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1. Ordinary Differential Equations

Exercise 1.1. Consider the nonlinear system:
dx1

dt
= x3

2 + x1

dx2

dt
= −x1x

2
2 + 2x2

.

Show that the solutions of this system exist for t ≥ 0, that is, prove that the solutions do not blow up
in finite time.

Proof: Let 〈·, ·〉 be the standard inner product, and consider 〈x, f(x)〉.
〈x, f(x)〉 = x1(x3

2 + x1) + x2(−x1x
2
2 + 2x2)

= x2
1 + 2x2

2

≤ 2(x2
1 + x2

2)

= 2‖x‖2

Now consider the following 〈x, x〉:
〈x, x〉 = 〈x, x− f(x) + f(x)〉 = 〈x, x− f(x)〉+ 〈x, f(x)〉

≤ 〈x, x− f(x)〉+ 2〈x, x〉
Which implies that 〈x, f(x)− x〉 ≤ 〈x, x〉, and also

〈x, f(x)− x〉 = 〈x+ f(x)− f(x), f(x)− x〉
= 〈x− f(x), f(x)− x〉+ 〈f(x), f(x)− x〉
= −〈f(x)− x, f(x)− x〉+ 〈f(x), f(x)〉 − 〈f(x), x〉
≤ 〈x, x〉

and so we have ‖f(x)‖2 − ‖f(x)− x‖2 ≤ 2‖x‖2, hence ‖f(x)‖2 ≤ 2‖x‖2. Now a system will blow up in
finite time if there is a t0 ∈ R and x0 ∈ Rn such that as |t − t0| < ε ‖X(x, t)‖ > M for any M ∈ R.
The function f(x) is continuous, so given an inital condition X(t0) = x0, where t0 > 0 there exists a
δ, η such that for all Bδ(t0), Bη(x0) a solution exists. By the above inequality and for this solution
we have ‖f(x)‖ ≤ 2‖x‖ for all x ∈ R2, hence there cannot exist and M such that ‖f(x)‖ > M for all
x ∈ Bη(x0), i.e., the solution does does not blow up in finite time for t ≥ 0.

Theorem: (Peano Existence) Assume that X(x, t) is continuous in the closed domain ‖x−c‖ ≤ K,
|t − a| ≤ T . Then an initial value problem for an ODE has at least one solution in the interval
|t− a| = min{T,K/M}, where

M = sup
‖x−c‖=K
|t−a|=T

‖X(x, t)‖

Exercise 1.2. Consider the eigenvalue problem

{
−u′′ + 1

x+1u
′ = λu, 0 ≤ x ≤ 1

u(0) = u(1) = 0.
.

(a) Show that the eigenvalues are real and explain in what sense the eigenfunctions corresponding
to distinct eigenvalues are orthogonal.

(b) Show that for fixed λ, the eigenvalue problem cannot have two independent eigenfunctions.

Proof: Write as a sturm liouville problem, the eigenvectors are ⊥ w.r.t the weighted inner product
〈·, ·〉r(x), (L[u(x)] = r(x)λu(x))
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Exercise 1.3. Determine all critical points of the following system and find their type and stability:{
dx
dt = 1− xy
dy
dt = x− y3

.

Proof: The critical points are determined by setting the system equal to zero. Doing this we have the
following two points (±1,±1). To determine their stability first recall that if A is a 2×2 matrix, then the
characteristic equation can be computed in terms of tr(A) and det(A) by solving λ2−tr(A)λ+det(A) = 0.
The critical equation for determining stability is the equation 4 det(A) = tr2(A), and the information

can be seen in Figure 1. For the first point (1, 1) the Jacobian of the system is J(1, 1) =

(
−1 −1
1 −3

)

Figure 1.

and so tr(J(1, 1)) = −4,det(J(1, 1)) = 4. From this we have the point (1, 1) as a degenerate nodal sink.

For the point (−1,−1) we have J(1, 1) =

(
1 1
1 −3

)
and so tr(J(1, 1)) = −2,det(J(1, 1)) = −4, which

is a saddle node.

Exercise 1.4. Using the initial value problems

dx

dt
= x2(t), x(0) = 1 and

dx

dt
= 1 + x2(t), x(0) = 1

and a comparison principle, give a lower and upper bounds of T , where [0, T ] is the interval of existence
of the solutions of the initial value problem

dx

dt
= t2 + x2(t), x(0) = 1.

