
Introduction to the Tensor Product
James C Hateley

In mathematics, a tensor refers to objects that have multiple indices. Roughly speaking this can be
thought of as a multidimensional array. A good starting point for discussion the tensor product is the
notion of direct sums.

REMARK:The notation for each section carries on to the next.

1. Direct Sums

Let V and W be finite dimensional vector spaces, and let βv = {ei}ni=1 and βw = {fj}mj=1 be basis
for V and W respectively. Now consider the direct sum of V and W , denoted by V ⊕W . Then

βv ∪ βw = {ei}ni=1 ∪ {fj}mj=1

forms a basis for V ⊕W . Now it easy to see that if the direct sum of two vector spaces is formed, say
V ⊕W = Z, then we have V ∼= V ⊕ 0 ⊂ Z and W ∼= 0⊕W ⊂ Z. So viewed as subspaces of Z, we have
that V and W are orthogonal (W⊥V ). So if z ∈ Z, then we have the decomposition for z as

z = v + w =
n∑
i=1

aiei +
m∑
j=1

bjfj ,

we can also write
z =

( v
w

)
2. The Dual Space and Dual Transformation

For completeness sake, if T ∈ L(V,W ) then T : V → W and T is linear. The dual space of a vector
space V ∗ is defined to be the space of all linear functions v∗ : V → R. Now if T ∈ L(V,W ), we can
define the dual transformation T ∗, by T ∗ : W ∗ → V ∗. This operation T ∗ is also commonly known as
the adjoint. With this definition we have the following action, if v ∈ V and v∗ ∈ V ∗ then we have

(T ∗v∗) v = v∗ (Tv) or (T ∗v∗, v) = (v∗, T v)

The following propositions are properties of a linear maps and their duals.

Proposition 1. If Iv : V → V is the identity on V , then I∗v : V ∗ → V ∗ is the identity on V ∗.

Proof: By a simple calculation using our action we have,

(I∗vv
∗, v) = (v∗, Ivv) = (v∗, v) �

Proposition 2. If T, S ∈ L(V ), then we have (T ◦ S)∗ = S∗ ◦ T ∗.

Proof: Again by a simple calculation using our action we have,

((T ◦ S)∗v∗, v) = (v∗, T ◦ Sv) = (T ∗v∗, Sv) = (S∗ ◦ T ∗v∗, v) �

Proposition 3. If T ∈ L(V,W ) is bijective then T ∗ is bijective, and we have the following compositions;(
T−1 ◦ T

)∗
= I∗v and

(
T ◦ T−1

)∗
= I∗w

Proof: If T is invertible, then the compositions follow from the domain and range of definitions. To
show that T ∗ is bijective consider the our action.((

T−1 ◦ T
)∗
v∗, v

)
=

(
T ∗ ◦ (T−1)∗v∗, v

)
=

(
(T−1)∗v∗, T v

)
= 0

⇔ v = 0 ⇒
(
v∗, T−10

)
⇒ v∗ = 0 �

Now if V is finite dimensional with basis βv it’s natural to wonder what the dimension of V ∗ is.

Definition 1. If βv = {ei} is a basis for V , then the set of covectors β∗v = {ei} as a basis for V ∗ if

(ej , ei) = δji .
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If v ∈ V , v can be expanded in terms of basis vectors. Consider our action on this expansion we
observe that dim(V ∗) = dim(V ).

3. Tensor Product

Now that we have an overview of a linear space and its dual we can start to define the tensor product.

Definition 2. Let {Vi}ki=1 be a set of vector spaces. The map τ :
∏k
i=1 Vi → R is multilinear or k-linear

if τ is linear in each coordinate. i.e, the map vi → τ(v1, . . . , vi, . . . vk) is linear, or

τ(v1, . . . , avi, . . . vk) = aτ(v1, . . . , vi, . . . vk) and
τ(v1, . . . , v1i + v2i, . . . vk) = τ(v1, . . . , v1i, . . . vk) + τ(v1, . . . , v2i, . . . vk)

Where
∏k
i=1 denotes the k-fold Cartesian cross product.

Now that we have this definition of multilinear, it’s natural to wonder what sort of object the
collection of all these maps {τ} form.

Proposition 4. The set of all such k-linear maps τ :
∏k
i=1 Vi →W form a vector space.

Proof: Check the vector space axoims �

Now Suppose V = Vi for i = 1 to k, define the a set of linear maps by;

T k(V ), s.t. if τ ∈ T k(V ), then τ :
k∏
i=1

V → R.

Now by a simple observation we see that T 1(V ) = V ∗. We have just generalized the notion of a dual
space, these spaces lead to the definition of a tensor. Before we go through the definition of tensor
space, we need to define the another dual map, and the tensor product

Proposition 5. If T ∈ L(V,W ), then there exists a map T ∗ : T k(W )→ T k(V )

Proof: OMIT: see [1] chapter 16.

