{V^{*} \otimes \cdots \otimes V^{*}}^{s}=\otimes_{r} V \otimes \otimes_{s} V^{*}$, then $\mathcal{T}_{s}^{r}(V)$ is said to be a tensor of type (r, s).

Earlier we saw how to multiply two tensors τ and σ of type $(k, 0)$ and $(l, 0)$ respectively. The new order is the sum of the orders of the original tensors. When described as multilinear maps the tensor product simply multiplies the two tensors; i.e,

$$
\tau \otimes \sigma \in \mathcal{T}^{k+l}(V) \text { and } \tau \otimes \sigma\left(v_{1}, \ldots, v_{k}, v_{k+1}, \ldots, v_{k+l}\right)=\tau\left(v_{1}, \ldots, v_{k}\right) \sigma\left(v_{k+1}, \ldots, v_{k+l}\right)
$$

which again produces a map that is linear in all its arguments. On components the effect similarly is to multiply the components of the two input tensors. If τ is of type (k, l) and σ is of type (n, m), then the tensor product $\tau \otimes \sigma$ is of type $(k+n, l+m)$ and is given by

$$
(\tau \otimes \sigma)_{j_{1} \ldots j_{k+n}}^{i_{1} \ldots i_{l+m}}=\tau_{j_{1} \ldots j_{k}}^{i_{1} \ldots i_{l}} \sigma_{j_{k+1} \ldots j_{k+n}}^{i_{l+1} \ldots i_{l+m}}
$$

Examples: Below are examples of recognizable tensors.

- $\mathcal{T}_{0}^{0}(V)$ is a tensor of type $(0,0)$, also known as scalars.
- $\mathcal{T}_{0}^{1}(V)$ is a tensor of type $(1,0)$, also known as vectors.
- $\mathcal{T}_{1}^{0}(V)$ is a tensor of type $(0,1)$, also known as covectors, linear functionals or 1-forms.
- $\mathcal{T}_{1}^{1}(V)$ is a tensor of type $(1,1)$, also known as a linear operator.

More Examples:

- An an inner product, a 2-form or metric tensor is an example of a tensor of type $(0,2)$
- A bivector (oriented plane segment) is a tensor of type $(2,0)$.
- If $\operatorname{dim}(V)=3$ then the cross product is an example of a tensor of type $(1,2)$.
- If $\operatorname{dim}(V)=n$ then a tensor of type $(0, n)$ is an N-form i.e. determinant or volume form.

From looking at this we have a sort of natural extension of the cross product from \mathbb{R}^{3}. If $\operatorname{dim}(V)=n$, then a tensor of type $(1, n-1)$ is a sort of crossproduct for V.

A Simple Computational Example: Let $v \in \mathbb{R}^{n}$, and $w \in \mathbb{R}^{m}$, treating these like column vectors, we can form the tensor product of v and w by;

$$
v \otimes w=v w^{t} \in \mathcal{M}_{n, m}(\mathbb{R}) \text { or } w \otimes v=w v^{t} \in \mathcal{M}_{m, n}(\mathbb{R})
$$

In each case we get a matrix of rank 1 .
Another Computational Example: Consider $A, B \in \mathcal{M}_{2}(\mathbb{R})$, then we can compute the tensor product between these matricies as follows:

5. The Wedge Product and Examples

A lot of time in when studying geometry we see the symbol \wedge, this symbol denotes the wedge product. Before we can define it we first need to define the alternating product. Consider $\mathcal{T}^{r}(V)$, this space is spanned by decomposable tensors

$$
v_{1} \otimes \cdots \otimes v_{r}, \quad v_{i} \in V
$$

The antisymmetrization of this tensor is defined by;

$$
\operatorname{Alt}\left(v_{1} \otimes \cdots \otimes v_{r}\right)=\frac{1}{r!} \sum_{\gamma \in \mathcal{S}_{r}} \operatorname{sgn}(\gamma) v_{\gamma(1)} \otimes \cdots \otimes v_{\gamma(r)}
$$

where \mathcal{S}_{r} is the permutation group on r elements. Now the image $\operatorname{Alt}\left(T^{r}(V)\right):=\mathcal{A}^{r}(V)$ is a subspace of $\mathcal{T}^{r}(V)$. The space $\mathcal{A}^{r}(V)$ inherits the structure from the vector space from that on $\mathcal{T}^{r}(V)$ and carries a graded product defined by $\tau \hat{\otimes} \sigma=\operatorname{Alt}(\tau \otimes \sigma)$. Now suppose $\tau \in \mathcal{A}^{r}(V) \subset \mathcal{T}^{r}(V)$, writing out the components of τ, we have

$$
\tau=\tau^{i_{1} i_{2} \ldots i_{r}} e_{i_{1}} \otimes e_{i_{2}} \otimes \cdots \otimes e_{i_{r}}
$$

