Real Analysis qual study guide
 James C. Hateley

1. Measure Theory

Exercise 1.1. If $A \subset \mathbb{R}$ and $\epsilon>0$ show \exists open sets $O \subset \mathbb{R}$ such that $m^{*}(O) \leq m^{*}(A)+\epsilon$.
Proof: Let $\left\{I_{n}\right\}$ be a countable cover for A, then $A \subset \bigcup_{n=1} I_{n}$. Since $m^{*}(O) \leq m^{*}(A)+\epsilon$. This implies that

$$
m^{*}(O)-\epsilon \leq m^{*}(A) \text { where } m^{*}(A)=\inf _{A \subset \cup I_{n}}\left\{\sum_{n=1}^{\infty} l\left(I_{n}\right)\right\}
$$

If $l\left(I_{k}\right)=\infty$ for some k then there is nothing to show, so suppose $\left(a_{n}, b_{n}\right)=I_{n}$ then $l\left(I_{n}\right)<\infty, \forall n$. Let $O_{n}=\left(a_{n}+2^{-n} \epsilon, b_{n}\right)$ then we have

$$
\begin{aligned}
l\left(O_{n}\right)=b_{n}-a_{n}-2^{-n} \epsilon & \leq l\left(I_{n}\right) \\
\Rightarrow \quad \sum l\left(O_{n}\right)=\sum b_{n}-a_{n}-\sum 2^{-n} \epsilon & =\sum b_{n}-a_{n}-\epsilon \\
\Rightarrow \quad m^{*}\left(\bigcup_{n} O_{n}\right)-\epsilon \leq m^{*}(A) &
\end{aligned}
$$

So let $O=\bigcup_{n} O_{n}$, then $m^{*}(O)-\epsilon \leq m^{*}(A) \therefore \exists O \subset \mathbb{R}$ st $m^{*}(O) \leq m^{*}(A)+\epsilon \square$

Exercise 1.2. If $A, B \subset \mathbb{R}, m^{*}(A)=0$, then $m^{*}(A \cup B)=m^{*}(B)$
Proof: $m^{*}(A \cup B) \leq m^{*}(A)+m^{*}(B)$, and $m^{*}(B) \leq m^{*}(A \cup B)$, hence we have

$$
\begin{aligned}
m^{*}(B) \leq m^{*}(A \cup B) & \leq m^{*}(A)+m^{*}(B)=m^{*}(B) \\
\therefore m^{*}(A \cup B) & =m^{*}(B)
\end{aligned}
$$

Exercise 1.3. Prove $E \in \mathbb{M}$ iff $\forall \epsilon>0, \exists O \subset \mathbb{R}$ open, such that $E \subset O$ and $m^{*}(O \backslash E)<\epsilon$
Proof: $(\Rightarrow) O \backslash E=E^{c} \cap O$ implies that $m^{*}(O \backslash E)=m^{*}\left(E^{c} \cap O\right)$, but we have

$$
m^{*}(O)=m^{*}\left(E^{c} \cap O\right)+m^{*}(E \cap O)
$$

So suppose $m^{*}(E)<\infty \Rightarrow m^{*}\left(E^{c} \cap O\right)=m^{*}(O)-m^{*}(E \cap O)$. Let I_{n} be a countable cover for E, so $I_{n}=\left(a_{n}, b_{n}\right)$. Let $O_{n}=\left(a_{n}, b_{n}+2^{-n} \epsilon\right)$ and let $O=\bigcup O_{n}$. Then

$$
m^{*}(O)=\sum l\left(O_{n}\right)=\sum 2^{-n} \epsilon+b_{n}-a_{n}=\epsilon+\sum b_{n}-a_{n}, \text { and } m^{*}(E \cap O)=m^{*}(E)
$$

since $E \subset O$. So we have

$$
\begin{aligned}
m^{*}(E \cap O)=m^{*}(E) \leq \sum l\left(I_{n}\right) & =\sum b_{n}-a_{n} \\
\Rightarrow m^{*}(E \cap O) & \leq \sum l\left(O_{n}\right)-\sum l\left(I_{n}\right) \\
& =\epsilon+\sum b_{n}-a_{n}-\sum b_{n}-a_{n}=\epsilon
\end{aligned}
$$

$\therefore \exists O \subset \mathbb{R}$ open, st $E \subset O$ and $m^{*}(O \backslash E) \leq \epsilon$
(\Leftarrow) Conversely, suppose $\forall \epsilon>0, \exists O \subset \mathbb{R}$, such that $E \subset O$ and $m^{*}(O \backslash E)<\epsilon$ and that $O \in \mathbb{M}$. Then

$$
m^{*}(O)=m^{*}\left(E^{c} \cap O\right)+m^{*}(E \cap O), \text { but } m^{*}\left(E^{c} \cap O\right)=m^{*}(O \backslash E)<\epsilon
$$

This implies that

$$
m^{*}(O)=m^{*}(E \cap O)+\epsilon \quad \Rightarrow \quad m_{1}^{*}(O)=m^{*}(E)+\epsilon \quad \therefore E \in \mathbb{M}_{\square}
$$

Exercise 1.4. Prove $E \in \mathbb{M}$ iff $\forall \epsilon>0 \exists F \subset \mathbb{R}$ closed, such that $F \subset E$ and $m^{*}(E \backslash F)<\epsilon$
Proof: $(\Rightarrow) E \backslash F=F^{c} \cap E$ this implies that $m^{*}(E \backslash F)=m^{*}\left(F^{c} \cap E\right)$, but we have

$$
m^{*}(F)=m^{*}\left(F^{c} \cap E\right)+m^{*}(E \cap F)
$$

So suppose $m^{*}(E)<\infty \Rightarrow m^{*}\left(F^{c} \cap E\right)=m^{*}(F)-m^{*}(F \cap E)$. Let I_{n} be a countable cover for E, where $I_{n}=\left(a_{n}, b_{n}\right)$. Let $F_{n}=\left[a_{n}, b_{n}-2^{-n} \epsilon\right]$ and let $F=\bigcup F_{n}$. Then we have

$$
m^{*}(F)=\sum l\left(F_{n}\right)=\sum b_{n}-a_{n}-2^{-n} \epsilon=\sum b_{n}-a_{n}-\epsilon
$$

and $m^{*}(E \cap F)=m^{*}(F)$, since $F \subset E$. So

$$
\begin{aligned}
m^{*}(E \cap F)=m^{*}(F) & \leq \sum l\left(I_{n}\right)=\sum b_{n}-a_{n} \\
\Rightarrow \quad m^{*}(E \cap F) \leq \sum l\left(I_{n}\right)-\sum l\left(F_{n}\right) & =\sum b_{n}-a_{n}-\sum b_{n}-a_{n}+\epsilon=\epsilon
\end{aligned}
$$

$\therefore \exists F \subset \mathbb{R}$ Closed, st $F \subset E$ and $m^{*}(E \backslash F) \leq \epsilon$
(\Leftarrow) Conversely, suppose $\forall \epsilon>0, \exists F \subset \mathbb{R}$, such that $F \subset E$ and $m^{*}(E \backslash F)<\epsilon$ and that $F \in \mathbb{M}$. Then

$$
m^{*}(E)=m^{*}\left(F^{c} \cap E\right)+m^{*}(E \cap F)
$$

but $m^{*}\left(F^{c} \cap E\right)=m^{*}(E \backslash F)<\epsilon$. This implies that

$$
m^{*}(E) \leq m^{*}(F \cap E)+\epsilon \quad \Rightarrow \quad m^{*}(E) \leq m^{*}(F)+\epsilon \quad \therefore E \in \mathbb{M}_{\square}
$$

Vitali Let E be a set of finite outer measure and \varnothing a collection of intervals that cover E in the sence of Vitali. Then, given $\epsilon>0$ there is a finite disjoint collection $\left\{I_{N}\right\}$ of intervals in $\check{\sigma}$ such that

$$
\mu^{*}\left(E \backslash \bigcup_{n=1}^{N} I_{n}\right)<\epsilon
$$

Exercise 1.5. Does there exists a Lebesgue measurable subset A of \mathbb{R} such that for every interval (a, b) we have $\mu(A \cap(a, b))=(b-a) / 2$?

Proof: First suppose that there is such a mesurable set A such that $0 \neq \mu(A \cap(a, b))=\alpha \leq(b-a) / 2$. Then there exsits an open set \mathcal{O} such that $A \subset \mathcal{O}$ and $\mu(\mathcal{O} \backslash A)<\epsilon$, so let $\epsilon=\alpha / 2$. Now \mathcal{O} is open, so there are disjoint intervals $\left(x_{k}, y_{k}\right)$ such that \mathcal{O} is a countable union of these intervals. So

$$
\mathcal{O} \cap(a, b)=\bigcup_{k=1}^{\infty}\left[\left(x_{k}, y_{k}\right) \cap(a, b)\right]=\bigcup_{l}\left(c_{k_{l}}, d_{k_{l}}\right)
$$

Hence $\mu(\mathcal{O} \cap(a, b))=\sum_{l} d_{k_{l}}-c_{k_{l}}$, and we have

$$
A \cap \mathcal{O} \cap(a, b)=A \cap(a, b)=\bigcup_{l}\left[A \cap\left(c_{k_{l}}, d_{k_{l}}\right)\right]
$$

Now

$$
\alpha=\mu(A \cap(a, b))=\frac{1}{2} \sum_{l}\left(d_{k_{l}}-c_{k_{l}}\right)
$$

but

$$
\begin{aligned}
\sum_{l}\left(d_{k_{l}}-c_{k_{l}}\right) & =\mu(\mathcal{O} \cap(a, b)) \\
& =\mu((\mathcal{O} \backslash A) \cap(a, b))+\mu(A \cap(a, b)) \\
& \leq \mu(\mathcal{O} \backslash A)+\frac{1}{2} \sum_{l}\left(d_{k_{l}}-c_{k_{l}}\right) \\
& <\epsilon+\frac{1}{2} \sum_{l}\left(d_{k_{l}}-c_{k_{l}}\right)
\end{aligned}
$$

But this implies that

$$
\alpha / 2=\epsilon \leq \frac{1}{2} \sum_{l}\left(d_{k_{l}}-c_{k_{l}}\right) \geq \alpha
$$

So $\mu(A)=0$. which implies that $\mu\left(A^{c}\right)=\infty$. Now if there were to exsits such a set A we have $\mu\left(A^{c}\right)=0$, and so

$$
b-a=\mu((a, b))=\mu(A \cap(a, b))+\mu\left(A^{c} \cap(a, b)\right)=\mu\left(A^{c} \cap(a, b)\right)=\frac{1}{2}(b-a)
$$

So there cannot exist such a set \square.

Exercise 1.6. Assume that $E \subset[0,1]$ is measurable and for any $(a, b) \subset[0,1]$ we have

$$
\mu(E \cap[a, b]) \geq \frac{1}{2}(b-a)
$$

Show that $\mu(E)=1$.
Proof: By the previous problem, using the same proof, we know that $\mu\left(E^{c}\right)=0$. So the result is shown.

Exercise 1.7. Let E_{1}, \ldots, E_{n} be measurable subsets of $[0,1]$. Suppose almost every $x \in[0,1]$ belongs to at least k of these subsets. Prove that atleast one of the E_{1}, \ldots, E_{n} has measure of at least k / n.

Proof: Suppose not, then for each i we have $\mu\left(E_{i}\right)<k / n$. Define a function $f(x)$ as follows.

$$
f(x)=\sum_{i=1}^{n} \chi_{E_{i}}
$$

where $\chi_{E_{i}}$ denotes the characteristic function of E_{i}. Now since all most all $x \in[0,1]$ are in at least k of the E_{i} we have $f(x) \geq k$ almost everywhere in $[0,1]$. Now

$$
k=\int_{[0,1]} k d x \leq \int_{[0,1]} f(x) d x=\sum_{i=1}^{n} \int_{[0,1]} \chi_{E_{i}} d x=\sum_{i=1}^{n} \mu E_{i}
$$

But this implies that

$$
\sum_{i=1}^{n} \mu E_{i}<\sum_{i=1}^{n} \frac{k}{n}=k
$$

Which is a contradiction, hence at least one E_{i} has $\mu\left(E_{i}\right) \geq \frac{k}{n} \square$.

Exercise 1.8. Consider a measure space $(\mathcal{X}, \mathcal{A}, \mu)$ and a sequences of measurable sets $E_{n}, n \in \mathbb{N}$, such that

$$
\sum_{n=1}^{\infty} \mu\left(E_{n}\right)<\infty
$$

Show that almost every $x \in \mathcal{X}$ is an element of at most finitely many $E_{n}^{\prime} s$.
Proof: It suffices to show that $\mu\left(x: x \in \cap E_{n_{k}}\right)=0$. So consider the following

$$
\lim _{m \rightarrow \infty} \mu\left(x: x \in \bigcap_{k=1}^{m} E_{n_{k}}\right)
$$

If we have shown the above limit is zero, then we're done. To see this look at the following sum,

$$
\sum_{N=1}^{\infty} \mu\left(x: x \in \bigcap_{k=1}^{N} E_{n_{k}}\right)<\sum_{n=1}^{\infty} \mu\left(E_{n}\right)<\infty
$$

and hence

$$
\lim _{m \rightarrow \infty} \mu\left(x: x \in \bigcap_{k=1}^{m} E_{n_{k}}\right)=0
$$

Therefore almost every $x \in \mathcal{X}$ is an element of at most finitely many $E_{n}^{\prime} s \square$.

Exercise 1.9. Consider a measure space $(\mathcal{X}, \mathcal{A}, \mu)$ with $\mu(\mathcal{X})<\infty$, and a sequences $f_{n}: \mathcal{X} \rightarrow \mathbb{R}$ of measurable functions such that $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$ for all $x \in \mathcal{X}$. Show that for every $\epsilon>0$ there exists a set E of measure $\mu(E) \leq \epsilon$ such that f_{n} converges uniformly to f outside the set E.

Proof: This is Ergoroff's theorem. See below.
Theorem (Egoroff's) If f_{n} is a sequence of measurable functions that converge to a real-valued function f a.e. on a measurable set E of finite measure, then given $\eta>0$, there is a subset A of E with $\mu(A)<\eta$ such that f_{n} converges to f uniformly on $E \backslash A$

Proof: Let $\eta>0$, then for each n, there exists a set $A_{n} \subset E$ with $\mu A_{n}<\eta 2^{-n}$, and there is an N_{n} such that for all $x \notin A_{n}$ and $k \geq A_{n}$ we have $\left|f_{k}(x)-f(x)\right|<1 / n$. Let $A=\cup A_{n}$, then by construction $A \subset E$ and $\mu A<\eta$. Choose n_{0} such that $1 / n_{0}<\eta$. Now if $x \notin A$ and $k \geq N_{n_{0}}$ then $\left|f_{k}(x)-f(x)\right|<1 / n_{0}<\eta$. Therefore f_{n} converges uniformly on $E \backslash A$.

Exercise 1.10. Let g be an absolutely continuous monotone function on $[0,1]$. Prove that if $E \subset[0,1]$ is a set of Lebesgue measure zero, then the set $g(E)=\{g(x): x \in E\} \subset \mathbb{R}$ is also a set of Lebesgue measure zero.

Proof: Let $E \subset[0,1]$ with zero measure, then for any epsilon $\epsilon>0$, there exists an open cover \mathcal{O} for E, such that $\mu(\mathcal{O} \backslash E)<\epsilon$. Now \mathcal{O} being open in [0,1] implies that $\mathcal{O}=\cup\left(a_{n}, b_{n}\right)$, where $\left(a_{n}, b_{n}\right)$ are disjoint. Now by absolutely continuity of $g(x)$ we have

$$
\forall \eta>0 \exists \delta \text { s.t. } \sum_{n=1}^{\infty} \mu\left(I_{n}\right)<\delta \quad \rightarrow \quad \sum_{n=1}^{\infty}\left|g\left(I_{n} \cap[0,1]\right)\right|<\eta
$$

Now $g(E) \subset \cup\left|g\left(I_{n} \cap[0,1]\right)\right|$ which implies that $\mu(g(E))<\eta$, so given an η there exists a $\delta>0$ such that the above hold, then let $\delta=\epsilon$. Since η is arbitrary we have $\mu(g(E))=0 \square$

Remark: The above problem (1.10) is commonly refered to as Lusin's N condition.

Exercise 1.11. Suppose f is Lipschitz continuous in $[0,1]$. Show that
(a) $\mu(f(E))=0$ if $\mu(E)=0$.
(b) If E is measurable, then $f(E)$ is also measurable.

Proof: For part (a) if f is Lipschitz continuous then it is absolutely continuous, and so if $\mu(E)=0$, then $\mu(f(E))=0$ (see above proof).

For part (b) Let E be a measurable set and let $\epsilon>0$. Now there exists an open set \mathcal{O} such that $\mu(\mathcal{O} \backslash E)<\epsilon$, where \mathcal{O} is a disjoint union of intervals $I_{n}=\left(a_{n}, b_{n}\right)$. Now since f is absolutely continiuous, it can be approximated by simple functions, namely $\chi_{I_{n}}$. Choose these functions such that

$$
\left|f-\sum_{n=1}^{\infty} c_{n} \chi_{I_{n}}\right|<\epsilon
$$

Now $\mu\left(\chi_{I_{n}}\right)=b_{n}-a_{n}>0$, so it is measurable. Let $\alpha \in \mathbb{R}$, then the $f(E)$ is measurable if $\{x: f(x) \leq \alpha\}$ is a measurable set for any $\alpha \in \mathbb{R}$. but we have now

$$
\{x: f(x) \leq \alpha\} \subset\left\{x: \chi_{I_{n}}+\epsilon \leq \alpha\right\}
$$

We know simple functions are measurable, and our choice of simple functions approximates $f(x)$, therefore f is measurable \square.