Now let τ ∈ T k(V ), σ ∈ T k(V ), we can define the tensor product ⊗, between τ and σ by

τ ⊗ σ ∈ T k+l(V ) and τ ⊗ σ(v1, . . . , vk, vk+1, . . . , vk+l) = τ(v1, . . . , vk)σ(vk+1, . . . , vk+l)

Note with this definition we do not have commutativity, but we have associativity. i.e.,

τ ⊗ σ 6= σ ⊗ τ and (σ ⊗ τ)⊗ ν = σ ⊗ (τ ⊗ ν)

Now let’s digress from this formulation and give a more formal definition.

Definition 3. Let V and W be two vector spaces. The tensor product of V and W denoted by V ⊗W
is a vector space with a bilinear map

⊗ : V ×W → V ⊗W
which has the universal property.

In otherwords, if τ : V × W → Z, then there exists a unique linear map, up to isomorphism,
τ̃ : V ⊗W ⇒ Z such that ⊗◦ τ̃ = τ . The diagram for universal property can be seen in figure 1 below.
Another way to say this is that a map τ ∈ L2(V ×W,Z) induces a map τ̃ ∈ L(V ⊗W,Z)

Proposition 6. The tensor product between V and W always exists.

Proof: OMIT: see [1] chapter 16.

Now that we have the a formal definition for the tensor product, using the notation from section 1, we
can define a basis for V ⊗W .

Definition 4. If βv and βw are basis for V and W respectively, then a basis for V ⊗W is defined by

βv ⊗ βw = {ei ⊗ fj}n,mi,j=1
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Figure 1. universal property for tensor product

With this definition we have that dim(V ⊗W ) = mn. Now if α ∈ R the element α(ei ⊗ fj) is called
a simple tensor, and ff v ∈ V and w ∈ W , the elements v ⊗ w are called tensors. Every tensor can be
decomposed into simple tensors

(3.1) v ⊗ w =
n,m∑
i,j

aij(ei ⊗ fj)

Now if v1, v2, v ∈ V , w1, w2, w ∈ W and α is a scalar, then the follow properties of tensor are easily
observed.

(v1 + v2)⊗ w = v1 ⊗ w + v2 ⊗ w
v ⊗ (w1 + w2) = v ⊗ w1 + v ⊗ w2

α(v ⊗ w) = (αv)⊗ w = v ⊗ (αw)

4. General Tensors and Examples

Now that we have the a definition of the tensor product in general.

Definition 5. Let T rs (V ) =

r︷ ︸︸ ︷
V ⊗ · · · ⊗ V ⊗

s︷ ︸︸ ︷
V ∗ ⊗ · · · ⊗ V ∗=

⊗
r V ⊗

⊗
s V
∗, then T rs (V ) is said to be a

tensor of type (r, s).

Earlier we saw how to multiply two tensors τ and σ of type (k, 0) and (l, 0) respectively. The new
order is the sum of the orders of the original tensors. When described as multilinear maps the tensor
product simply multiplies the two tensors; i.e,

τ ⊗ σ ∈ T k+l(V ) and τ ⊗ σ(v1, . . . , vk, vk+1, . . . , vk+l) = τ(v1, . . . , vk)σ(vk+1, . . . , vk+l),

which again produces a map that is linear in all its arguments. On components the effect similarly is
to multiply the components of the two input tensors. If τ is of type (k, l) and σ is of type (n,m), then
the tensor product τ ⊗ σ is of type (k + n, l +m) and is given by

(τ ⊗ σ)i1...il+mj1...jk+n
= τ i1...ilj1...jk

σ
il+1...il+m
jk+1...jk+n

Examples: Below are examples of recognizable tensors.

• T 0
0 (V ) is a tensor of type (0, 0), also known as scalars.

• T 1
0 (V ) is a tensor of type (1, 0), also known as vectors.

• T 0
1 (V ) is a tensor of type (0, 1), also known as covectors, linear functionals or 1-forms.

• T 1
1 (V ) is a tensor of type (1, 1), also known as a linear operator.

More Examples:

• An an inner product, a 2-form or metric tensor is an example of a tensor of type (0, 2)
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• A bivector(oriented plane segment) is a tensor of type (2, 0).

• If dim(V ) = 3 then the cross product is an example of a tensor of type (1, 2).

• If dim(V ) = n then a tensor of type (0, n) is an N−form i.e. determinant or volume form.

From looking at this we have a sort of natural extension of the cross product from R3. If dim(V ) = n,
then a tensor of type (1, n− 1) is a sort of crossproduct for V .

A Simple Computational Example: Let v ∈ Rn, and w ∈ Rm, treating these like column vectors,
we can form the tensor product of v and w by;

v ⊗ w = vwt ∈Mn,m(R) or w ⊗ v = wvt ∈Mm,n(R)

In each case we get a matrix of rank 1.