Then we can define the wedge product of two alternating tensors τ and σ of ranks r and p by

$$
\tau \wedge \sigma=\frac{(r+p)!}{r!p!} A l t(\tau \otimes \sigma)=\frac{1}{r!p!} \sum_{\gamma \in \mathcal{S}_{r+p}} \operatorname{sgn}(\gamma) \tau^{i_{\gamma(1)} \ldots i_{\gamma(r)}} \sigma^{i_{\gamma(r+1)} \ldots i_{\gamma(r+p)}} e_{i_{1}} \otimes e_{i_{2}} \otimes \cdots \otimes e_{i_{r+p}}
$$

Basic properties of \wedge :
bilinearity:
anti-commutativity: $\tau \wedge \sigma=(-1)^{r p} \sigma \wedge \tau$
Note that if r is odd we have $\tau \wedge \tau=0$.
Before we proceed to a couple examples, first a little terminology from geometry. Let M, N be two manifolds, and let $f: M \rightarrow N$ and let $f_{*_{p}}$ be the map defined at a point p on the tangent space of M defined by

$$
f_{*_{p}}: T M_{p} \rightarrow T N_{f(p)}
$$

sections of $T M$ are called covariant, and sections of $T^{*} M$ are called contravariant.
With respect to raising or lowering an index of a a curvature tensor, when a vector space is equipped with a metric tensor, there are operations that convert a contravariant (upper) index into a covariant
(lower) index and vice versa. A metric itself is a (symmetric) (0,2)-tensor, it is thus possible to contract an upper index of a tensor with one of lower indices of the metric. This produces a new tensor with the same index structure as the previous, but with lower index in the position of the contracted upper index. This operation is as lowering an index. Conversely, a metric has an inverse which is a (2,0)-tensor. This inverse metric can be contracted with a lower index to produce an upper index. This operation is called raising an index.

Examples:

Let $\operatorname{dim}(M)=2$, and let $d x_{1}, d x_{2}$ be the dual basis to the tangent bundle $T M$. Now consider the wedge product between $d x_{1}, d x_{2}$ applied to two elements in $T M$.

$$
\begin{aligned}
\left(d x_{1} \wedge d x_{2}\right)\left(v_{1}, v_{2}\right) & =\frac{2!}{1!1!} \operatorname{Alt}\left(d x_{1} \otimes d x_{2}\right)\left(v_{1}, v_{2}\right) \\
& =d x_{1}\left(v_{1}\right) d x_{2}\left(v_{2}\right)-d x_{1}\left(v_{2}\right) d x_{2}\left(v_{1}\right)
\end{aligned}
$$

Example: grad, curl operators

Consider $f=f(x, y, z)$, and consider $d f$ as a linear functional, this can be computed as

$$
d f=f_{x} d x+f_{y} d y+f_{z} d z
$$

This is commonly knows as the gradient of f , or grad f or ∇f.
Let f, g, h be functions from \mathbb{R}^{3} to \mathbb{R} and let $\omega=f d x+g d y+h d z$, what about $d(\omega)$?. Using the fact that $d x_{i} \wedge d x_{i}=0$ and the wedge product is skewsymmetric in \mathbb{R}^{3} we have,

$$
\begin{aligned}
d \omega & =d \omega=f d x+g d y+h d z) \\
& =\left(f_{x} d x+g_{x} d y+h_{x} d z\right) \wedge d x+\left(f_{y} d x+g_{y} d y+h_{y} d z\right) \wedge d y+\left(f_{z} d x+g_{z} d y+h_{z} d z\right) \wedge d z \\
& =g_{x} d y \wedge d x+h_{x} d z \wedge d x+f_{y} d x \wedge d y+h_{y} d z \wedge d y+f_{z} d x \wedge d z+g_{z} d y \wedge d z \\
& =\left(h_{y}-g_{z}\right) d y \wedge d z+\left(h_{x}-f_{z}\right) d x \wedge d z+\left(g_{x}-f_{y}\right) d x \wedge d y
\end{aligned}
$$

This is commonly knows as the curl of ω or curl ω or $\nabla \times \omega$.

Example: volume form

If ω is the volume-form of an n-dimensional manifold, then ω can be written in terms $d x_{i}$

$$
\omega=\sqrt{\left|\operatorname{det} g_{i j}\right|} d x_{1} \wedge \cdots \wedge d x_{n}
$$

where $g_{i j}$ is the metric on the manifold.

References

[1] Lang, S., Algebra, Graduate Texts in Mathematics, (Revised third ed.) New York: Springer-Verlag, 2002, MR1878556, ISBN 978-0-387-95385-4
[2] Spivak, M. A comprehensive introduction to differential geometry. Vol 1 Publish or Perish Inc., 1999, ISBM 0-914098-83-7
[3] Wikipedia; Tensor, http://en.wikipedia.org/wiki/Tensor