Theorem (Lusin's) Let f be a measurable real-valued function on an interval $[a, b]$. Then given $\delta>0$, there is a continuous function ϕ on $[a, b]$ such that $\mu\{x: f(x) \neq \phi(x)\}<\delta$

Proof: Let $f(x)$ be measurable on $[a, b]$ and let $\delta>0$. For each n, there is a continuous function h_{n} on $[a, b]$ such that

$$
\mu\left\{x:\left|h_{n}(x)-f(x)\right| \geq \delta 2^{-n-2}\right\}<\delta 2^{-n-2}
$$

Denote these sets as E_{n}. Then by construction we have

$$
\left|h_{n}(x)-f(x)\right|<\delta 2^{-n-2}, \text { for } x \in[a, b] \backslash E_{n}
$$

Let $E=\cup E_{n}$, then $\mu E<\delta / 4$ and $\left\{h_{n}\right\}$ is a sequence of continuous, thus measurable, functions that converges to f on $[a, b] \backslash E$. By Egoroff's theorem, there is a subset $A \subset[a, b] \backslash E$ such that $\mu A<\delta / 4$ and h_{n} converges uniformly to f on $[a, b] \backslash(E \cup A)$. Thus f is continuous on $[a, b] \backslash(E \cup A)$ with $\mu(E \cup A)<\delta / 2$. Now there is an open set O such that $(E \cup A) \subset O$ and $\mu(O \backslash(E \cup A))<\delta / 2$. Then we have f is continuous on $[a, b] \backslash O$, which is closed. Hence there exists a ϕ that is continuous on $(-\infty, \infty)$ such that $f=\phi$ on $[a, b] \backslash O$, where $\mu\{x: f(x) \neq \phi(x)\} \leq \mu(O)<\delta$

Exercise 1.12. Prove the following statement. Supoose that F is a sub- σ-algebra of the Borel σ-algebra on the real line. If $f(x)$ and $g(x)$ are F-measurable and if

$$
\int_{A} f d x=\int_{A} g d x, \quad \forall A \in F
$$

Then $f(x)=g(x)$ almost everywhere.
Proof: Let μ denote the Lebesgue measure on the Borel sets. Now since both f and g are F-measurable, for any $n \geq 1$, the sets

$$
A_{n}=\{x: f(x)-g(x) \geq 1 / n\}, \quad B_{n}=\{x: g(x)-f(x) \geq 1 / n\}
$$

are both measurable and contained in F. Now we also have

$$
A=\{x: f(x)-g(x)>0\}=\bigcap_{n=1}^{\infty} A_{n}, \quad B=\{x: g(x)-f(x)>0\}=\bigcap_{n=1}^{\infty} B_{n}
$$

contained in F since F is a σ-algebra. Now using the convenetion that $\infty-\infty=0$, we have

$$
\int_{A} f-g d x=0
$$

If $\mu(A)>0$ then as $f-g>0$ implies by that $\int_{A} f-g d x>0$, which is a contradiction. Hence we have $\mu(A)=0$. By the same argument also have

$$
\int_{B} g-f d x=0 \quad \rightarrow \quad \mu(B)=0
$$

Now $A \cap B=\emptyset$ and $A \cup B$ is the set of points where $f(x) \neq g(x)$, hence $f=g$ almost everywhere \square.

Exercise 1.13. Let $E \subset \mathbb{R}$. Let $E^{2}=\left\{e^{2}: e \in E\right\}$
(a) Show that if $\mu^{*}(E)=0$, then $\mu^{*}\left(E^{2}\right)=0$
(b) Suppose $\mu^{*}(E)<\infty$, it it true that $\mu^{*}\left(E^{2}\right)<\infty$

Proof: For part (a) consider the intervales $I_{n}=[n, n+1]$ for in \mathbb{Z}. Now consider the function $f(x)=x^{2}$. If $p_{n}=\cup\left(a_{k}, b_{k}\right)$ is an open subset of I_{n} such that for $\delta<0$

$$
\mu\left(p_{n}\right)<\delta \quad \Rightarrow \quad \sum_{k=1}^{n}\left|f\left(b_{k}\right)-f\left(a_{k}\right)\right|=\sum_{k=1}^{N}\left|b_{k}^{2}-a_{k}^{2}\right| \leq(2|n|+1) \delta
$$

Hence $f(x)$ is absolutely continuous on I_{n}. Now a function is absolutely continuous on an interval I if and only if the following are satisfies:
f is continuous on I
f is of bounded variation on I
f satisfies Lusin's (N) condition, or for every subset E of I such that $\mu(E)=0, \mu(f(E))=0$.
Remark: The above condition for absolute continuity is the Banach-Zarecki Theorem.
Now define $E_{n}=E \cap I_{n}$, then $E_{n} \subset I_{n}$ and hence by Lusin's (N) condition $\mu\left(f\left(E_{n}\right)\right)=0$. Now the set $f\left(E_{n}\right)$ is given by

$$
f\left(E_{n}\right)=\left\{e^{2}: e \in E \cap I_{n}\right\}
$$

Now

$$
E^{2}=\bigcup_{n \in \mathbb{Z}}\left\{e^{2}: e \in E \cap I_{n}\right\}=\bigcup_{n \in \mathbb{Z}} f\left(E_{n}\right)
$$

and so

$$
\mu^{*}\left(E^{2}\right) \leq \sum_{n \in \mathbb{Z}} \mu^{*}\left(E_{n}\right)=\sum_{n \in \mathbb{Z}} \mu\left(E_{n}\right)=0
$$

For part (b), the statement is not always true. For each $n \in \mathbb{N}$, let $E_{n}=\left[n, n+n^{-3 / 2}\right)$, then for each $\mu\left(E_{n}\right)=n^{-3 / 2}$. Now if $E=\cup E_{n}$, then

$$
\mu(E)=\sum_{n=1}^{\infty} \mu\left(E_{n}\right)=\sum_{n=1}^{\infty} \frac{1}{n^{3 / 2}}
$$

Now $E_{n}^{2}=\left[n^{2}, n^{2}+2 n^{-1 / 2}+n^{-3}\right)$, and so $\mu\left(E_{n}^{2}\right)=2 n^{-1 / 2}+n^{-3} \geq n^{-1 / 2}$. Also $E^{2}=\cup E_{n}^{2}$, and the sets E_{n}^{2} are mutually disjoint. Hence

$$
\mu\left(E^{2}\right)=\sum_{n=1}^{\infty} \mu\left(E_{n}^{2}\right) \leq \sum_{n=1}^{\infty} \frac{1}{n^{1 / 2}}=\infty
$$

Exercise 1.14. Suppose a measure μ is defined on a σ-algebra \mathcal{M} of subset of \mathcal{X}, and μ^{*} is the corresponding outer measure. Suppose $A, B \subset \mathcal{X}$. Then $A \sim B$ if $\mu^{*}(A \Delta B)=0$. Prove that \sim is an equivalence relation.

Proof: For symmetry we have, by definition, $A \Delta B=(A \cup B) \backslash(A \cap B)=(B \cup A) \backslash(B \cap A)=B \Delta A$, and so if $\mu^{*}(A \Delta B)=0$, then $\mu^{*}(B \Delta A)=0$. Hence $A \sim B$ if and only if $B \sim A$.

For reflexivity, we have $(A \Delta A)=A \backslash A=\emptyset$, hence $A \sim A$.
For transitivity, let $A, B, C \subset \mathcal{X}$. First notice, by element chasing, $A \Delta C \subset(A \Delta B) \cup(B \Delta C)$, and so we have

$$
0 \leq \mu^{*}(A \Delta B)=\mu^{*}((A \Delta B) \cup(B \Delta C)) \leq \mu^{*}(A \Delta B)+\mu^{*}(B \Delta C)
$$

Now if $A \sim B$ and $B \sim C$, then $\mu^{*}(A \Delta B)=\mu^{*}(B \Delta C)=0$, and so $\mu^{*}(A \Delta B)=0$, hence $A \sim C$. Therefore \sim is an equivalence relation on $\mathcal{X} \square$.

Exercise 1.15. Let $(\mathcal{X}, \mathcal{M}, \mu)$ be a measure space.
(a) Suppose $\mu(\mathcal{X})<\infty$. If f and f_{n} are measurable functions with $f_{n} \rightarrow f$ almost everywhere, prove that there exists sets $H, E_{k} \in \mathcal{M}$ such that $\mathcal{X}=H \cup \bigcup_{k=1}^{\infty} E_{k}$, where $\mu(H)=0$ and $f_{n} \rightarrow f$ uniformly on each E_{k}
(b) Is the result of (a) still true if $(\mathcal{X}, \mathcal{M}, \mu)$ is σ-finte?

Proof: For part (a), since $\mu(\mathcal{X})<\infty$ and $f_{n} \rightarrow f$ almost everywhere, by Egoroff's theorem, for any
$k \in \mathbb{N}$, there is $H_{k} \in \mathcal{M}$ such that $\mu\left(H_{k}\right)<1 / k$ and $f_{n} \rightarrow f$ uniformly on $E_{k}=H_{k}^{c}$. Now define $H=\cap_{k=1}^{\infty} H_{k}$, then $H \subset H_{k}$, and so $0 \leq \mu(H) \leq 1 / k$ for all k, hence $\mu(H)=0$. Now

$$
\bigcup_{k=1}^{\infty} E_{k}=\bigcup_{k=1}^{\infty} H_{k}^{c}=\left(\bigcap_{k=1}^{\infty} H_{k}\right)^{c}=H^{c}
$$

and so

$$
\mathcal{X}=H \cup\left(\bigcup_{k=1}^{\infty} E_{k}\right)
$$

where f_{k} converges uniformly to f on any $E_{k} \square$.
For part (b), the statement is true. Since \mathcal{X} is σ-finite, we can write \mathcal{X} as a disjoint union of finite sets, i.e.

$$
\mathcal{X}=\bigcup_{n=1}^{\infty} \mathcal{X}_{n} \text { where } \mu\left(\mathcal{X}_{n}\right)<\infty \quad \forall n \quad \mathcal{X}_{i} \cap \mathcal{X}_{j}=\emptyset \text { for } i \neq j
$$

Now for each \mathcal{X}_{n} apply part (a). Then we have

$$
\mathcal{X}_{n}=H_{n} \cup \bigcup_{k=1}^{\infty} E_{k, n} \text { with } \mu\left(H_{n}\right)=0
$$

Let $H=\cup_{n=1}^{\infty} H_{n}$, then $\mu(H)=\sum_{n=1}^{\infty} \mu\left(H_{n}\right)=0$. So we have

$$
\begin{aligned}
\mathcal{X}=\bigcup_{n=1}^{\infty} \mathcal{X}_{n} & =\bigcup_{n=1}^{\infty}\left(H_{n} \cup\left(\bigcup_{k=1}^{\infty} E_{k, n}\right)\right) \\
& =\left(\bigcup_{n=1}^{\infty} H_{n}\right) \cup\left(\bigcup_{n, k=1}^{\infty} E_{k}\right) \\
& =H \cup\left(\bigcup_{n, k=1}^{\infty} E_{k, n}\right)
\end{aligned}
$$

Now H has measure zero and $\left\{E_{k, n}\right\}_{n, k=1}^{\infty}$ is a countable collection of open sets for which $f_{n} \rightarrow f$ uniformly

Exercise 1.16. Suppose f_{n} is a sequence of measurable functions on $[0,1]$. For $x \in[0,1]$ define $h(x)=\#\left\{n: f_{n}(x)=0\right\}$ (the number of indicies n for which $f_{n}(x)=0$. Assuming that $h<\infty$ everywhere, prove that the function h is measurable.

Proof: First consider the measure space $([0,1], \sigma[0,1], \mu)$, where μ is the Lebesgue measure. Since f_{n} is measurable for all n we know that the set $\left\{x: f_{n}(x)=\alpha\right\}$ is measurable, for $\alpha \in \mathbb{R}$. In particular, the set $\left\{x: f_{n}(x)=0\right\}$ is measurable. Now we have

$$
\bigcup_{n=1}^{\infty}\left\{x: f_{n}(x)=0\right\}
$$

is measurable with respect to μ, since it is the countable union of measurable sets. Now consider the measure space $(\mathbb{N}, \sigma(\mathbb{N}), \nu)$ where ν is the counting measure. Now we know that

$$
h(x)=\left\{n: f_{n}(x)=0\right\}<\infty
$$

So consider the following:

$$
\begin{aligned}
\{x: h(x)=\alpha\} & =\left\{x: \#\left|\bigcup_{n} f_{n}(x)=0\right|=\alpha\right\} \\
& =\left\{x: \sum_{n=1}^{\infty} \nu\left\{n: f_{n}(x)=0\right\}=\alpha\right\} \\
& \subset\left\{x: \sum_{n=1}^{\infty} \nu\left\{n: f_{n}(x)=0\right\}<\infty\right\} \\
& \subset[0,1]
\end{aligned}
$$

Hence the function $h(x)$ is measurable

2. Lebesgue Integration

Exercise 2.1. Consider the Lebesgue measure space $(\mathbb{R}, \mathcal{M}, \mu)$. Let f be an extended real-valued \mathcal{M} measurable function on \mathbb{R}. For $x \in \mathbb{R}$ and $r>0$ let $B_{r}(x)=\{y \in \mathbb{R}:|y-x|<r\}$. With $r>0$ fixed, define a function g on \mathbb{R} by setting

$$
g(x)=\int_{B_{r}(x)} f(y) \mu(d y) \quad \text { for } \quad x \in \mathbb{R}
$$

(a) Suppose f is locally μ-integrable on \mathbb{R}. Show that g is a real-valued continuous function on \mathbb{R}.
(b) Show that if f is μ-integrable on \mathbb{R} then g is uniformly continuous on \mathbb{R}.

Proof: If we show part (b), then part (a) follows by the same argument. Let $x \in \mathbb{R}$. Now if f is integrable on \mathbb{R}^{2} so is $|f|$. Hence if $\epsilon>0$, there is $\delta>0$ such that if $\mu(A)<\delta$, then we have

$$
\int_{A}|f| d y \leq \frac{\epsilon}{2}
$$

Now as $B(x, r)$ and $B(y, r)$ are open balls with area πr^{2} with centers offset by $|y-x|$, we have that

$$
\mu(B(x, r) \backslash B(y, r))=\mu(B(y, r) \backslash B(x, r)) \rightarrow 0 \text { as } y \rightarrow x
$$

Hence given $\delta>0$, there is an $\eta>0$ such that if $|y-x|<\eta$, then

$$
\mu(B(x, r) \backslash B(y, r))=\mu(B(y, r) \backslash B(x, r))<\delta
$$

So for $|y-x|<\eta$, we have

$$
|g(x)-g(y)| \leq \int_{B(y, r) \backslash B(x, r)}|f| d \mu+\int_{B(x, r) \backslash B(y, r)}|f| d \mu<\frac{\epsilon}{2}+\frac{\epsilon}{2}<\epsilon
$$

That is, $g(x)$ is uniformly continuous on $\mathbb{R}^{2} \square$.
Theorem (Jensen's Inequality) If ϕ is a convex function on \mathbb{R} and f an integrable function on $[0,1]$.

$$
\int \phi(f(t)) d t \geq \phi\left(\int f(t) d t\right)
$$

Proof: Let

$$
\alpha=\int f(t) d t, \quad y=m(x-\alpha)+\phi(a)
$$

Then y is the equation of a supporting line at α. Now we have

$$
\phi(f(t)) \geq m(f(t)-\alpha)+\phi(\alpha) \quad \Rightarrow \quad \int \phi(f(t)) d t \geq \phi(\alpha) d t
$$

Theorem (Bounded Convergence) Let f_{n} be a sequence of measurable functions defined on a set E of finite measure, and suppose that there is a real number M such that $\left|f_{n}\right| \leq M$ for all N and all x. If $f(x)=\lim f_{n}(x)$ pointwise in E, then

$$
\int_{E} f=\lim \int_{E} f_{n}
$$

Proof: Let $\epsilon>0$, thn there is an N and a measurable set $A \subset E$ with $\mu A<\frac{\epsilon}{4 M}$ such that for all $n \geq N$ and $x \in E \backslash A$ we have $\left|f_{n}(x)-f(x)\right|<\frac{\epsilon}{2 \mu(E)}$. Now,

$$
\begin{aligned}
\left|\int_{E} f_{n}-\int_{E} f\right| & =\left|\int_{E} f_{n}-f\right| \\
& \leq \int_{E}\left|f_{n}-f\right| \\
& =\int_{E \backslash A}\left|f_{n}-f\right|+\int_{A}\left|f_{n}-f\right| \\
& <\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
\end{aligned}
$$

Therefore we have $\int_{E} f_{n} \rightarrow \int_{E} f \square$.

Exercise 2.2. Suppose f_{n} is a sequence of measurable functions such that f_{n} converges to f almost everywhere. If for each $\epsilon>0$, there is a C such that

$$
\int_{\left|f_{n}\right|>C}\left|f_{n}\right| d x<\epsilon
$$

Show that f is integrable on $[0,2]$
Proof: First the interval [0, 2], is not important. The result can be shown for any finite interval. Fix $\epsilon>0$, now if f is to be integrable, then so is $|f|$. Let C be such in the hypothesis, by Fatou's lemma we have

$$
\begin{aligned}
\int_{0}^{2}|f| d x & \leq \liminf \int_{0}^{2}\left|f_{n}\right| d x \\
& =\liminf \left(\int_{[0,2] \cap\left\{\left|f_{n}\right|>C\right\}}\left|f_{n}\right| d x+\int_{[0,2] \cap\left\{\left|f_{n}\right| \leq C\right\}}\left|f_{n}\right| d x\right) \\
& \leq \epsilon+C \mu(0,2)
\end{aligned}
$$

Therefore $\int_{0}^{2}|f| d x$ is bounded and hence f is integrable \square.
Theorem (Fatou's Lemma) If f_{n} is a sequence of nonnegative measurable functions and $f_{n}(x) \rightarrow$ $f(x)$ almost everywhere on a set E, then

$$
\int_{E} f \leq \liminf \int_{E} f_{n}
$$

Proof: Since the integral over a set of measure zero is zero, (WLOG) we can assume that the converges is everywhere. Let h be a bounded measurable fuction which is not greater that f and which vanishes outside a set $A \subset E$ of finite measure. Define a function h_{n}, by

$$
h_{n}(x)=\min \left\{h(x), f_{n}(x)\right\} .
$$

Then h_{n} is bounded by the bound for h and vanishes outside A. Now $h_{n} \rightarrow h$ pointwise in A, hence we have by the bounded convergence theorem

$$
\int_{E} h=\int_{A} h=\lim \int_{A} h_{n} \leq \liminf \int_{E} f_{n}
$$

Taking supremum over h gives us the result \square.
Theorem (Monotone Convergence) Let f_{n} be an increasing sequence of nonnegative measurable functions, and let $f=\lim f$ a.e. Then

$$
\int f=\lim \int f_{n}
$$

Proof: By Fatou's lemma we have

$$
\int f \leq \liminf \int_{E} f_{n}
$$

Now for each n, since f is monotone, we have $f_{n} \leq f$, and so

$$
\int_{n} f \leq \int_{E} f \quad \Rightarrow \quad \limsup \int_{n} f \leq \int_{E} f \quad \Rightarrow \quad \int f \lim \int f_{n} \square
$$

Remark: Let the positive part of f be denoted by $f^{+}(x)=\max \{f(x), 0\}$, and the negative part be denoted by $f^{-}(x)=\max \{-f(x), 0\}$. If f is measurable then so are f^{+}and f^{-}. Futhermore $f=f^{+}-f^{-}$ and $|f|=f^{+}+f^{-}$.