Another Computational Example: Consider A,B ∈ M2(R), then we can compute the tensor
product between these matricies as follows:

[
a1,1 a1,2

a2,1 a2,2

]
⊗
[
b1,1 b1,2
b2,1 b2,2

]
=


a1,1

[
b1,1 b1,2
b2,1 b2,2

]
a1,2

[
b1,1 b1,2
b2,1 b2,2

]

a2,1

[
b1,1 b1,2
b2,1 b2,2

]
a2,2

[
b1,1 b1,2
b2,1 b2,2

]
 =


a1,1b1,1 a1,1b1,2 a1,2b1,1 a1,2b1,2
a1,1b2,1 a1,1b2,2 a1,2b2,1 a1,2b2,2
a2,1b1,1 a2,1b1,2 a2,2b1,1 a2,2b1,2
a2,1b2,1 a2,1b2,2 a2,2b2,1 a2,2b2,2

 .
5. The Wedge Product and Examples

A lot of time in when studying geometry we see the symbol ∧, this symbol denotes the wedge product.
Before we can define it we first need to define the alternating product. Consider T r(V ), this space is
spanned by decomposable tensors

v1 ⊗ · · · ⊗ vr, vi ∈ V.
The antisymmetrization of this tensor is defined by;

Alt(v1 ⊗ · · · ⊗ vr) =
1
r!

∑
γ∈Sr

sgn(γ)vγ(1) ⊗ · · · ⊗ vγ(r),

where Sr is the permutation group on r elements. Now the image Alt(T r(V )) := Ar(V ) is a subspace of
T r(V ). The space Ar(V ) inherits the structure from the vector space from that on T r(V ) and carries
a graded product defined by τ⊗̂σ = Alt(τ ⊗ σ). Now suppose τ ∈ Ar(V ) ⊂ T r(V ), writing out the
components of τ , we have

τ = τ i1i2...ir ei1 ⊗ ei2 ⊗ · · · ⊗ eir
Then we can define the wedge product of two alternating tensors τ and σ of ranks r and p by

τ ∧ σ =
(r + p)!
r!p!

Alt(τ ⊗ σ) =
1
r!p!

∑
γ∈Sr+p

sgn(γ)τ iγ(1)...iγ(r)σiγ(r+1)...iγ(r+p)ei1 ⊗ ei2 ⊗ · · · ⊗ eir+p .

Basic properties of ∧:
bilinearity:
anti-commutativity: τ ∧ σ = (−1)rpσ ∧ τ

Note that if r is odd we have τ ∧ τ = 0.

Before we proceed to a couple examples, first a little terminology from geometry. Let M , N be two
manifolds, and let f : M → N and let f∗p be the map defined at a point p on the tangent space of M
defined by

f∗p : TMp → TNf(p)

sections of TM are called covariant, and sections of T ∗M are called contravariant.

With respect to raising or lowering an index of a a curvature tensor, when a vector space is equipped
with a metric tensor, there are operations that convert a contravariant (upper) index into a covariant
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(lower) index and vice versa. A metric itself is a (symmetric) (0,2)-tensor, it is thus possible to contract
an upper index of a tensor with one of lower indices of the metric. This produces a new tensor with the
same index structure as the previous, but with lower index in the position of the contracted upper index.
This operation is as lowering an index. Conversely, a metric has an inverse which is a (2,0)-tensor. This
inverse metric can be contracted with a lower index to produce an upper index. This operation is called
raising an index.

Examples:

Let dim(M) = 2, and let dx1, dx2 be the dual basis to the tangent bundle TM . Now consider the wedge
product between dx1, dx2 applied to two elements in TM .

(dx1 ∧ dx2)(v1, v2) =
2!

1!1!
Alt(dx1 ⊗ dx2)(v1, v2)

= dx1(v1)dx2(v2)− dx1(v2)dx2(v1)

Example: grad, curl operators

Consider f = f(x, y, z), and consider df as a linear functional, this can be computed as

df = fxdx+ fydy + fzdz.

This is commonly knows as the gradient of f, or grad f or ∇f .

Let f, g, h be functions from R3 to R and let ω = fdx+ gdy + hdz, what about d(ω)?. Using the fact
that dxi ∧ dxi = 0 and the wedge product is skewsymmetric in R3 we have,

dω = dω = fdx+ gdy + hdz)
= (fxdx+ gxdy + hxdz) ∧ dx+ (fydx+ gydy + hydz) ∧ dy + (fzdx+ gzdy + hzdz) ∧ dz
= gxdy ∧ dx+ hxdz ∧ dx+ fydx ∧ dy + hydz ∧ dy + fzdx ∧ dz + gzdy ∧ dz
= (hy − gz) dy ∧ dz + (hx − fz) dx ∧ dz + (gx − fy) dx ∧ dy

This is commonly knows as the curl of ω or curlω or ∇× ω.

Example: volume form

If ω is the volume-form of an n-dimensional manifold, then ω can be written in terms dxi

ω =
√
|det gij |dx1 ∧ · · · ∧ dxn

where gij is the metric on the manifold.
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