Exercise 2.3. Let f be a real-valued continuous function on $[0, \infty)$ such that the improper Riemann integral $\int_{0}^{\infty} f(x) d x$ converges. Is f Lebesgue integrable on $[0, \infty)$?

Proof: f does not have to be Lebesgue integrable. Let $n \geq 0$ and define a function f_{n} as follows

$$
f_{n}(x)= \begin{cases}\frac{4}{n+1} x & x \in\left[2 n, 2 n+\frac{1}{2}\right] \\ \frac{-4}{n+1} x & x \in\left[2 n+\frac{1}{2}, 2 n+\frac{3}{2}\right] \\ \frac{4}{n+1} x & x \in\left[2 n+\frac{3}{2}, 2 n+2\right]\end{cases}
$$

Now f_{n} is continuous on $[0, \infty)$ and when considering Riemann integration, we have

$$
\int_{0}^{2 n+1} f_{n}(x) d x=\frac{1}{n+1} \text { and } \int_{0}^{2 n+2} f_{n}(x) d x=0 \quad \Rightarrow \quad \int_{0}^{\infty} f_{n} d x=0
$$

for each fixed n. Now define

$$
f(x)=\sum_{n=0}^{\infty} f_{n}(x)
$$

Then since f_{n} has disjoint support for any $N \in \mathbb{N}$ and $2 N<y<2 N+2$, we have

$$
\int_{0}^{y} f(x) d x=\int_{2 N}^{y} f(x) d x
$$

and so the Riemann integral of $f(x)$ converges to 0 on $[0, \infty)$. Now if a measurable function f is Lebesgue integrablem then so is $|f|$. But,

$$
\int_{0}^{\infty}|f| d x=2 \sum_{n=1}^{\infty} \frac{1}{n+1}=\infty
$$

Therefore f is Riemann integrable but not Lebesgue integrable \square.

Exercise 2.4. Consider the real valued function $f(x, t)$, where $x \in \mathbb{R}^{n}$ and $t \in I=(a, b)$. Suppose the following hold.
(1) $f(x, \cdot)$ is integrable over I for all $x \in E$
(2) There exists an integrable function $g(t)$ on I such that $|f(x, t)| \leq g(t), \forall x \in E, t \in I$.
(3) For some $x_{0} \in E$ then function $f(\cdot, t)$ is continuous on I

Then the function $F(x)=\int_{I} f(x, t) d t$ is continuous at x_{0}
Proof: Let x_{n} be any sequence in E such that $x_{n} \rightarrow x_{0}$. Define a sequence of functions as $f_{n}(t)=$
$f\left(x_{n}, t\right)$. Then by hypothesis we have $f_{n}(t) \leq g(t)$, for $t \in I$ almost everywhere. Let $f(t)=f\left(x_{0}, t\right)$, now since $f(x, t)$ is continuous at x_{0}, we have $f_{n} \rightarrow f$. So by the Lebesgue Dominated Convergence theorem we have

$$
\lim _{n \rightarrow \infty} \int_{I}\left|f_{n}(t)-f(t)\right| d t=0
$$

Hence we have

$$
\left|F\left(x_{n}\right)-F\left(x_{0}\right)\right|=\left|\int_{I} f_{n}(t)-f(t) d t\right| \leq \int_{I}\left|f_{n}(t)-f(t)\right| d t \rightarrow 0
$$

Or $F(x)$ is continuous at $x_{0} \square$
Theorem (Lebesgue Dominated Convergence) Let g be integrable over E and let f_{n} be a sequence of measurable functions such that $\left|f_{n}\right| \leq g$ on E and for almost all $x \in E$ we have $f(x)=\lim f_{n}(x)$. Then

$$
\int_{E} f=\lim \int_{E} f_{n}
$$

Proof: Assuming the hypothesis, the function $g-f_{n}$ is nonnegative, so by Fatou's lemma we have

$$
\int_{E}(g-f) \leq \liminf \int_{E}\left(g-f_{n}\right)
$$

Now since $|f| \leq g, f$ is integrable and we have

$$
\int_{E} g-\int_{E} f \leq \int_{E} g-\limsup \int_{E} f_{n}
$$

Hence we have

$$
\int_{E} f \geq \limsup \int_{E} f_{n}
$$

Considering $g+f_{n}$, we have the result

$$
\int_{E} f \leq \liminf \int_{E} f_{n}
$$

and so the result follows \square.

Exercise 2.5. Show that the Lebesgue Dominated Convergence theorem holds if almost everywhere convergence is replaced by convergence in measure.

Proof: Suppose that $f_{n} \rightarrow f$ in measure, and there is an integrable function g such that $f_{n} \leq g$ almost everywhere. Now $\left|f_{n}-f\right|$ is integrable for each n, and $\left|f_{n}-f\right| \chi_{[-k, k]}$ converges to $\left|f_{n}-f\right|$. By the Lebesgue Dominated Convergence theorem we have

$$
\int_{-k}^{k}\left|f_{n}-f\right| \rightarrow \int_{\mathbb{R}}\left|f_{n}-f\right|
$$

Let $\epsilon>0$, then there exsits an N_{0} such that

$$
\int_{|x|>N_{0}}\left|f_{n}-f\right|<\frac{\epsilon}{3}
$$

also for each n, given $\epsilon>0$, there exists $\delta>0$ such that for any set A with $\mu(A)<\delta$ we have

$$
\int_{A}\left|f_{n}-f\right|<\frac{\epsilon}{3}
$$

Let $A=\left\{\left|f_{n}-f\right| \geq \delta\right\}$. Then there exists an N_{1}, such that for all $n \geq N_{1}$, we have $A=\left\{\left|f_{n}-f\right| \geq\right.$ $\delta\}<\delta$. Let $N=\max \left\{N_{0}, N_{1}\right\}$

$$
\int_{\mathcal{X}}\left|f_{n}-f\right|=\int_{|x|>N}\left|f_{n}-f\right|+\int_{[-N, N] \cap A}\left|f_{n}-f\right|+\int_{[-N, N] \cap A^{c}}\left|f_{n}-f\right|<\frac{\epsilon}{3}+\frac{\epsilon}{3}+2 N \delta<\epsilon
$$

Let $\delta=\frac{\epsilon}{6 N}$, therefore we have $\int_{\mathcal{X}}\left|f_{n}-f\right| \rightarrow 0$, as $n \rightarrow \infty \square$.

Exercise 2.6. Show that an extended real valued integrable function is finite almost everywhere.
Proof: Consider the measur space $(\mathcal{X}, \mathcal{M}, \mu)$. Let $E=\{x \in C:|f|=\infty\}$. Now since f is integrable, it is measurable hence the set E is measurable. Now suppose $\mu(E)>0$, then as $|f|>0$ on E we have

$$
\infty>\int_{\mathcal{X}}|f| d \mu \geq \int_{E}|f| d \mu=\infty
$$

This contradicts to the integrability of f, thus $\mu(E)=0$. Therefore f is finite almost everywhere

Exercise 2.7. If f_{n} is a sequence of measurable functions such that

$$
\sum_{n=1}^{\infty} \int\left|f_{n}\right|<\infty
$$

Show that $\sum_{n=1}^{\infty} f_{n}$ converges almost everywhere to an integrable function f and that

$$
\int f=\sum_{n=1}^{\infty} \int f_{n}<\infty
$$

Proof: Define g_{N} to be the partial sums of $\left|f_{n}\right|$. Then g_{N} is measurable since each f_{n}, and hence $\left|f_{n}\right|$ is measurable. Let $g=\lim g_{n}$, then g is measurable as it is the limit of measurable functions. Now

$$
\int f=\int \sum_{n=1}^{\infty}\left|f_{n}\right|=\sum_{n=1}^{\infty} \int\left|f_{n}\right|<\infty
$$

So g is integrable, and hence g is finite almost everywhere. Define $f(x)$ as follows

$$
f(x)= \begin{cases}\sum_{n=1}^{\infty} \int f_{n} & \text { if }|g(x)|<\infty \\ 0 & \text { otherwise }\end{cases}
$$

Then $g_{N} \rightarrow f$ as $N \rightarrow \infty$ almost everywhere. We also have

$$
\begin{aligned}
\left|\int f\right| & \leq \int|f| \\
& =\int\left|\sum_{n=1}^{\infty} f_{n}\right| \\
& \leq \int \sum_{n=1}^{\infty}\left|f_{n}\right| \\
& =\int g<\infty
\end{aligned}
$$

We also have that

$$
\left|g_{N}\right|=\left|\sum_{n=1}^{N} f_{n}\right| \leq \sum_{n=1}^{N}\left|f_{n}\right| \leq \sum_{n=1}^{\infty}\left|f_{n}\right|=g
$$

almost everywhere. Now by the Lebesgue Dominated Convergence theorem, we have

$$
\int f=\int \lim g_{N}=\lim \int g_{N}=\lim \sum_{n=1}^{N} \int f_{n}=\sum_{n=1}^{\infty} \int f_{n}
$$

Exercise 2.8. Let $(\mathcal{X}, \mathcal{M}, \mu)$ be a measure space, and let f_{n} be a sequences of nonnegative extended real-valued \mathcal{M}-measurable functions on \mathcal{X}. Suppose $\lim f_{n}=f$ exists almost everywhere on \mathcal{X} and $f_{n} \leq f$ almost everywhere. For $n \in \mathbb{N}$, show that

$$
\int_{\mathcal{X}} f d \mu=\lim _{n \rightarrow \infty} \int_{\mathcal{X}} f_{n} d \mu
$$

Proof: First if $\int f d x=\infty$, applying Fatou's lemma we have

$$
\int_{\mathcal{X}} \lim _{n \rightarrow \infty} \inf f_{n} d \mu \leq \lim _{n \rightarrow \infty} \inf \int_{\mathcal{X}} f_{n} d \mu \leq \lim _{n \rightarrow \infty} \int_{\mathcal{X}} f_{n} d \mu \leq \infty
$$

And so $\lim _{n \rightarrow \infty} \int_{\mathcal{X}} f_{n} d \mu=\int f d x=\infty$.
Now if $\int f d x<\infty$, since $f_{n} \leq f$ almost everywhere, we have $\left|f_{n}\right| \leq|f|$ almost everywhere, and we have $\lim f_{n}=f$ exists almost everywhere, we have by the Lebesgue Dominated Convergence theorem

$$
\int_{\mathcal{X}}| | f_{n}|-|f|| d \mu \leq \int_{\mathcal{X}}\left|f_{n}-f\right| d \mu=0 \quad \Rightarrow \quad \lim _{n \rightarrow \infty} \int_{\mathcal{X}} f_{n} d \mu=\int_{\mathcal{X}} f d \mu \square
$$

Exercise 2.9. Let f be a nonnegative Lebesgue measurable function on $[0,1]$. Suppose f is bounded above by 1 and $\int_{0}^{1} f d x=1$. Show that $f=1$ almost everywhere on $[0,1]$

Proof: let $1>\epsilon>0$ and define the set E as

$$
E=\{x \in[0,1]: 0 \leq f \leq 1-\epsilon\}
$$

Now we have

$$
\begin{aligned}
1=\int_{0}^{1} f d x & =\int_{E^{c}} f d x+\int_{E} f d x \\
& \leq \int_{E^{c}} f d x+\int_{E} 1-\epsilon d x \\
& \leq \mu\left(E^{c}\right)+\mu(E)-\epsilon \mu(E) \\
& =1-\epsilon \mu(E)
\end{aligned}
$$

Hence since this holds for any $\epsilon \in(0,1)$, we must have $\mu(E)=0$. Therefore $f=1$ almost everywhere on $[0,1] \square$.

Exercise 2.10. Let f be a real-valued Lebesgue measurable function on $[0, \infty)$ such that:
(1) f is locally integrable
(2) $\lim _{x \rightarrow \infty} f=c$

Show that $\lim _{a \rightarrow \infty} \frac{1}{a} \int_{0}^{a} f d x=c$.

Proof: Let $\epsilon>0$, then there is an $M>0$ such that if $x>M$, then $|f(x)-c|<\epsilon$. Let $a>M$, now

$$
\begin{aligned}
\left|\frac{1}{a} \int_{0}^{a} f d x-c\right| & =\frac{1}{a}\left|\int_{0}^{a} f-c d x\right| \\
& \leq \frac{1}{a} \int_{0}^{a}|f-c| d x \\
& =\frac{1}{a} \int_{0}^{M}|f-c| d x+\frac{1}{a} \int_{M}^{a}|f-c| d x \\
& <\frac{1}{a} \int_{0}^{M}|f-c| d x+\epsilon \frac{1}{a}(a-M) \\
& =\frac{1}{a} \int_{0}^{M}|f-c| d x+\epsilon\left(1-\frac{M}{a}\right)
\end{aligned}
$$

Now since M is fixed, and by the integrability of f, we have

$$
\left|\frac{1}{a} \int_{0}^{a} f d x-c\right|<\epsilon
$$

and since this is for any $\epsilon>0$ and all $a>M$, we have

$$
\lim _{a \rightarrow \infty}\left|\frac{1}{a} \int_{0}^{a} f d x-c\right|=0 \quad \Leftrightarrow \quad \lim _{a \rightarrow \infty} \frac{1}{a} \int_{0}^{a} f d x=c \square
$$

Exercise 2.11. Let f be a real-valued uniformly continuous function on $[0, \infty)$. Show that if f is Lebesgue integrable on $[0, \infty)$, then $\lim _{x \rightarrow \infty} f(x)=0$.

Proof: First if f is Lebesgue integrable, then so is $|f|$. Now decompose the integral as follows

$$
\infty>\int_{0}^{\infty}|f(x)| d x=\sum_{k=1}^{\infty} \int_{k}^{k+1}|f(x)| d x, \text { denote } a_{k}=\int_{k}^{k+1}|f(x)| d x
$$

Now $a_{k}>0$, and since the integral is convergent this implies that $a_{k} \rightarrow 0$ as $k \rightarrow \infty$, which inturn implies that a_{k} is Cauchy. So we have

$$
\forall \epsilon>0, \exists N \text { s.t. }\left|\sum_{k=n}^{m} a_{k}\right|<\epsilon, \quad \forall n, m>N \quad \Rightarrow \quad \int_{N+1}^{\infty}|f(x)| d x<\epsilon
$$

Since $|f(x)|$ is positive and ϵ is arbitrary this implies that $f(x) \rightarrow 0$ as $N \rightarrow \infty \square$.

Exercise 2.12. Let $f \in \mathcal{L}_{1}(\mathbb{R})$. With $h>0$ fixed, define a function ϕ_{h} on \mathbb{R} by setting

$$
\phi_{h}(x)=\frac{1}{2 h} \int_{x-h}^{x+h} f(t) \mu(d t), \text { for } x \in \mathbb{R}
$$

(a) Show that ϕ_{h} is measurable on \mathbb{R}.
(b) Show that $\phi_{h} \in \mathcal{L}_{1}(\mathbb{R})$ and $\left\|\phi_{h}\right\|_{1} \leq\|f\|_{1}$.

For part (a) since f is integrable, then f is measurable. So the integral of a measurable function is measurable, thus $\phi_{h}(x)$ is measurable.

For part (b) First apply the change of variable $y=x-t$, then we have

$$
\int_{x-h}^{x+h} f(t) \mu(d t)=-\int_{h}^{-h} f(x-y) \mu(d y)=\int_{-h}^{h} f(x-y) \mu(d y)=\int_{-\infty}^{\infty} f(x-y) \chi_{[-h, h]}(y) \mu(d y)
$$

Where $\chi_{[-h, h]}(y)$ is the charactistic function on $[-h, h]$. So we have

$$
\phi_{h}(x)=\frac{1}{2 h} f * \chi_{[-h, h]} \quad \Rightarrow \quad\left\|\phi_{h}(x)\right\|_{1}=\frac{1}{2 h}\left\|f \chi_{[-h, h]}\right\|_{1} \leq \frac{1}{2 h}\|f\|_{1}\left\|\chi_{[-h, h]}\right\|_{1}=\|f\|_{1} \square .
$$

Exercise 2.13. Let f be a Lebesgue integrable function of the real line. Prove that

$$
\lim _{n \rightarrow \infty} \int_{\mathbb{R}} f(x) \sin (n x) d x=0
$$

Proof: If f is intergrable, then there exists a sequences of step function ϕ_{n} such that

$$
\forall \epsilon>0 \exists N \text { s.t. } \int\left|f-\phi_{n}\right|<\frac{\epsilon}{2}
$$

Now we have

$$
\begin{aligned}
\left|\int_{\mathbb{R}} f(x) \sin (n x) d x\right| & \leq \int_{\mathbb{R}}|f(x) \sin (n x)| d x \\
& \leq \int_{\mathbb{R}}\left|\left(f(x)-\phi_{n}(x)\right) \sin (n x)\right| d x+\int_{\mathbb{R}}\left|\phi_{n}(x) \sin (n x)\right| d x \\
& <\frac{\epsilon}{2}+\int_{\mathbb{R}}\left|\phi_{n}(x) \sin (n x)\right| d x
\end{aligned}
$$

Now ϕ_{n} being a step function we have it as the sum of simple functions over disjoint interval I_{n}, where $\bigcup_{n=1}^{\infty} I_{n}=\mathbb{R}$, i.e.

$$
\phi_{n}=\sum_{k=1}^{\infty} a_{k, n} \chi_{I_{k, n}}
$$

and so we have

$$
\begin{aligned}
\int_{\mathbb{R}}\left|\phi_{n}(x) \sin (n x)\right| d x & =\left|a_{k, n}\right| \int_{\mathbb{R}}\left|\chi_{I_{k, n}} \sin (n x)\right| d x \\
& =\sum_{k=1}^{\infty}\left|a_{k, n}\right| \int_{I_{k, n}}|\sin (n x)| d x \rightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

Hence for some N large enough and all $n>N$ we have

$$
\left|\int_{\mathbb{R}} f(x) \sin (n x) d x\right|<\frac{\epsilon}{2}+\int_{\mathbb{R}}\left|\phi_{n}(x) \sin (n x)\right|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon \square
$$

3. Convergence

Exercise 3.1. Consider the Lebesgue measure space $(\mathbb{R}, \mathcal{M}, \mu)$ on \mathbb{R}. Let f be a μ-integrable extended real-valued \mathcal{M}-measurable function on \mathbb{R}. Show that

$$
\lim _{h \rightarrow 0} \int_{\mathbb{R}}|f(x+h)-f(x)| \mu(d x)=0
$$

Proof: First since $f(x)$ is integrable, we have

$$
\int_{\mathbb{R}} f(x+h) \mu(d x)=\int_{\mathbb{R}} f(x) \mu(d x) \quad \forall h \in \mathbb{R}
$$

Also since f is integrable, there exists a sequence of continuous function ϕ_{n}, such that

$$
\int\left|f(x)-\phi_{n}(x)\right| \mu(d x)<\frac{\epsilon}{3}
$$

Now $\left|\phi_{n}(x+h)-\phi_{n}(x)\right|<\frac{\epsilon}{3}$ if $|h|<\delta$. Let N be large enough, then
$\int|f-f(x+h)| \mu(d x) \leq \int\left|f-\phi_{n}(x)\right|+\left|\phi_{n}(x+h)-f(x+h)\right|+\left|\phi_{n}(x+h)-\phi_{n}(x)\right| \mu(d x)<\frac{\epsilon}{3}+\frac{\epsilon}{3}+\frac{\epsilon}{3}=\epsilon$
Therefore we have

$$
\lim _{h \rightarrow 0} \int_{\mathbb{R}}|f(x+h)-f(x)| \mu(d x)=0
$$

Exercise 3.2. Let $(\mathcal{X}, \mathcal{M}, \mu)$ be a measure space. Let f_{n} and f be an extended real-valued \mathcal{M} - measurable fuctions on a set $E \in \mathcal{X}$ such that $\lim _{n \rightarrow \infty} f_{n}=f$ on E. Then for every $\alpha \in \mathbb{R}$ we have

$$
\mu\{E: f>\alpha\} \leq \lim _{n \rightarrow \infty} \inf \mu\left\{E: f_{n} \geq \alpha\right\} \text { and } \mu\{E: f<\alpha\} \leq \lim _{n \rightarrow \infty} \inf \mu\left\{E: f_{n} \leq \alpha\right\}
$$

Proof: I will only show the first inequality since the proofs are identical. Let $A_{\alpha}=\{x \in E: f(x) \geq \alpha\}$, $A_{\alpha, n}=\left\{x \in E: f_{n}(x) \geq \alpha\right\}$ and let χ_{A} denote the characteristic function of A. First we need to show $\chi_{A_{n}} \rightarrow \chi_{A}$ in measure. Let $\epsilon>0$, denote the set $F_{\alpha-\epsilon, n}$ by

$$
F_{\alpha-\epsilon, n}=\left\{x \in E:\left|\chi_{A_{\alpha-\epsilon, n}}-\chi_{A_{\alpha-\epsilon}}\right| \geq \epsilon\right\} .
$$

Now we want to show that the measure of this set is small. First notice that

$$
F_{\alpha-\epsilon, n}^{c} \supset\left\{x \in A_{\alpha}:\left|f-f_{n}\right|<\epsilon\right\}
$$

Let x be in this subset, then this implies two thing. First if $f(x)>\alpha>\alpha-\epsilon$, and $f_{n}(x)>f(x)-\epsilon>\alpha-\epsilon$. So we must have

$$
F_{\alpha-\epsilon, n} \subset\left\{x \in A_{\alpha}:\left|f-f_{n}\right| \leq \epsilon\right\}
$$

Now since f_{n} converges to f almost everywhere in E, it converges in measure, and hence the measure of the set $\mu\left(F_{\alpha-\epsilon, n}\right)<\epsilon$. This implies that $\chi_{A_{\alpha, n}}$ converges to $\chi_{A_{\alpha}}$ in measure. Now Fatou's lemma holds for a sequence of functions converging in measure, so we have

$$
\int_{E} \chi_{A_{\alpha}} d \mu \leq \liminf \int_{E} \chi_{A_{\alpha, n}} d \mu \Rightarrow \mu\{E: f>\alpha\} \leq \lim _{n \rightarrow \infty} \inf \mu\left\{E: f_{n} \geq \alpha\right\} \square
$$

Exercise 3.3. Let $g(x)$ be a real-valued function of bounded variation on an interval $[a, b]$. Suppose that f is a real-valued decreasing function on $[a, b]$. Show that $g(f(x))$ is also of bounded variation. If f is just a bounded continuous function is $g(f(x))$ still of bounded variation.

Proof: Since g is of bounded variation we have, let \mathcal{P} be all the possible partitions of $[a, b]$

$$
V_{a}^{b}(g)=\sup _{\left\{x_{i}\right\} \in \mathcal{P}} \sum_{i=1}^{n}\left|g\left(x_{i}\right)-g\left(x_{i-1}\right)\right|
$$

Now fix $\epsilon>0$ and pick an $\left\{x_{i}\right\}$ such that

$$
V_{a}^{b}(g)<\sum_{i=1}^{N}\left|g\left(x_{i}\right)-g\left(x_{i-1}\right)\right|+\epsilon
$$

Now since f is decreasing on we have that $f\left(x_{i+1}\right)<f\left(x_{i}\right)$. Now call $y_{i}=f_{x_{i}},\left\{y_{i}\right\} \cup\{a, b\}$ then is a partition of $[a, b]$, and so we have

$$
\sum_{i=1}^{N}\left|g\left(y_{i}\right)-g\left(y_{i-1}\right)\right|<\sup _{\left\{x_{i}\right\} \in \mathcal{P}} \sum_{i=1}^{n}\left|g\left(x_{i}\right)-g\left(x_{i-1}\right)\right|=V_{a}^{b}(g)
$$

This can be done for any partition of $[a, b]$. Therefore $g(f(x))$ is also of bounded variation.
For the second part, no. Consider the function

$$
f(x)= \begin{cases}x \sin \left(\frac{1}{x}\right) & x \neq 0 \\ 1 & x=0\end{cases}
$$

and let $g(x)=x$. Now $g(x)$ is a function of bounded variation on $[-1,1]$ and $f(x)$ is a bounded and continuous on $[-1,1]$, but $g(f(x))=f(x)$, which not a function of bounded variation on $[-1,1]$.

Exercise 3.4. Let $(\mathcal{X}, \mathcal{M}, \mu)$ be a measure space. Let f_{n} and f be an extended real-valued \mathcal{M} - measurable fuctions on a set $E \in \mathcal{X}$ with $\mu(E)<\infty$. Show that f_{n} converges to 0 in measure on E if and only if $\lim _{n \rightarrow \infty} \int_{E} \frac{\left|f_{n}\right|}{1+\left|f_{n}\right|} d \mu=0$

Proof: (\Rightarrow) If f_{n} converges to 0 in measure then we have

$$
\mu\left\{x \in E:\left|f_{n}\right| \geq \epsilon\right\}<\epsilon
$$

Call this set A_{ϵ}. Now

$$
\int_{E} \frac{\left|f_{n}\right|}{1+\left|f_{n}\right|} d \mu=\int_{A_{\epsilon}} \frac{\left|f_{n}\right|}{1+\left|f_{n}\right|} d \mu+\int_{A_{\epsilon}^{c}} \frac{\left|f_{n}\right|}{1+\left|f_{n}\right|} d \mu
$$

Now the function $\frac{1}{1+x}, x \geq 0$ is monotone, and uniformly continuous on any bounded interval. Now $\mu\left(A_{\epsilon}\right)<\epsilon$, and so there is a δ such that So we have

$$
\int_{A_{\epsilon}} \frac{\left|f_{n}\right|}{1+\left|f_{n}\right|} d \mu+\int_{A_{\epsilon}^{c}} \frac{\left|f_{n}\right|}{1+\left|f_{n}\right|} d \mu<\mu\left(A_{\epsilon}\right)+\mu(E) \epsilon<\epsilon(1+\mu(E))
$$

Hence we have

$$
\int_{E} \frac{\left|f_{n}\right|}{1+\left|f_{n}\right|} d \mu \rightarrow 0 \text { as } \epsilon \rightarrow 0
$$

(\Leftarrow) Now suppose that

$$
\int_{E} \frac{\left|f_{n}\right|}{1+\left|f_{n}\right|} d \mu \rightarrow 0 \text { as } \epsilon \rightarrow 0
$$

and suppose that there exists and ϵ_{0} such that $\mu\left\{x \in E:\left|f_{n}\right| \geq \epsilon_{0}\right\} \geq \epsilon_{0}$. Then we have

$$
\begin{aligned}
\int_{A_{\epsilon_{0}}} \frac{\left|f_{n}\right|}{1+\left|f_{n}\right|} d \mu+\int_{A_{\epsilon_{0}}^{c}} \frac{\left|f_{n}\right|}{1+\left|f_{n}\right|} d \mu & \geq \frac{\epsilon_{0}^{2}}{1+\epsilon_{0}^{2}}+\int_{A_{\epsilon_{0}}^{c}} \frac{\left|f_{n}\right|}{1+\left|f_{n}\right|} d \mu \\
& \geq \frac{\epsilon_{0}^{2}}{1+\epsilon_{0}^{2}}
\end{aligned}
$$

But this implies that

$$
\frac{\epsilon_{0}^{2}}{1+\epsilon_{0}^{2}} \leq \int_{A_{\epsilon_{0}}} \frac{\left|f_{n}\right|}{1+\left|f_{n}\right|} d \mu+\int_{A_{\epsilon_{0}}^{c}} \frac{\left|f_{n}\right|}{1+\left|f_{n}\right|}<\epsilon
$$

let $\epsilon=\frac{\epsilon_{0}^{2}}{2\left(1+\epsilon_{0}^{2}\right)}$, then we have a contradiction \square.

Exercise 3.5. Suppose $\mu(E)<\infty$ and f_{n} converges to f in measure on E and g_{n} converges to measure on E. Prove that $f_{n} g_{n}$ converges to $f g$ in measure on E.

Proof: Let $h_{n}=f_{n} g_{n}$ and let $h=f g$. Now h and h_{n} are measurable since f_{n} and g_{n} are. For each $\delta>0$ define

$$
A_{n}(\delta)=\left\{x:\left|h_{n}(x)-h(x)\right| \geq \delta\right\}
$$

and let $a_{n}(\delta)=\mu\left(A_{n}(\delta)\right)$. Now because f_{n} and g_{n} converge in measure, for any subsequences $f_{n_{k}}, g_{n_{k}}$ there are subsequences $f_{n_{k_{j}}}$ and $g_{n_{k_{j}}}$, such that both $f_{n_{k_{j}}}$ and $g_{n_{k_{j}}}$ converge almost everywhere to f and g respectively. Hence we have $h_{n_{k_{j}}}=f_{n_{k_{j}}} h_{n_{k_{j}}}$, which converges to $h=f g$ almost everywhere on E. Now since $h_{n_{k_{j}}}$ converges almost everywhere and $\mu(E)$ is finite we have that $h_{n_{k}}$ converges in measure. Now

$$
\lim _{n \rightarrow \infty}\left|h-h_{n}\right| \leq \lim _{k \rightarrow \infty} \sup _{n}\left|h-h_{n_{k}}\right| \rightarrow 0
$$

Hence $\lim _{n \rightarrow \infty} a_{n}(\delta)=\lim _{k \rightarrow \infty} a_{n_{k}}(\delta)=0$, or h_{n} converges in measure \square.
(Convergence in measure) A sequences f_{n} of measurable functions is said to converge to f in measure if, given $\epsilon>0$, there is an N such that for all $n \geq N$ we have

$$
\mu\left\{x:\left|f(x)-f_{n}(x)\right| \geq \epsilon\right\} \leq \epsilon
$$

Remark: Let a_{n} be a sequence of real numbers. If there is an $a \in \mathbb{R}$, such that for every subsequence $a_{n_{k}}$, there is a subsequences for which $a_{n_{k_{l}}} \rightarrow a$, then $a_{n} \rightarrow a$.

Exercise 3.6. If $f_{n}, f \in \mathcal{L}_{2}$ and $f_{n} \rightarrow f$ almost everywhere, then $\left\|f_{n}-f\right\|_{2} \rightarrow 0$ if and only if $\left\|f_{n}\right\|_{2} \rightarrow\|f\|_{2}$.

Proof: (\Rightarrow) Suppose $\left\|f_{n}-f\right\|_{2} \rightarrow 0$, now

$$
\begin{aligned}
\left\|f_{n}-f\right\|_{2}^{2} & =\int f_{n}^{2}-2 f f_{n}+f^{2} \\
& \geq\|f\|_{2}^{2}-2 \int\left|f_{n} f\right|+\|f\|_{2}^{2} \\
\text { Holder's inequality } & \geq\|f\|_{2}^{2}-2\left\|f_{n}\right\|_{2}\|f\|_{2}+\|f\|_{2}^{2} \\
& =\left|\|f\|_{2}-\left\|f_{n}\right\|_{2}\right|^{2}
\end{aligned}
$$

Therefore as $\left\|f_{n}-f\right\|_{2}^{2} \rightarrow 0$ we have $\left\|f_{n}\right\|_{2} \rightarrow\|f\|_{2}$.
(\Leftarrow) Now suppose $\left\|f_{n}\right\|_{2} \rightarrow\|f\|_{2}$ and $f_{n} \rightarrow f$ almost everywhere. Now for $p \geq 1$, and for finite a,b, we have

$$
|a+b|^{p} \leq 2^{p}\left(|a|^{p}+|b|^{p}\right)
$$

For each n, let

$$
g_{n}=4\left(\left|f_{n}\right|^{2}+|f|^{2}\right)-\left|f_{n}-f\right|^{2}
$$

Now $g_{n} \geq 0$ almost everywhere. Since f_{n} and f are finite almost everywhere, by Fatou's lemma we have

$$
\int \lim \inf g_{n} \leq \liminf \int g_{n}
$$

Now since $f_{n} \rightarrow f$ almost everywhere we have $\lim \inf g_{n}=8|f|^{2}$ almost everywhere. So we have $8\|f\|_{2}^{2} \leq \liminf \int g_{n}$. Now

$$
\begin{aligned}
\liminf \int g_{n} & =4 \liminf \int\left|f_{n}\right|^{2}+4 \lim \inf \int|f|^{2}=\limsup \int\left|f_{n}-f\right|^{2} \\
& =4 \liminf \left\|f_{n}\right\|_{2}^{2}+4\|f\|_{2}^{2}-\limsup \left\|f_{n}-f\right\|_{2}^{2} \\
& =8\left\|f_{n}\right\|_{2}^{2}-\limsup \left\|f_{n}-f\right\|_{2}^{2}
\end{aligned}
$$

so we have $0 \leq-\limsup \left\|f_{n}-f\right\|_{2}^{2}$, hence $0 \leq \limsup \left\|f_{n}-f\right\|_{2}^{2} \leq 0$. Therefore we have

$$
\limsup \left\|f_{n}-f\right\|_{2}=\liminf \left\|f_{n}-f\right\|_{2}=0 \quad \Rightarrow \quad\left\|f_{n}-f\right\|_{2} \rightarrow 0 \square
$$

Remark: A sequences of functions f_{n} converges in measure to f if and only if for every sequences $f_{n_{k}}$, there is a subsequence $f_{n_{k_{j}}}$ that converges almost everywhere to f.

Exercise 3.7. If $f_{n} \geq 0$ and $f_{n}(x) \rightarrow f(x)$, in measure then

$$
\int f(x) d x \leq \liminf \int f_{n}(x) d x
$$

Proof: Let $f_{n_{k}}$ be any subsequence of f_{n}. then there exists an $f_{n_{k_{j}}}$ such that $f_{n_{k_{j}}}$ converges to f almost everywhere. By Fatou's Lemma we have

$$
\int f \leq \liminf \int f_{n_{k_{j}}}=\lim \int f_{n_{k}} \leq \liminf \int f_{n}
$$

Exercise 3.8. Suppose f_{n} converges to two functions f and g in measure on D. Show that $f=g$ almost everywhere on D

Proof: Define the set E as $E=\left\{x \in D:\left|f_{n}(x)-f(x)\right|>0\right\}$. Then if $E_{n}=\left\{x \in D:\left|f_{n}(x)-f(x)\right| \geq\right.$ $1 / m\}$, we have $E=\lim E_{n}$. Now if for some n we have $\left|f_{n}(x)-f(x)\right|<\frac{1}{2 m}$ and $\left|f_{n}(x)-g(x)\right|<\frac{1}{2 m}$, then we have

$$
|f-g| \leq\left|f_{n}-f\right|+\left|f_{n}-g\right|<\frac{1}{m}
$$

And so

$$
\left\{x:\left|f_{n}(x)-f(x)\right|<\frac{1}{2 m}\right\} \cap\left\{x:\left|f_{n}(x)-g(x)\right|<\frac{1}{2 m}\right\} \quad \subset \quad\left\{x:|f(x)-g(x)|<\frac{1}{2 m}\right\}
$$

which implies that

$$
\left\{x:\left|f_{n}(x)-f(x)\right| \geq \frac{1}{2 m}\right\} \cap\left\{x:\left|f_{n}(x)-g(x)\right| \geq \frac{1}{2 m}\right\} \quad \supset \quad\left\{x:|f(x)-g(x)| \geq \frac{1}{2 m}\right\}
$$

This implies that $\mu\left\{x:|f(x)-g(x)| \geq \frac{1}{2 m}\right\}<\frac{2}{m}$. Now as $n \rightarrow \infty$, we have $\frac{2}{m} \rightarrow 0$. Hence $\mu\{x:|f(x)-g(x)|>0\}=0 \square$.

Exercise 3.9. Let $f_{n} \rightarrow f$ in $\mathcal{L}_{p}(\mathcal{X}, \mathcal{M}, \mu)$, with $1 \leq p<\infty$, and let g_{n} be a seqences of measurable functions such that $\left|g_{n}\right| \leq M<\infty$ for all n, and $g_{n} \rightarrow g$ almost everywhere. Prove that $g_{n} f_{n} \rightarrow g f$ in $\mathcal{L}_{p}(\mathcal{X}, \mathcal{M}, \mu)$

Proof: Since $f_{n} \rightarrow f$ in \mathcal{L}_{p}, since \mathcal{L}_{p} is complete we have $f \in \mathcal{L}_{p}$. Also since $\left|g_{n}\right| \leq M$, for all n this implies that $|g| \leq M$. Now

$$
\left\|f_{n} g_{n}-g_{n} f\right\|_{p}^{p}=\int\left(f_{n} g_{n}-g_{n} f\right)^{p} \leq M^{p} \int\left|f_{n}-f\right|^{p} \quad \rightarrow \quad M^{p}\left\|f_{n}-f\right\|_{p}^{p}
$$

So we have $\left\|f_{n} g_{n}-g_{n} f\right\|_{p} \leq M\left\|f_{n}-f\right\|_{p}$, and so

$$
\left\|f_{n} g_{n}-g f\right\|_{p} \leq M\left\|f_{n}-f\right\|_{p} \rightarrow 0 \text { as } n \rightarrow \infty
$$

Therefore $g_{n} f_{n} \rightarrow g f$ in $\mathcal{L}_{p}(\mathcal{X}, \mathcal{M}, \mu) \square$.

Exercise 3.10. Suppose f is differentiable everywhere on (a, b). Prove that f^{\prime} is a Borel measurable function on (a, b)

Proof: f^{\prime} is Borel measurable if $\left\{x: f^{\prime}(x) \leq \alpha\right\}$ is a Borel set. So

$$
\begin{aligned}
& \qquad f^{\prime}(x) \leq \alpha
\end{aligned} \dot{\lim _{n \rightarrow \infty} n\left(f\left(x+\frac{1}{n}\right)-f(x)\right) \leq \alpha} \begin{aligned}
& \Leftrightarrow \lim _{n \rightarrow \infty}\left(f\left(x+\frac{1}{n}\right)-f(x)\right)-\frac{\alpha}{n} \leq 0 \\
\text { for all but finitely many } \mathrm{n} & \Leftrightarrow\left(f\left(x+\frac{1}{n}\right)-f(x)\right)-\frac{\alpha}{n} \leq \frac{1}{m} \forall m \\
& \Leftrightarrow x \in \liminf \left\{x: f\left(x+\frac{1}{n}\right)-f(x)-\frac{\alpha}{n} \leq \frac{1}{m}\right\} \forall m \\
& \Leftrightarrow x \in \bigcup_{n \geq 1} \bigcap_{k \geq n}\left\{x: f\left(x+\frac{1}{k}\right)-f(x)-\frac{\alpha}{k} \leq \frac{1}{m}\right\} \forall m \\
& \Leftrightarrow x \in \bigcap_{m \geq 1} \bigcup_{n \geq 1} \bigcap_{k \geq n}\left\{x: f\left(x+\frac{1}{k}\right)-f(x)-\frac{\alpha}{k} \leq \frac{1}{m}\right\}
\end{aligned}
$$

Now since $f(x)$ is differentiable almost everywhere, it is continuous almost everywhere and so the $f(x)$, and $f(x+1 \backslash k)$ are measurable. Any linear combination of them is measurable, and so the set

$$
\left\{x: f\left(x+\frac{1}{k}\right)-f(x)-\frac{\alpha}{k} \leq \frac{1}{m}\right\}
$$

is measurable. Now the collection of all such sets form a σ-algebra, and hence the countable union and intersection of these sets are measurable. Therefore $f^{\prime}(x)$ is measurable \square.

Exercise 3.11. Let $c_{n, i}$ be an array of nonnegative exteneded real numbers for $n, i \in \mathbb{N}$.
(a) Show that

$$
\lim _{n \rightarrow \infty} \inf \sum_{i \in \mathbb{N}} c_{n, i} \geq \sum_{i \in \mathbb{N}} \lim _{n \rightarrow \infty} \inf c_{n, i}
$$

(b) If $c_{n, i}$ is an increasing sequences for each $i \in \mathbb{N}$ then

$$
\lim _{n \rightarrow \infty} \sum_{i \in \mathbb{N}} c_{n, i}=\sum_{i \in \mathbb{N}} \lim _{n \rightarrow \infty} c_{n, i}
$$

Proof: For part (a) first let ν denote the counting measure. Now if $\mathcal{M}=\mathcal{P}(\mathbb{N})$, then $(\mathbb{N}, \mathcal{M}, \nu)$ forms a measure space. Now let a_{n} be sequences with $c_{n} \in[0, \infty]$. Then the function $a(n)=a_{n}$ is \mathcal{M}-measurable, and so

$$
\int_{n \in \mathbb{N}} c d \nu=\sum_{n \in \mathbb{N}} c_{n}
$$

Then by Fatou's lemma we have

$$
\int_{\mathbb{N}} \lim _{n \rightarrow \infty} \inf c_{n} \leq \lim _{n \rightarrow \infty} \inf \int_{\mathbb{N}} c_{n} \Rightarrow \sum_{i \in \mathbb{N}} \lim _{n \rightarrow \infty} \inf c_{n, i} \leq \lim _{n \rightarrow \infty} \inf \sum_{i \in \mathbb{N}} c_{n, i}
$$

For part (b) using the same measure space $(\mathbb{N}, \mathcal{M}, \nu)$, we know that $c_{n}(i) \leq c_{n}(i+1)$, so by the Monotone convergence theorem we have

$$
\int_{\mathcal{N}} \lim _{n \rightarrow \infty} c_{n}=\lim _{n \rightarrow \infty} \int_{\mathcal{N}} c_{n} \Rightarrow \sum_{i \in \mathbb{N}} \lim _{n \rightarrow \infty} c_{n, i} \leq \lim _{n \rightarrow \infty} \sum_{i \in \mathbb{N}} c_{n, i} \square
$$

Theorem (Ascoli-Arzela) Let \mathcal{F} be an equicontinuous family of functions from a separable space X to a metric space Y. Let f_{n} be a sequence in \mathcal{F} such that for each $x \in X$ the closure of the set $\left\{f_{n}(x): 0 \leq n<\infty\right\}$ is compact. Then there is a subsequence $f_{n_{k}}$ that converges pointwise to a continuous function f, and the convergence is uniform on each compact subset X.

Exercise 3.12. Let $\left\{q_{k}\right\}$ be all the rational numbers in $[0,1]$. Show that

$$
\sum_{k=1}^{\infty} \frac{1}{k^{2}} \frac{1}{\sqrt{\left|x-q_{k}\right|}} \text { converges a.e. in }[0,1]
$$

Proof: Fix $\epsilon_{0}>0$, consider the two sets

$$
E_{1}=\frac{1}{\sqrt{\left|x-q_{k}\right|}} \leq \frac{1}{\epsilon_{0}} \quad \text { and } E_{2}=\frac{1}{\sqrt{\left|x-q_{k}\right|}}>\frac{1}{\epsilon_{0}}
$$

Now for each fixed $x \in[0,1] \backslash \mathbb{Q}$ we can enumerate the rationals however we want (Zorn's Lemma). Choose such an ordering so that

$$
x \in E_{2} \quad \rightarrow \frac{1}{\sqrt{\left|x-q_{k}\right|}}<k^{1-\epsilon_{0}}
$$

That is the closer q_{k} gets to x, the large the index. Now let ν be the counting measure, then we have

$$
\begin{aligned}
\sum_{k=1}^{\infty} \frac{1}{k^{2}} \frac{1}{\sqrt{\left|x-q_{k}\right|}} & =\int_{E_{1}} \frac{1}{k^{2}} \frac{1}{\sqrt{\left|x-q_{k}\right|}} d \nu+\int_{E_{2}} \frac{1}{k^{2}} \frac{1}{\sqrt{\left|x-q_{k}\right|}} d \nu \\
& <\int_{E_{1}} \frac{1}{k^{2}} \frac{1}{\epsilon_{0}}+\int_{E_{2}} \frac{1}{k^{1+\epsilon_{0}}} d \nu \\
& <\int_{\mathbb{N}} \frac{1}{k^{2}} \frac{1}{\epsilon_{0}}+\int_{\mathbb{N}} \frac{1}{k^{1+\epsilon_{0}}} d \nu<\infty
\end{aligned}
$$

This can be done for all $x \in[0,1] \backslash \mathbb{Q}$. Therefore the series converges almost everywhere in $[0,1] \square$.

Exercise 3.13. Let $(\mathcal{X}, \mathcal{M}, \mu)$ be a finite measure space. Let f_{n} be an arbitrary sequence of real-valued measurable functions on \mathcal{X}. Show that for every $\epsilon>0$ there exists $E \subset \mathcal{M}$ with $\mu(E)<\epsilon$ and a sequence of positive real numbers a_{n} such that $a_{n} f_{n} \rightarrow 0$ for $x \in \mathcal{X} \backslash E$

Proof: First denote the set $E_{m}=\left\{x: m-1 \leq\left|f_{n}\right|<m\right\}$, then the sets E_{m} are disjoint and cover \mathcal{X}. Now define α as such

$$
\sum_{k=1}^{\infty} \frac{1}{k^{2}}=\alpha
$$

Since $\mu(\mathcal{X})<\infty$, if $\epsilon>0$, there is an M_{n} such that

$$
\frac{\epsilon}{\alpha n^{2}}>\sum_{m \geq M_{n}} \mu\left(E_{n}\right)=\mu\left\{x:\left|f_{n}\right| \geq M_{n}\right\}
$$

Now choose these M_{n} such that $M_{n}>M_{n-1}$ for all n. Define the sets $F_{n}=\left\{x:\left|f_{n}\right| \geq M_{n}\right\}$, then we have $\mu\left(F_{n}\right)<\frac{\epsilon}{\alpha n^{2}}$. Now if $E=\cup E_{n}$, then

$$
\mu(E) \leq \sum_{n=1}^{\infty} \mu\left(E_{n}\right)<\frac{\epsilon}{\alpha} \sum_{n=1}^{\infty} \frac{1}{n^{2}}=\epsilon
$$

Let $a_{n}=1 / M_{n}^{3}$, then if $x \in \mathcal{X} \backslash E$, then we have

$$
a_{n}\left|f_{n}(x)\right|<\frac{1}{M_{n}^{3}} M_{n}=\frac{1}{M_{n}^{2}} \quad \forall n
$$

And so we have

$$
\left|\sum_{n=1}^{\infty} a_{n} f_{n}(x)\right| \leq \sum_{n=1}^{\infty}\left|a_{n} f_{n}(x)\right| \leq \sum_{n=1}^{\infty} \frac{1}{M_{n}^{2}} \leq \sum_{n=1}^{\infty} \frac{1}{n^{2}}<\infty
$$

Therefore we must have $a_{n} f_{n}(x) \rightarrow 0$ on $\mathcal{X} \backslash E_{\square}$.

Exercise 3.14. Prove that the gamma function

$$
\Gamma(x)=\int_{0}^{\infty} t^{x-1} e^{-t}
$$

is well defined and continuous for $x>0$
Proof: Let let $f(t, x)=t^{x+1} e^{-t}$, and $x>0$ and decompose the integral into two integrals $(0,1]$ and $(1, \infty)$. For the first we have

$$
\int_{0}^{1} t^{x-1} e^{-t} d t \leq \int_{0}^{1} t^{x-1} d t=\left.\frac{t^{x}}{x}\right|_{0} ^{x}<\infty
$$

Now $f(t, x)$ is continuous on $(1, \infty)$, and also $t^{2} f(t, x) \rightarrow 0$ as $t \rightarrow \infty$, so there is an M such that M bounds $t^{2} f(t, x)$ on $(1, \infty)$. Now

$$
\int_{1}^{\infty} t^{x-1} e^{-t} d t=\int_{0}^{1} t^{x+1} e^{-t} t^{-2} d t=M \int_{0}^{\infty} \frac{1}{t^{2}} d t=M
$$

And so $\Gamma(x)$ is well defined on $(0, \infty)$.
To show continuity, let x_{n}, be a cauchy sequence, and define $f_{n}(t)=f\left(t, x_{n}\right)$. Now by continuity of $f(t, x)$ on $(0, \infty) \times(0, \infty)$, we have that for each $x, f_{n} \rightarrow f$ on $t \in(0, \infty)$. now $f(t, x)$ is bounded on $(1, \infty)$, call this bound $M>1$. Define a function $g(t)$ by

$$
g(t)= \begin{cases}t^{x-1} & 0<t \leq 1 \\ t^{M} e^{-t} & 1<t \leq \infty\end{cases}
$$

Now $f_{n}, f \leq g$ on $(0, \infty)$, so by the Lebesgue Dominated Convergence theorem we have

$$
\int_{0}^{\infty}\left|f_{n}-f\right| \rightarrow 0 \text { as } n \rightarrow \infty
$$

and so we have

$$
\left|\Gamma\left(x_{n}\right)-\Gamma(x)\right|=\left|\int_{0}^{\infty} f_{n}(t)-f(t, x) d t\right| \leq \int_{0}^{\infty} f_{n}(t)-f(t, x) \mid d t \rightarrow 0 \text { as } n \rightarrow \infty
$$

This holds for any sequence such that $x_{n} \rightarrow x \in(0, \infty)$, therefore $\Gamma(x)$ is continuous on $(0, \infty) \square$.

4. Lp spaces

Exercise 4.1. Let $1 \leq p<q<\infty$. Which of the following statements are true and which are false?
(a) $\mathcal{L}_{p}(\mathbb{R}) \subset \mathcal{L}_{q}(\mathbb{R})$
(b) $\mathcal{L}_{q}(\mathbb{R}) \subset \mathcal{L}_{p}(\mathbb{R})$
(c) $\mathcal{L}_{p}([2,5]) \subset \mathcal{L}_{q}([2,5])$
(d) $\mathcal{L}_{q}([2,5]) \subset \mathcal{L}_{p}([2,5])$

Proof: Only part (d) is true. This can easily be shown for any finite interval, let $I=[a, b]$ Let $f \in \mathcal{L}_{q}(I)$. Then $|f|^{p} \in \mathcal{L}_{q / p}(I)$. Now by Holder's inequality we have

$$
\int_{I}|f|^{p}=\leq\left\||f|^{p}\right\|_{q / p}\|1\|_{r}
$$

where r is conjugate to $\frac{q}{p}$. Now

$$
\|f\|_{p}^{p} \leq\left\||f|^{p}\right\|_{q / p}\|1\|_{r}=\left(\int_{I}\left(|f|^{p}\right)^{q / p}\right)^{p / q} \mu(I)^{\frac{q-p}{q}}=\|f\|_{q}^{p} \mu(I)^{\frac{q-p}{q}}
$$

Hence we have $\|f\|_{p} \leq\|f\|_{q} \mu(I)^{\frac{q-p}{q p}}$, therefore $f \in \mathcal{L}_{p}(I) \square$.
For a counterexample to part (c) consider the function $f(x)=(x-2)^{-1 / 2}$, and let $p=1$ and $q=2$, then $f \in \mathcal{L}_{p}([2,5])$, but $f \notin \mathcal{L}_{q}([2,5])$.

For a counterexample to part (b) consider the function $f(x)=\left(1+x^{2}\right)^{-1 / 2}$, and let $p=1, q=2$, then $f \in \mathcal{L}_{q}(\mathbb{R})$ but $f \notin \mathcal{L}_{p}(\mathbb{R})$.

For a counterexample to part (a) consider the counterexample to part (c) with the zero extension.
Theorem (Holder Inequality) If p and q are nonnegative extended real numbers such that

$$
\frac{1}{p}+\frac{1}{q}=1
$$

and if $f \in \mathcal{L}_{p}$ and $g \in \mathcal{L}_{q}$ then $f g \in \mathcal{L}_{1}$ and

$$
\int|f g| \leq\|f\|_{p}\|g\|_{q}
$$

Proof: Assume $1<p<\infty$, and suppose that $f, g \geq 0$. Let $h=g^{q-1}$, then $g=h^{p-1}$. Now

$$
p t f(x) g(x)=p t f(x) h^{p-1} \leq(h(x)+t f(x))^{p}-h(x)^{p}
$$

so we have

$$
p t \int f g \leq \int|h+t f|^{p}-\int h^{p}=\|h+t f\|_{p}^{p}-\|h\|_{p}^{p}
$$

and we also have

$$
p t \int f g \leq\|h\|_{p}^{p}+\|t f\|_{p}^{p}-\|h\|_{p}^{p}
$$

now differentiating bothsides with respect to t at $t=0$, we have

$$
p \int f g \leq p\|f\|_{p}\|h\|_{p}^{p-1}=p\|f\|_{p}\|g\|_{q} \square \cdot
$$

Exercise 4.2. Let $f \in \mathcal{L}_{3 / 2}([0,5])$. Prove that

$$
\lim _{t \rightarrow 0+} \frac{1}{t^{1 / 3}} \int_{0}^{t} f(s) d s=0
$$

Proof: Applying Holders inequality we have

$$
\begin{aligned}
\left|\frac{1}{t^{1 / 3}} \int_{0}^{t} f(s) d s\right| & \leq \frac{1}{t^{1 / 3}} \int_{0}^{t}|f(s)| d s \\
& \leq \frac{1}{t^{1 / 3}}\left(\int_{0}^{t}|f(s)| d s\right)^{2 / 3}\left(\int_{0}^{t} d s\right)^{1 / 3} \\
& \leq \frac{1}{t^{1 / 3}}\|f(s)\|_{3 / 2} t^{1 / 3} \\
& \leq\left(\int_{0}^{t}|f(s)|^{3 / 2} d s\right)^{2 / 3} \rightarrow 0 \quad \text { as } \quad t \rightarrow 0+\square
\end{aligned}
$$

Exercise 4.3. Suppose $f \in C^{1}[0,1], f(0)=f(1)$, and $f>f^{\prime}$ everywhere.
(1) Prove that $f>0$ everywhere.
(2) Prove that

$$
\int_{0}^{1} \frac{f^{2}}{f-f^{\prime}} d \mu \geq \int_{0}^{1} f d \mu
$$

Proof: For (1), if $f(x)=\alpha \in \mathbb{R}^{+}$then everything holds. So suppose that, there exists an $c \in(a, b) \subset$ $(0,1)$ such that $f^{\prime}(c)=0$. (WLOG) suppose that this c is not a saddle point for $f(x)$, also suppose that $f(c)<0$. Now if there is a $\delta>0$ such that $f(c)>f(x)$, for all $x \in B(c, \delta)$, then we have $f^{\prime}(x)>0$ for $x \in(c-\delta, c)$. This implies that $f^{\prime}(x)>f(x)$ for $x \in(c-\delta, c)$. If there is a $\delta>0$ such that $f(c)<f(x)$, for all $x \in B(c, \delta)$, then we have $f^{\prime}(x)>0$ for $x \in(c, c+\delta)$, which implies that $f^{\prime}(x)>f(x)$ for $x \in(c, c+\delta)$. For both cases we have a contradiction. Therefore $f(x)>0$ for all $x \in(0,1)$. Now if $f(0)=0, f$ cannot be constant since $0 \nsupseteq 0$. this implies that, for some $\delta>0, f^{\prime}(x)>0$ for $x \in[0, \delta)$, which is a contradiction. Therefore $f(x)>0$ for all $x \in[0,1]$.

For (2) since $f>f^{\prime}$ we have that $\sqrt{f-f^{\prime}}$ is well defined on $[0,1]$. So,

$$
\begin{aligned}
\left(\int_{0}^{1} f\right)^{2} d \mu & =\left(\int_{0}^{1} \frac{f}{\sqrt{f-f^{\prime}}} \sqrt{f-f^{\prime}} d \mu\right)^{2} \\
\text { Hölder's inequality } & \leq \int_{0}^{1} \frac{f^{2}}{f-f^{\prime}} d \mu \int_{0}^{1} f-f^{\prime} d \mu \\
& \leq \int_{0}^{1} \frac{f^{2}}{f-f^{\prime}} d \mu \int_{0}^{1} f d \mu
\end{aligned}
$$

The last line holds since $f-f^{\prime}>0$. This implies that:

$$
\int_{0}^{1} f d \mu \leq \int_{0}^{1} \frac{f^{2}}{f-f^{\prime}} d \mu \square
$$

Exercise 4.4. If $f(x) \in \mathcal{L}_{p} \cap \mathcal{L}_{\infty}$ for some $p<\infty$. Show that
(a) $f(x) \in \mathcal{L}_{q}$ for $q>p$.
(b) $\lim _{q \rightarrow \infty}\|f\|_{q}=\|f\|_{\infty}$.

Proof: For part (a) Let $0<p<q<\infty$ and let $f \in \mathcal{L}_{p} \cap \mathcal{L}_{\infty}$. Then if $\alpha=\frac{q}{p}$ and if $\beta=\frac{q}{q-p}$, then we
have $\frac{1}{\alpha}+\frac{1}{\beta}=1$. Now applying Holder's inequality we have

$$
\begin{aligned}
\|f\|_{q}^{q} & =\int|f|^{q} \\
& =\int|f|^{q\left(\frac{1}{\alpha}+\frac{1}{\beta}\right)} \\
& =\int|f|^{p}|f|^{q-p} \\
& =\int|f|^{p}|f|^{q-p} \\
& \leq\left\||f|^{p}\right\|_{1}\left\|\left.| |\right|^{q-p}\right\|_{\infty}
\end{aligned}
$$

Now since $|f| \leq\|f\|_{\infty}$ almost everywhere and $q-p>0$ we have $|f|^{q-p} \leq\left\||f|^{q-p}\right\|_{\infty}$ almost everywhere, and so $\left\||f|^{q-p}\right\|_{\infty}<\infty$. Also since f is monotone increasing, we have $\left\||f|^{q-p}\right\|_{\infty}=\|f\|_{\infty}^{q-p}$. We also have $\left\||f|^{p}\right\|_{1}=\|f\|_{p}^{p}<\infty$. Therefore $f \in \mathcal{L}_{q} \square$.

For part (b), first suppose that $\|f\|_{\infty}=0$. This implies that $f=0$ almost everywhere and hence $\|f\|_{q}=0$ for all q. Hence $\lim _{q}\|f\|_{q} \rightarrow\|f\|_{\infty}$ trivially.

Now suppose that $f \in \mathcal{L}_{p} \cap \mathcal{L}_{\infty}$ and $\|f\| \neq 0$. From part (a) we have

$$
\|f\|_{q} \leq\left(\|f\|_{p}^{p}\right)^{1 / q}\left(\|f\|_{\infty}\right)^{1-\frac{p}{q}}
$$

Now let $\epsilon>0$, then on a set E of nonzero measure, $|f|>\|f\|_{\infty}-\epsilon$. If $\mu(E)=\infty$, shoose a subset of E with finite measure. Then we have

$$
\begin{aligned}
\|f\|_{q}^{q} & =\int_{E}|f|^{q} d \mu \\
& \geq \int_{E}\left(\|f\|_{\infty}-\epsilon\right)^{q} d \mu \\
& =\mu(E)\left|\|f\|_{\infty}-\epsilon\right|^{q}
\end{aligned}
$$

Now this is for all $q>p$. Let q_{n} be a sequence of numbers greater than p that converges to ∞. Then

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \mu(E)^{\frac{1}{q_{n}}}|\|f\|-\epsilon| & \leq \lim _{n \rightarrow \infty} \inf \|f\|_{q_{n}} \\
& \leq \lim _{n \rightarrow \infty} \sup \|f\|_{q_{n}} \\
& \leq \lim _{n \rightarrow \infty} \sup \left(\|f\|_{p}^{p}\right)^{\frac{1}{q_{n}}}\left(\|f\|_{\infty}\right)^{1-\frac{p}{q_{n}}}
\end{aligned}
$$

and so

$$
\left|\|f\|_{\infty}-\epsilon\right| \leq \lim _{n \rightarrow \infty} \inf \|f\|_{q_{n}} \leq \lim _{n \rightarrow \infty} \sup \|f\|_{q_{n}} \leq\|f\|_{\infty}
$$

Since this holds for all $\epsilon>0$ we have $\lim _{n \rightarrow \infty}\|f\|_{q_{n}}=\|f\|_{\infty}$. Now since this is for any sequence q_{n}, we have $\lim _{q \rightarrow \infty}\|f\|_{q}=\|f\|_{\infty}$.

Exercise 4.5. Suppose that $f \in \mathcal{L}_{p}([0,1])$ for some $p>2$. Prove that $g(x)=f\left(x^{2}\right) \in L_{1}([0,1])$
Proof: $f \in \mathcal{L}_{p}([0,1])$ implies that $\|f\|_{p}<\infty$. In particular this implies that $\|g\|_{p}=\left\|f\left(x^{2}\right)\right\|_{p}<\infty$. Now

$$
\begin{aligned}
\int_{0}^{1}|g(x)| d x & =\int_{0}^{1}\left|f\left(x^{2}\right)\right| d x \\
\text { change of variables }\left(y=x^{2}\right) & =\int_{0}^{1}\left|f(y) \frac{1}{2 \sqrt{y}}\right| d y \\
\text { hölder's inequality } & \leq \frac{1}{2}\|f\|_{p}\left\|\frac{1}{\sqrt{y}}\right\|_{\frac{p}{p-1}}
\end{aligned}
$$

Now $f \in \mathcal{L}_{p}([0,1])$ and since $p>2$ we have $\left\|\frac{1}{\sqrt{y}}\right\|_{\frac{p}{p-1}}<\infty$, therefore $g(x) \in L_{1}([0,1]) \square$.

Exercise 4.6. Let $f \in \mathcal{L}_{p}(\mathcal{X}) \cap \mathcal{L}_{q}(\mathcal{X})$ with $1 \leq p<q<\infty$. Prove that $f \in \mathcal{L}_{r}(\mathcal{X})$ for all $p \leq r \leq q$.
Proof: Let $E_{1}=\{x: 0 \leq|f(x)| \leq 1\}$, and $E_{2}=\{x: 1>|f(x)|\}$, then E_{1}, E_{2} are a Hahn decomposition for \mathcal{X}. Now suppose $f \in \mathcal{L}_{p} \cap \mathcal{L}_{q}$. Now

$$
\begin{aligned}
\|f\|_{r}^{r} & =\int_{E_{1}}|f|^{r}+\int_{E_{2}}|f|^{r} \\
& \leq \int_{E_{1}}|f|^{p}+\int_{E_{2}}|f|^{q} \\
& \leq \int_{\mathcal{X}}|f|^{p}+\int_{\mathcal{X}}|f|^{q} \\
& =\|f\|_{p}^{p}+\|f\|_{q}^{q} \quad \therefore f \in \mathcal{L}_{r}(\mathcal{X})
\end{aligned}
$$

Exercise 4.7. Suppose f and g are real-valued μ-measurable functions on \mathbb{R}, such that
(1) f is μ-integrable.
(2) $g \in C_{0}(\mathbb{R})$.

For $c>0$ define $g_{c}(t)=g(c t)$. Prove that:
(a) $\lim _{c \rightarrow \infty} \int_{\mathbb{R}} f g_{c} d \mu=0$,
(b) $\lim _{c \rightarrow 0} \int_{\mathbb{R}} f g_{c} d \mu=g(0) \int_{\mathbb{R}} f d \mu$.

Proof: For part (a) define $h_{n}(x)=f(x) g_{n}(x)$. Now since $f \in \mathcal{L}_{1}(\mathbb{R})$ we know that $f(x)<\infty$ a.e., and since $g \in C_{0}(\mathbb{R})$ we know that

$$
g_{n}(x) \rightarrow 0 \text { as } n \rightarrow \infty .
$$

For a fixed x such that $f(x)<\infty$ we have

$$
h_{n}(x) \rightarrow 0 \text { as } n \rightarrow \infty
$$

Hence $h_{n} \rightarrow 0$ a.e.. Also since $g \in C_{0}(\mathbb{R})$ we have that there is some M such that $|g(x)|<M$. So we have

$$
\left|\int_{\mathbb{R}} h_{n}(x) d \mu\right| \leq \int_{\mathbb{R}}\left|f(x) g_{n}(x)\right| d \mu \leq M \int_{\mathbb{R}}|f(x)| d \mu<\infty
$$

since $f \in \mathcal{L}_{1}(\mathbb{R})$. Hence by the Lebesgue Dominated Convergence theorem we have

$$
\lim _{n \rightarrow \infty} \int_{\mathbb{R}} f g_{n} d \mu=\lim _{n \rightarrow \infty} \int_{\mathbb{R}} h_{n} d \mu=\int_{\mathbb{R}} \lim _{n \rightarrow \infty} h_{n} d \mu=0
$$

Proof: For part (b) we know that for all $n>0, f g_{n} \in \mathcal{L}_{1}(\mathbb{R})$. Define $h_{n}(x)=\left|f(x) g\left(x n^{-1}\right)\right|$, again since $g \in C_{0}(\mathbb{R})$ we have that there is some M such that $|g(x)|<M$. So

$$
\left|\int_{\mathbb{R}} h_{n}(x) d \mu\right| \leq \int_{\mathbb{R}}\left|f(x) g_{n}(x)\right| d \mu \leq M \int_{\mathbb{R}}|f(x)| d \mu<\infty
$$

Hence by the Lebesgue Dominated Convergence theorem we have

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \int_{\mathbb{R}} f g_{1 / n} d \mu & =\lim _{n \rightarrow \infty} \int_{\mathbb{R}} h_{n} d \mu \\
& =\int_{\mathbb{R}} \lim _{n \rightarrow \infty} h_{n} d \mu \\
& =\int_{\mathbb{R}} \lim _{n \rightarrow \infty} f g_{1 / n} d \mu \\
& =g(0) \int_{\mathbb{R}} f d \mu
\end{aligned}
$$

Exercise 4.8. Let E be a measurable subset of the real line. Prove that $\mathcal{L}_{\infty}(E)$ is complete.
Proof: Let f_{n} be a Cauchy sequence of measurable functions in \mathcal{L}_{∞}. Then there exists and $k \in \mathbb{N}$ such that if $m, n \geq N_{k}$, then

$$
\left\|f_{n}-f_{m}\right\|_{\infty}<\frac{1}{k}, \forall n, m>\mathbb{N}_{k} \quad \rightarrow \quad\left|f_{n}-f_{m}\right|<\frac{1}{k} \text { a.e. }
$$

Now define the sets $E_{n, m, k}$ by

$$
E_{n, m, k}=\left\{x \in E:\left|f_{n}(x)-f_{m}(x)\right| \geq \frac{1}{k}\right\}
$$

then for each $n, m>N_{k}$, the set $E_{n, m, k}$ is empty. Let F be defined by

$$
F=\bigcup_{k \geq m, n, N_{k}} E_{n, m, k}
$$

Now F is a countable union of empty sets, and therefore is empty. Now for any $x \in E \backslash F$ we have

$$
\left|f_{n}(x)-f_{m}(x)\right|<\frac{1}{k}
$$

and so $f_{n}(x)$ is a Cauchy sequence in \mathbb{R}. Now

$$
\left|f_{m}(x)\right| \leq\left|f_{m}(x)-f_{n}(x)\right|+\left|f_{n}(x)\right|<\frac{1}{k}+\left|f_{n}(x)\right|
$$

Taking $m \rightarrow \infty$, we have

$$
|f(x)| \leq \frac{1}{k}+\left|f_{n}(x)\right|<\frac{1}{k}+\left\|f_{n}(x)\right\|_{\infty} \quad \text { a.e. }
$$

Hence for each n we have $|f| \leq \frac{1}{k}+\left\|f_{n}\right\|_{\infty}$ almost everywhere so $f \in \mathcal{L}_{\infty}$. Therefore \mathcal{L}_{∞} is complete

Theorem (Riesz-Fischer) The $\mathcal{L}_{p}(E)$ spaces are complete.
Proof: For $1 \leq p<\infty$, let f_{n} be a Cauchy sequence on \mathcal{L}_{p}.

$$
\forall \epsilon>0 \exists N_{\epsilon} \text { s.t. }\left\|f_{m}-f_{n}\right\|_{p}<\epsilon \forall n, m>N
$$

Now let $n_{k}=N 2^{-k}$, then the subsequence $f_{n_{k}}$, satisfies

$$
\left\|f_{n_{k+1}}-f_{n_{k}}\right\|_{p}<\frac{1}{2^{k}}
$$

Define the function f by

$$
f(x)=f_{n_{1}}+\sum_{k=1}^{\infty}\left(f_{n_{k+1}}-f_{n_{k}}\right) \quad \text { for } x \in E
$$

Now the partial sums $S_{N}(f)$ is just

$$
S_{N}(f)=f_{n_{1}}+\sum_{k=N}^{\infty}\left(f_{n_{k+1}}-f_{n_{k}}\right)=f_{n_{N}}
$$

Define the function $g(x)$ by,

$$
f(x)=\left|f_{n_{1}}\right|+\sum_{k=1}^{\infty}\left|f_{n_{k+1}}-f_{n_{k}}\right| \quad \text { for } x \in E
$$

Now by Minikowski's inequality we have

$$
\left\|S_{N}(g)\right\|_{p} \leq\left\|f_{n_{1}}\right\|_{p}+\left\|\sum_{k=1}^{N-1}\left|f_{n_{k+1}}-f_{n_{k}}\right|\right\|_{p} \leq\left\|f_{n_{1}}\right\|_{p}+\sum_{k=1}^{N-1} \frac{1}{2^{k}}
$$

So the increasing sequences of partial sums $\left\|S_{n}(g)\right\|_{p}$ is bounded above by $\left\|f_{n_{1}}\right\|+1$. Hence we have

$$
\int_{E} g^{p}<\infty \quad \Rightarrow \quad \int_{E}|f|^{p}<\infty \quad \Rightarrow \quad \int_{E} f^{p}<\infty
$$

This implies that the series $f_{n_{k}}$ converges almost everywhere. Now

$$
\left|f-f_{n_{N}}\right|=\left|S_{\infty}(f)-S_{N-1}(f)\right|=\left|\sum_{k=1}^{N} f_{n_{k+1}}-f_{n_{k}}\right| \leq g
$$

Hence by the Lebesgue dominated convergence thoerem we have

$$
\lim _{k \rightarrow \infty}\left\|f-f_{n_{k}}\right\|_{p}^{p}=\int_{E} \lim _{k \rightarrow \infty}\left(f(x)-f_{n_{k}}\right)^{p}=0
$$

Hence $f_{n_{k}}$ converges to f in $\mathcal{L}_{p}(E)$. Now f_{n} is itself Cauchy, hence f_{n} converges to f is in $\mathcal{L}_{p}(E)$.

Exercise 4.9. Let $g(x)$ be measurable and suppose $\int_{a}^{b} f(x) g(x) d x$ is finite for any $f(x) \in \mathcal{L}_{2}$. Prove that $g(x) \in \mathcal{L}_{2}$.

Proof: If $f=1$, then $f \in \mathcal{L}_{2}([a, b])$ so $\int_{a}^{b} g d x<\infty$ which implies that $g \in \mathcal{L}_{1}[a, b]$. Let $F=\int_{a}^{b} g d x$, then F is a bounded linear functional from $\mathcal{L}_{2}([a, b])$ to \mathbb{R}. So there exists an M such that

$$
\|F(f)\|=\sup _{\|f\|_{2}=1}\left\{\int_{a}^{b} f g\right\}<M, \quad f \in \mathcal{L}^{2}([0,1])
$$

Then by the Reisz Representation Theorem g must be in $\mathcal{L}_{2}([0,1]) \square$.
Theorem (Riesz Representation) Let F be a bounded linear functional on \mathcal{L}_{p} for $1 \leq p<\infty$. Then there exists a function $g \in \mathcal{L}_{q}$ such that

$$
F(f)=\int f g
$$

We also have $\|F\|=\|g\|_{q}$.
Proof: Just considering the finite dimensional case. Let μ be of finite measure. Then every bounded measurable function is in $\mathcal{L}_{p}(\mu)$. Define a set function ν on the measurable sets by $\nu(E)=F\left(\chi_{E}\right)$. If E is the union of a sequence E_{n} of disjoint measurable sets, define a sequence $\alpha_{n}=\operatorname{sgn} F \chi_{E_{n}}$ and set

$$
f=\sum \alpha_{n} \chi_{E_{n}}
$$

Then F is bounded and we have

$$
\sum_{n=1}^{\infty}\left|\nu\left(E_{n}\right)\right|=F(f)<\infty, \quad \sum_{n=1}^{\infty} \nu\left(E_{n}\right)=F(f)=\nu(E)
$$

Hence ν is a signed measure, and by construction it is absolutely continuous with respect to μ. By the Radon-Nikodym Theorem, there is a measurable function g such that for each measurable set E we have

$$
\nu(E)=\int_{E} g d \mu
$$

Since ν is always finite implies that g integrable. Now if ϕ is a simple function, the linearity of F and of the integral imply that

$$
F(\phi)=\int \phi g d \mu
$$

Since the left-hand side is bounded by $\|F\|\|\phi\|_{p}$ we have $g \in \mathcal{L}^{q}$. Now let G be the bounded linear functional defined on \mathcal{L}_{p} by

$$
G(f)=\int f g d \mu
$$

Then $G-F$ is a bounded linear function which vanishes on the subspace of simple functions, which are dense in \mathcal{L}_{p}. Hence we must have $G-F=0$ in \mathcal{L}_{p}. So for all $f \in \mathcal{L}_{p}$, we have

$$
F(f)=\int f g d \mu
$$

and by construction $\|F\|=\|G\|=\|g\|_{q} \quad \square$.

Exercise 4.10. Let $(\mathcal{X}, \mathcal{M}, \mu)$ be a measure space and let f be an extended real-valued \mathcal{M}-measurable function on \mathcal{X} such that

$$
\int_{\mathcal{X}}|f|^{p} d \mu<\infty \text { for } p \in(0, \infty)
$$

Show that $\lim _{\lambda \rightarrow \infty} \lambda^{p} \mu\{x:|f(x)| \geq \lambda\}=0$
Proof: First define the set $E_{\lambda}=\{x \in \mathcal{X}: f(x) \geq \lambda\}$. Now notice that $E_{\nu} \subset E_{\lambda}$ if $\nu>\lambda$, also because $f \in \mathcal{L}_{p}$ we have $\mu\left(E_{\lambda}\right)<\lambda^{-1}$ if λ is large enough, in particular $\mu\left(E_{\infty}\right)=0$. Now

$$
\lambda^{p} \mu\{x:|f(x)| \geq \lambda\}=\lambda^{p} \int_{E_{\lambda}} d \mu \leq \int_{E_{\lambda}}|f|^{p} d \mu
$$

Hence we have

$$
\lim _{\lambda \rightarrow \infty} \lambda^{p} \mu\{x: \mid f(x) \geq \lambda\} \leq \int_{E_{\infty}}|f|^{p} d \mu=0
$$

Since $f \in \mathcal{L}_{p}$, then $|f|^{p} \in \mathcal{L}_{1}(\mathcal{X}), \mu\left(E_{\infty}\right)=0$ and the integral of an Lebesgue integrable function over a set of measure zero is zero \square.

5. Signed Measures

Remark: If $(\mathcal{X}, \mathcal{M})$ is a measure space, and if μ, ν are two measure defined on $(\mathcal{X}, \mathcal{M}) . \mu$ and ν are said to be mutually singular $(\mu \perp \nu)$, if there are disjoint stes A and B, in \mathcal{M} such that $X=A \cup B$ and $\nu(A)=\mu(B)=0$. A measure ν is said to be absolutely continuous with respect to the measure μ, $(\nu \ll \mu)$, if $\nu(A)=0$ for each set A for which $\mu(A)=0$.

Exercise 5.1. Let μ be a measure and let $\lambda, \lambda_{1}, \lambda_{2}$ be signed measure on the measurable space $(\mathcal{X}, \mathcal{A})$. Prove:
(a) If $\lambda \perp \mu$ and $\lambda \ll \mu$, then $\lambda=0$
(b) If $\lambda_{1} \perp \mu$ and $\lambda_{2} \perp \mu$, then, if we set $\lambda=c_{1} \lambda_{1}+c_{2} \lambda_{2}$ with $c_{1}, c_{2} \in \mathbb{R}$ such that λ is a signed measure, thwn we have $\lambda \perp \mu$.
(c) If $\lambda_{1} \ll \mu$ and $\lambda_{2} \ll \mu$, then, if we set $\lambda=c_{1} \lambda_{1}+c_{2} \lambda_{2}$ with $c_{1}, c_{2} \in \mathbb{R}$ such that λ is a signed measure, thwn we have $\lambda \ll \mu$.

Proof: For part (a), if ν is a signed measure such that $\nu \perp \mu$ and $\nu \ll \mu$. There are disjoint measurable sets A and B such that $X=A \cup B$ and $|\nu|(B)=|\mu|(A)=0$. Then $|\nu(A)|=0$ so $|\nu|(X)=|\nu|(A)+$ $|\nu|(B)=0$. Hence we have $\nu^{+}=\nu^{-}=0$ i.e. $\nu=0$.

For part (b), there are disjoint measurable sets A_{i} and B_{i} such that $X=A_{i} \cup B_{i}$ and $\mu\left(B_{i}\right)=\nu_{i}\left(A_{i}\right)=0$, for $i=1,2$. Now $X=\left(A_{1} \cap A_{2}\right) \cup\left(B_{1} \cup B_{2}\right)$ and $\left(A_{1} \cap A_{2}\right) \cap\left(B_{1} \cup B_{2}\right)=\emptyset$. Now we have

$$
\left(c_{1} \nu_{1}+c_{2} \nu_{2}\right)\left(A_{1} \cap A_{2}\right)=\mu\left(B_{1} \cup B_{2}\right)=0 \quad \Rightarrow \quad\left(c_{1} \nu_{1}+c_{2} \nu_{2}\right) \perp \mu
$$

For part (c), suppose $\nu_{1} \ll \mu$ and $\nu_{2} \ll \mu$. If $\mu(E)=0$, then $\nu_{1}(E)=\nu_{2}(E)=0$. Hence

$$
\left(c_{1} \nu_{1}+c_{2} \nu_{2}\right)(E)=0 \quad \Rightarrow \quad\left(c_{1} \nu_{1}+c_{2} \nu_{2}\right) \ll \mu
$$

Exercise 5.2. Let μ be a positive measure and ν be a finite positive measure on a measurable space $(\mathcal{X}, \mathcal{M})$. Show that if $\nu \ll \mu$, then for every $\epsilon>0$ there is a $\delta>0$, such that for every $E \subset \mathcal{M}$ with $\mu(E)<\delta$, we have $\nu(E)<\epsilon$.

Proof: Suppose not, Then there is an $\epsilon>0$ such that for every $\delta>0$, there is $E_{\delta} \subset \mathcal{M}$, such that $\mu\left(E_{\delta}\right)<\delta$, and $\nu\left(E_{\delta}\right) \geq \epsilon$. In particular, for every $n \geq 1$, there is an E_{n} such that $\mu\left(E_{n}\right)<\frac{1}{n^{2}}$ and $\nu\left(E_{n}\right) \geq \epsilon$. Now we have

$$
\sum_{n=1}^{\infty} \mu\left(E_{n}\right)=\sum_{n=1}^{\infty} \frac{1}{n^{2}}<\infty
$$

Let $E=\limsup E_{n}$, then $\mu(E)=0$. Now since $\nu \ll \mu$, we have $\nu(E)=0$. Now

$$
\nu(E)=\nu\left(\limsup E_{n}\right) \geq \lim \sup \nu\left(E_{n}\right) \geq \epsilon
$$

But this implies that $\nu\left(E_{n}\right) \geq \epsilon>0$, and hence $\nu(E)>0$, which is a contradiction. Therefore given $\epsilon>0$ there is a $\delta>0$, such that for every $E \subset \mathcal{M}$ with $\mu(E)<\delta$, we have $\nu(E)<\epsilon \square$.

Theorem (Hahn Decomposition) Let ν be a signed measure on the measurable space (X, \mathcal{M}). Then there is a positive set A and a negative set B such that $X=A \cup B$ and $A \cap B=\emptyset$.

Theorem (Jordan Decomposition) Let ν be a signed measure on the measurable space (X, \mathcal{M}). Then there are two mutually singular measure ν^{+}and ν^{-}on (X, \mathcal{M}) such that $\nu=\nu^{+}-\nu^{-}$. Moreover, there is only one such pair of mutually singular measures.

Exercise 5.3. Suppose $(\mathcal{X}, \mathcal{M})$ is a measurable space, and Y is the set of all signed measure ν on \mathcal{M} for which $\nu(E)<\infty$, whenevery $E \subset \mathcal{M}$. For $\nu_{1}, \nu_{2} \in Y$, define

$$
d\left(\nu_{1}, \nu_{2}\right)=\sup _{E \in \mathcal{M}}\left|\nu_{1}(E)-\nu_{2}(E)\right|
$$

Show that d is a metric on Y and that Y equipped with d is a complete metric space.
Proof: Since ν_{i} are choosen such that $\nu_{i}(E)<\infty$, then for any $\nu_{1}, \nu_{2} \in Y$ and $E \in \mathcal{M}$, we have $\left|\nu_{1}(E)-\nu_{2}(E)\right|<\infty$. So we have $d: Y \times Y \rightarrow[0, \infty)$. Now to show d is a metric on Y we need to show symmetry, positive definiteness and the triangle inequality. Clearly $d\left(\nu_{1}, \nu_{2}\right)=d\left(\nu_{2}, \nu_{1}\right)$ by definition of d. For the triangle inequality we have

$$
\begin{aligned}
d(\mu, \nu) & =\sup _{E \in \mathcal{M}}|\mu(E)-\nu(E)| \\
& \leq \sup _{E \in \mathcal{M}}\{|\nu(E)-\sigma(E)|+|\mu(E)-\sigma(E)|\} \\
& \leq \sup _{E \in \mathcal{M}}\{|\nu(E)-\sigma(E)|\}+\left\{\sup _{F \in \mathcal{M}}|\mu(F)-\sigma(F)|\right\} \\
& =d(\mu, \sigma)+d(\sigma, \nu)
\end{aligned}
$$

Now to show definiteness, if $\mu=\nu$, then $|\mu(E)-\nu(E)|=0$ for any $E \in \mathcal{M}$, and so $d(\mu, \nu)=0$. On the other hand if $d(\mu, \nu)=0$, then we have $|\mu(E)-\nu(E)|=0$. Let $\left(A_{1}, B_{1}\right),\left(A_{2}, B_{2}\right)$ be Hahn decompostions of μ, and ν respectively.

Case 1: If $E \subset A_{1} \cap A_{2}$, then $\mu(E)=\mu^{+}(E)$, and $\nu(Y)=\nu^{+}(Y)$, hence $|\mu(E)-\nu(E)|=\left|\mu^{+}(E)-\nu^{+}(E)\right|$. So we have $\mu^{+}=\nu^{+}$on $A_{1} \cap A_{2}$.

Case 2, 3: If $E \subset A_{1} \cap B_{2}$, then we have $\mu(E)=-\mu^{-}(E)$ and $\nu(E)=\nu^{+}(E)$, hence

$$
0=|\mu(E)-\nu(E)|=\left|-\mu^{-}(E)-\nu^{+}(E)\right|=\mu^{-}(E)+\nu^{+}(E)
$$

Hence $\mu^{-}=\nu^{+}=0$ on $E \subset A_{1} \cap B_{2}$. If $E \subset A_{2} \cap B_{1}$, by the same proof we have the result $\mu^{+}=\nu^{-}=0$ on $E \subset A_{2} \cap B_{1}$

Case 3: If $E \subset B_{1} \cap B_{2}$, then $\mu(E)=-\mu^{-}(E)$ and $\nu(E)=-\nu^{-}(E)$. So

$$
0=|\mu(E)-\nu(E)|=\left|-\mu^{-}(E)+\nu^{-}(E)\right|
$$

and so $\mu^{-}=\nu^{-}=0$ on $E \subset B_{1} \cap B_{2}$. So definiteness holds, therefore d is a metric on Y.
Now to show the metric space is complete. Let ν_{n} be a Cauchy sequence. Then for any $\epsilon>0$, there is an N such that if $m, n>N$, we have

$$
\sup _{E \in \mathcal{M}}\left|v_{n}(E)-v_{m}(E)\right|<\epsilon
$$

If particular, for a fixed set E, we have ν_{n} is a Cauchy sequence in \mathbb{R}. Hence there exists some $\mu(E) \in \mathbb{R}$, such that $\nu_{n} \rightarrow \mu$. By the uniform boundedness pricipal we know that μ is bounded, and hence

$$
\nu_{n} \rightarrow \mu \text { in the metric } \mathrm{d}
$$

Remark: The measure $|\nu|$ is defined from the Jordan decomposition by, $|\nu|(E)=\nu^{+} E+\nu^{-} E$.
Theorem (Radon-Nikodym) let $(\mathcal{X}, \mathcal{M}, \mu)$ be a σ-finite measure space, and let ν be a measure defined on \mathcal{M} which is absolutely continuous with respect to μ. Then there is a nonnegative measurable function f such that for each set E on \mathcal{M} we have

$$
\nu(E)=\int_{E} f d \mu
$$

The function f is unique in the sense that if g is any measurable function with this property then $g=f$ almost everywhere.

Proof: Only the finite case is considered. Let μ be finite then $\nu-\alpha \mu$ is a signed measure for each rational number α. Let $\left(A_{\alpha}, B_{\alpha}\right)$ be a Hahn decomposition for $\nu-\alpha \mu$, and take $A_{0}=\mathcal{X}$ and $B_{0}=\emptyset$. Now $B_{\alpha} \sim B_{\beta}=B_{\alpha} \cap A_{\beta}$. So we have

$$
(\nu-\alpha \mu)\left(B_{\alpha} \sim B_{\beta}\right) \leq 0 \quad(\nu-\beta \mu)\left(B_{\alpha} \sim B_{\beta}\right) \geq 0
$$

hence we must have $\mu\left(B_{\alpha} \sim B_{\beta}\right)=0$. Now there exists a measurable function f such that for each rational α we have $f \geq \alpha$ almost everywhere on A_{α} and $f \leq \alpha$ almost everywhere on B_{α}. Since $B_{0}=\emptyset$ be an arbitrary set in \mathcal{M}, and set

$$
E_{k}=E \cap\left(B_{(k+1) / N} \sim B_{k / N}\right)
$$

Then $E=\cup \bigcup_{k=1}^{\infty} E_{k}$, and this union is disjoint modulo null sets. Hence we have

$$
\nu(E)=\nu\left(E_{\infty}\right)+\sum_{k=0}^{\infty} \nu\left(E_{k}\right)
$$

Since $E_{k} \subset B_{(k+1) / N} \cap A_{k / N}$, we have $\frac{k}{N} \leq f \leq \frac{k+1}{N}$ on E_{k}, and so

$$
\mu\left(E_{k}\right) \frac{k}{N} \leq \int_{E_{k}} f d \mu \leq \frac{k+1}{N} \mu\left(E_{k}\right)
$$

Now since $\frac{k}{N} \mu\left(E_{k}\right) \leq \nu\left(E_{k}\right) \leq \frac{k+1}{N} \mu\left(E_{k}\right)$, we have

$$
\nu\left(E_{k}\right)-\frac{1}{N} \mu\left(E_{k}\right) \leq \int_{E_{k}} f d \mu \leq \nu\left(E_{k}\right)+\frac{1}{N} \mu\left(E_{k}\right)
$$

) On E_{∞} we have $f=\infty$ almost everywhere. If $\mu\left(E_{\infty}\right)>0$, we must have $\nu\left(E_{\infty}\right)>0$, since $(\nu-\alpha \mu)\left(E_{\infty}\right.$ is positive for each α. If $\mu\left(E_{\infty}\right)=0$, we have $\nu\left(E_{\infty}\right)=0$. Since $\nu \ll \mu$, for either case we have

$$
\nu\left(E_{\infty}\right)=\int_{E_{\infty}} f d \mu
$$

Hence we have

$$
\nu(E)-\frac{1}{N} \mu(E) \leq \int_{E} f d \mu \leq \nu(E)+\frac{1}{N} \mu(E)
$$

Since $\mu(E)$ is finite and N arbitrary, we must have $\nu(E)=\int_{E} f d \mu$.
The function $f=\left[\frac{d \nu}{d \mu}\right]$ above is called the Radon-Nikodym derivative of ν with respect to μ.

Exercise 5.4. Suppose ν and μ are σ-finite measures on a measurable space $(\mathcal{X}, \mathcal{A})$, such that $\nu \ll \mu$, and $\nu \ll \mu-\nu$. Prove that

$$
\mu\left(\left\{x \in \mathcal{X}: \frac{d \nu}{d \mu}=1\right\}\right)=0
$$

Proof: First notice that if $E \subset \mathcal{X}$, such that $(\mu-\nu) E=0$, then we have $\mu(E)=\nu(E)$. But we have $\nu \ll \mu-\nu$, hence if $(\mu-\nu) E=0$, then $\nu(E)=0=\mu(E)$. Conversely if $\mu(E)=\nu(E)$ and $\nu \ll \mu-\nu$, then $\mu(E)-\nu(E)=0$, and so $\nu=0$ thus $\mu(E)=0$. So if $\nu(E)=\mu(E)$, then $\nu(E)=\mu(E)=0$. Now let $E=\left\{x \in \mathcal{X}: \frac{d \nu}{d \mu}=1\right\}$ and consider $\nu(E)$. By the Radon-Nikodym theorem we have

$$
\nu(E)=\int_{E} d \nu=\int_{E} \frac{d \nu}{d \mu} d \mu
$$

but $\frac{d \nu}{d \mu}=1$ on E, and so

$$
\nu(E)=\int_{E} \frac{d \nu}{d \mu} d \mu=\int_{E} d \mu=\mu(E)
$$

Hence $\mu(E)=\mu\left(\left\{x \in \mathcal{X}: \frac{d \nu}{d \mu}=1\right\}\right)=0$

Exercise 5.5. Let μ and ν be two measure on the same measurable space, such that μ is σ-finite and ν is absolutely continuous with respect to μ.
(a) If f is a nonngeative measurable function, show that

$$
\int f d \nu=\int f\left[\frac{d \nu}{d \mu}\right] d \mu
$$

(b) If f is a measurable function, prove that f is integrable with respect to ν, if and only if $f\left[\frac{d \nu}{d \mu}\right]$ is integralble with respect to μ, and in this case, part (a) still holds.

Proof: For part (a), let E be a measurable set and let $f=\chi_{E}$. Suppose that $h=\left[\frac{d \nu}{d \mu}\right]$ exists. Then

$$
\int f d \nu=\int \chi_{E} d \nu=\nu(E)=\int_{E} h d \mu=\int h \chi_{E} d \mu=\int f h d \mu
$$

So the equality holds for charactersitc functions. Let $f=\phi$ be a simple function, then by the above we have

$$
\int \phi d \nu=\int \phi h d \mu
$$

Now let f be a nonnegative measurable function. There there exists a monotone sequence of simple functions ϕ_{n} such that $0 \leq \phi_{n} \leq f$ and $\phi_{n} \rightarrow f$ almost everywhere. Applying the Monotone Covergence theorem, we have

$$
\int f d \nu=\lim _{n \rightarrow \infty} \int \phi_{n} d \nu=\lim _{n \rightarrow \infty} \int \phi_{n} h d \mu=\int f h d \mu \square
$$

For part (b), f is ν-integrable if and only if $\int f^{+} d \nu-\int f^{-} d \nu$ is finite. Now by part (a) we have

$$
\int f^{+} d \nu=\int f^{+} h d \mu \text { and } \int f^{-} d \nu=\int f^{-} h d \mu
$$

So we have f is ν-integrable if and only if f is μ-integrable \square.
Theorem (Lebesgue Decomposition) Let $(\mathcal{X}, \mathcal{M}, \mu)$ be a σ-finite measure space and ν a σ-finite
measure defined on \mathcal{M}. Then we can find a measure ν_{0}, singular with respect to μ and a measure ν_{1} absolutely continuous with respect to μ, such that $\nu=\nu_{0}+\nu_{1}$. Furthermore, the measures ν_{0} and ν_{1} are unique.

6. Topological and Product Measure Spaces

Exercise 6.1. Let L be a normed space. Then every weakly bounded set X is bounded.
Proof: Let $\phi: L \rightarrow L^{* *}$, by $\phi(x)(f)=f(x)$, where $x \in L, f \in L^{*}$. Now X^{*} is a Banach space and $\phi(X)$ is a family of bounded linear functionals on X^{*}, and for each $f \in L^{*}$ we have

$$
\sup \{\phi(x)(f): x \in X\}=\sup \{f(x): x \in X\}<\infty
$$

Then from the uniform boundness principle we have

$$
\sup \{\|x\|: x \in X\}=\sup \{\|\phi(x)\|: x \in X\}<\infty
$$

Therefore every weakly bounded nonempty set of a normed space is bounded \square.

Exercise 6.2. Suppose that A is a subset in \mathbb{R}^{2}. Define for each $x \in \mathbb{R}^{2}, p(x)=\inf \{|y-x|: y \in A\}$. Show that $B_{r}=\{x: p(x) \leq r\}$ is a closed set for each nonnegative r. Is the measure of B_{0} equal to the outer measure of A ?

Proof: Let $z \in\left(B_{r}\right)$, and let $\epsilon>0$. Then there is $x \in B_{r}$ such that $|x-z|<\epsilon$. So we have

$$
\begin{aligned}
p(z) & =\inf \{|z-y|: y \in A\} \\
& \leq \inf \{|z-x|+|x-y|: y \in A\} \\
& \leq \epsilon+\inf \{|x-y|: y \in A\} \\
& \leq \epsilon+r .
\end{aligned}
$$

This is for all $\epsilon>0$, therefore $p(z) \leq r$ which implies $z \in B_{r}$ thus B_{r} is closed. Now $B_{0}=A \cup \partial A$. First by definition of $p(x)$ we have for any $x \in A, p(x)=0$. Hence $x \in B_{0}$, Now suppose that $x \in \partial A$, then for any $\epsilon>0$, there is a $y \in A$ such that $|x-y|<\epsilon$. Therefore we have

$$
p(z)=\inf \{|z-y|: y \in A\}=0 \quad \Rightarrow \quad x \in B_{0}
$$

and so $\bar{A} \subset B_{0}$. Now suppose $x \in B_{0}$. Then $\inf \{|x-y|: y \in A\}=0$, so for every $\epsilon>0$ there is a $y \in A$ such that $|x-y|<\epsilon$. So $x \in \bar{A}$, therefore we have $B_{0}=\bar{A}=A^{\circ} \cup \partial A$. Now

$$
\mu^{*}(A) \leq \mu^{*}\left(B_{0}\right)=\mu^{*}\left(A^{\circ} \cup \partial A\right)=\mu^{*}\left(A^{\circ}\right)+\mu^{*}(\partial A)=\mu^{*}(A)+\mu^{*}(\partial A)
$$

Since A° is open and A is measurable. Therefore $\mu^{*}(A)=\mu\left(B_{0}\right)$, if and only if $\mu^{*}(\partial A)=0 \square$.

Exercise 6.3. Prove that an algebraic basis in any infinite-dimensional Banach space must be uncountable.

Proof: Let V be an infinite-dimensional Banach space over \mathbb{F}, and suppose $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ is a countable Hamel basis. Then $v \in V$ if any only if there exists $a_{i} \in \mathbb{F}$ such that

$$
v=\sum_{i=1}^{k} a_{i} x_{i}
$$

for some $x_{i} \in\left\{x_{n}\right\}$. Now let $\left\langle x_{i}\right\rangle$ denote the span of x_{i}, then we have

$$
V=\bigcup_{k \in \mathbb{N}}\left\langle\left\{x_{n}\right\}_{n=1}^{k}\right\rangle
$$

But this implies that V is a countable union of proper subspace of finite dimension. Which implies that V would be of first category, since every finite dimensional proper subspace of a normed space is nowhere dense. Which is a contradiction to the Baire Category Theorem. Therefore any basis for an
infinite-dimensional Banach space must be uncountable
Theorem (Hahn-Banach) Let p be a real-valued function defined on the vector space X satisfying $p(x+y) \leq p(x)+p(y)$ and $p(\alpha x)=\alpha p(x)$ for each $\alpha \geq 0$. Suppose that f is a linear functional defined on a subspace S and that $f(s) \leq p(s)$ for all $s \in S$. Then there is a linear function F defined on X such that $F(x) \leq p(x)$ for all x, and $F(s)=f(s)$ for all $s \in S$.

Exercise 6.4. Let ν be a finite Borel measure on the real line, and set $F(x)=\nu\{(-\infty, x]\}$. Prove that ν is absolutely continuous with respect to the Lebesgue measure μ if and only if F is an absolutely continuous function. In this case show that its Radon-Nikodym derivative is the derivative of F, almost everywhere.

Proof: (\Rightarrow) First suppose that $\nu \ll \mu$. Let $\mu(E)$, then there exists an open set \mathcal{O}, such that $E \subset \mathcal{O}$ and $\mu(\mathcal{O})<\epsilon$. Now \mathcal{O} being open, there are disjoint intervals $\left(x_{k}, y_{k}\right)$, such that

$$
\mathcal{O}=\bigcup_{k=1}\left(x_{k}, y_{k}\right), \quad \Rightarrow \quad \mu(\mathcal{O})=\sum_{k=1}\left(y_{k}-x_{k}\right)<\epsilon
$$

Since $\nu \ll \mu$, there exists a delta such that if $\mu(\mathcal{O})<\epsilon$, then $\nu(\mathcal{O})<\delta$. So we have

$$
\sum_{k=1}\left|F\left(y_{k}\right)-F\left(x_{k}\right)\right|=\sum_{k=1} \nu\left(x_{k}, y_{k}\right)<\delta
$$

So $F(x)$ is an absolutely continuous function.
(\Leftarrow) Suppose that $F(x)$ is absolutely continuous. Then we have

$$
\forall \epsilon>0 \exists \delta>0 \text { s.t. } \sum_{k=1}\left|y_{k}-x_{k}\right|<\delta \Rightarrow \sum_{k=1}\left|F\left(y_{k}\right)-F\left(x_{k}\right)\right|<\epsilon
$$

Choose such disjoint intervals $\left(x_{k}, y_{k}\right)$ and call the union of these intervals \mathcal{O}, then we have $\mu(\mathcal{O})<\epsilon$. Now by definition of $F(x)$, we have

$$
\nu(\mathcal{O})=\sum_{k=1}\left|F\left(y_{k}\right)-F\left(x_{k}\right)\right|<\delta
$$

and so $\nu \ll \mu$.
To see that F is Radon-Nikodym derivative, we know that since F is absolutely continuous we have that $F^{\prime}(t)$ exists almost everywhere so

$$
\nu(-\infty, x]=F(x)=\int_{-\infty}^{x} F^{\prime}(t) d \mu(t)
$$

We also have that

$$
\nu(-\infty, x]=\int_{-\infty}^{x} d \nu=\int_{-\infty}^{x}\left[\frac{d \nu}{d \mu}\right] d \mu
$$

which implies that

$$
\nu(-\infty, x]=F(x)=\int_{-\infty}^{x} F^{\prime}(t) d \mu(t)=\int_{-\infty}^{x}\left[\frac{d \nu}{d \mu}\right] d \mu
$$

Hence by the Radon-Nikodym theorem we know that $F^{\prime}=\left[\frac{d \nu}{d \mu}\right]$ almost everywhere.
Theorem (Tonneli's) Suppose $(\mathcal{X} \times \mathcal{Y}, \sigma(\mathcal{A} \times \mathcal{B}), \mu \times \nu)$ is the product space of two σ-finite measure spaces, and $f: \mathcal{X} \times \mathcal{Y} \rightarrow[0, \infty]$ and $f(x, y)$ be a nonnegative measurable function in the product measure, then

$$
F_{1}(x)=\int_{\mathcal{Y}} f(x, \cdot) d \nu \text { is } \mathcal{A} \text { measurable of } x \in \mathcal{X}
$$

$$
F_{2}(y)=\int_{\mathcal{X}} f(\cdot, y) d \mu \text { is } \mathcal{B} \text { measurable of } x \in \mathcal{Y}
$$

and

$$
\int_{\mathcal{X} \times \mathcal{Y}} f d(\mu)=\int_{\mathcal{X}} F_{1} d \mu=\int_{\mathcal{Y}} F_{2} d \nu
$$

i.e., the iterated integrals is equal to the the integral in the product space

$$
\int_{\mathcal{X}}\left(\int_{\mathcal{Y}} f(x, y) d \nu\right) d \mu=\int_{\mathcal{Y}}\left(\int_{\mathcal{X}} f(\cdot, y) d \mu\right) d \nu=\int_{\mathcal{X} \times \mathcal{Y}} f(x, y) d(\mu \times \nu)
$$

Theorem (Fubini's) Suppose $(\mathcal{X} \times \mathcal{Y}, \sigma(\mathcal{A} \times \mathcal{B}), \mu \times \nu)$ is the product space of two σ-finite measure spaces, and $f: \mathcal{X} \times \mathcal{Y} \rightarrow[0, \infty]$ and $f(x, y)$ be an integrable function in the product space, then

$$
\int_{\mathcal{X}}\left(\int_{\mathcal{Y}} f(x, y) d \nu\right) d \mu=\int_{\mathcal{Y}}\left(\int_{\mathcal{X}} f(\cdot, y) d \mu\right) d \nu=\int_{\mathcal{X} \times \mathcal{Y}} f(x, y) d(\mu \times \nu)
$$

Theorem (Fubini-Tonelli) Suppose $(\mathcal{X} \times \mathcal{Y}, \sigma(\mathcal{A} \times \mathcal{B}), \mu \times \nu)$ is the product space of two σ-finite measure spaces. Let f be an extended real-valued $\sigma(\mathcal{A} \times \mathcal{B})$ measurable function on $\mathcal{X} \times \mathcal{Y}$. If either

$$
\int_{\mathcal{X}}\left(\int_{\mathcal{Y}}|f| d \nu\right) d \mu<\text { or } \int_{\mathcal{Y}}\left(\int_{\mathcal{X}}|f| d \mu\right) d \nu<\infty
$$

then f is $\mu \times \nu$-integrable, furthermore the iterated integrals are equal to the product integral.

Exercise 6.5. Let f be a real valued measurable function on the finite measure space $(\mathcal{X}, \mathcal{M}, \mu)$. Prove that the function $F(x, y)=f(x)-5 f(y)+4$ is measurable in the product measure space $(\mathcal{X} \times \mathcal{X}, \sigma(\mathcal{M} \times$ $\mathcal{M}), \mu \times \mu)$, and that F is integrable if and only if f is integrable.

Proof: First since $f(x)$ is measurable, we have both sections $F\left(x_{0}, y\right)$, and $F\left(x, y_{0}\right)$ as measurable for each fixed x_{0}, y_{0}. Now for $x \in \mathcal{X}$ we have $F(x, x)=-4(f(x)-1)$, which is measurable. Having $F(x, y)$ being measurable on each section, and the diagonal is enough for $F(x, y)$ to be measurable in the product space.

Now let f be integrable, hence $|f|$ is integrable, so let $M=\int_{\mathcal{X}}|f(x)| d x$, now we have

$$
\begin{aligned}
\int_{\mathcal{X}} \int_{\mathcal{X}}|f(x)-5 f(y)+4| d x d y & \leq \int_{\mathcal{X}} M+5|f(y)| \mu(\mathcal{X})+4 \mu(\mathcal{X}) d y \\
& =M \mu(\mathcal{X})+5 M \mu(\mathcal{X})+4 \mu(\mathcal{X})^{2} \\
& =4 \mu(\mathcal{X})(M+\mu(\mathcal{X}))<\infty \\
\text { by the same computation } & \Rightarrow \int_{\mathcal{X}} \int_{\mathcal{X}}|f(x)-5 f(y)+4| d y d x<\infty
\end{aligned}
$$

Then by Fubini-Tonelli theorem $F(x, y)$ is integrable. Now suppose that $F(x, y)$ is integrable, then by Fubini's theorem we have that the iterations are equal, but this is true if and only if $f(x)$ is integrable

Theorem (Stone-Weierstrass) Let X be a compacct space and A an algebra of continuous realvalued functions on X that separates the points of X and contains the constant functions. Then given any continuous real-valued function f on X and any $\epsilon>0$ there is a function $g \in A$ such that for all $x \in X$ we have $|g(x)-f(x)|<\epsilon$. In other words, A is a dense subset of $C(X)$.

Theorem (Closed Graph) Let A be a linear transformation on a Banach space X to a Banach space Y. Suppose that A has the property that, whenever x_{n} is a sequence in X that converges to some point x and $A x_{n}$ converges in Y to a point y, then $y=A x$. Then A is continuous.

Exercise 6.6. Let $(\mathcal{X}, \mathcal{A}, \mu)$ and $(\mathcal{Y}, \mathcal{B}, \nu)$ be the measure spaces given by

- $\mathcal{X}=\mathcal{Y}=[0,1]$
- $\mathcal{A}=\mathcal{B}=\sigma([0,1])$
$\bullet \mu$ be the Lebesgue measure on \mathbb{R}, and ν the counting measure.
Consider the product measure space $(\mathcal{X} \times \mathcal{Y}, \sigma(\mathcal{A} \times \mathcal{B}))$, and its subset $E=\{(x, y) \in \mathcal{X} \times \mathcal{Y}: x=y\}$
(1) Show that $E \subset \sigma(\mathcal{A} \times \mathcal{B})$
(2) Show that $\int_{\mathcal{X}} \int_{\mathcal{Y}} \chi_{E} d \nu d \mu \neq \int_{\mathcal{Y}} \int_{\mathcal{X}} \chi_{E} d \mu d \nu$.
(3) Explain why Tonelli's theorem is not applicable.

Proof: For (1) First notice that the following sets

$$
A_{k}=\left[\frac{k-1}{n}, \frac{k}{n}\right] \times\left[\frac{k-1}{n}, \frac{k}{n}\right]
$$

are measurable. Now let define E_{n} as follows

$$
E_{n}=\bigcup_{k=1}^{n} A_{k}
$$

Then the sets E_{n} are measurable as they are countable union of measurable sets. Then the set E is given by

$$
E=\bigcap_{n=1}^{\infty} E_{n}=\{(x, y) \in \mathcal{X} \times \mathcal{Y}: x=y\}
$$

is measurable since is a countable intersection of measurable sets.
For (2) by a direct computation we have

$$
\int_{\mathcal{X}} \int_{\mathcal{Y}} \chi_{E} d \nu d \mu=\int_{0}^{1} \nu(E) d \mu=\int_{0}^{1} d \mu=1
$$

and

$$
\int_{\mathcal{Y}} \int_{\mathcal{X}} \chi_{E} d \mu d \nu=\int_{0}^{1} \mu(E) d \nu=\int_{0}^{1} 0 d \nu=0
$$

Tonelli's theorem is not applicable because the measure space $(\mathcal{Y}, \mathcal{B}, \nu)$ is not σ-finite \square.