Proof: Solve the first and second equations to get

x(t) =
1

1− t
, x(t) = tan

(
t+

π

4

)
Now we have

x2 ≤ t2 + x2 ≤ 1 + x2, for t ∈ [0, 1]

if y(t) is the solution we must have

1

1− t
≤ y(t) ≤ tan

(
t+

π

4

)
Hence we have a lower bound at t = 1 and an upper bound at t =

π
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Exercise 1.5. Show that the planar system
dx

dt
= (1− x2 − y2)x− y

dy

dt
= x+ (1− x2 − y2)y

has a unique closed orbit γ, and show that γ is a periodic attractor.

Proof: First notice if you use linearization that you get (0, 0) as a source. Consider this equation in
polar coordinates.

r2 = x2 + y2 ⇒ rr′ = xx′ + yy′

Plugging the equation for x′ and y′ into this we have

rr′ = x
(
(1− x2 − y2)x− y

)
+ y

(
x+ (1− x2 − y2)y

)
simplifying and solving we have

r′ = (1− r2)r

For θ we have the conversion factor

tan(θ) =
y

x
⇒ sec2(θ) =

y′x− x′y
y2

Again plugging x′ and y′ into this equation and simplifing we arrive at

θ′ = 1

Now r = 1 is a critical point and if 0 < r < 1 we have r′ > 0 and if r > 1 we have that r′ < 0. Hence
r = 1 is a stable limit cycle.

Theorem: (Poincare’ Bendixson) Given a differentiable real dynamical system defined on an open
subset of the plane, then every non-empty compact ω-limit set of an orbit, which contains only finitely
many fixed points, is either a fixed point, a periodic orbit, or a connected set composed of a finite
number of fixed points together with homoclinic and heteroclinic orbits connecting these.

Exercise 1.6. Consider the Cauchy problem{
y′ = sin(xy)

y(0) = y0 > 0.

(a) Show that it has a unique solution, φ, defined in R.
(b) Show that φ(x) > 0, ∀x ∈ R.
(c) Show that φ(x) = φ(−x), ∀x ∈ R.

Proof: First notice that | sin(x1y1) − sin(x2y2)| < 2 forall ordered pairs in R2. Now consider the
interval x ∈ [−a, a], we have ∣∣∣∣ sin(xy1)− sin(xy)

y1 − y

∣∣∣∣
passing to the limit we have as y1 → y

d

dy
sin(xy) = x cos(xy) ≤ x ≤ a for x ∈ [−a, a]

Hence we have

| sin(xy1)− sin(xy2)| < 2a|y1 − y2|
Hence the function is Lipschitz continuous on [−a, a] in y. The function is clearly continous in x, hence
by Picard-Lindelof theorem there exists a unique solution φ(x) defined on [−a, a]. Since a was arbitrary
we can make it as large as we need, hence the solution is on all of R.
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Exercise 1.7. Consider the family of Cauchy problems:

CP (n) =

{
y′ = f(y)

y(x0) = y0,n

in Rm, where f is Lipschitz continuous in Rm and x0 ∈ [a, b]. Assume that each problem has a solution
φn : [a, b]→ Rm. Note that we assume that all solutions are defined in the same interval [a, b]. Assume
that y0,n → y0 as n→∞.

(a) Prove that {φn} forms a Cauchy sequence in the space of continuous functions C([a, b];Rm),
with the sup norm.

(b) Conclude that {φn} converges uniformly to a continuous funtion φ ∈ C([a, b];Rm), and that φ
solves the Cauchy problem

CP (∞) =

{
y′ = f(y)

y(x0) = y0

Proof: Let M = max{f(x, y) : (x, y) ∈ [a, b] × D} where D is compact inside Rn. Using the Picard
iterations we have

φn,k(x) = y0,n +

∫ x

x0

f(yk(t)) dt

where φn,k(x)⇒ φn(x) Now since each solution converges we have that |φn,k(x)−φn,l(x)| < ε if l, k > N
for some N ∈ N

|φm,k − φn,l| = |φm,k − φn,l + φm,l − φm,l|
≤ |φm,k − φm,l|+ |φn,l − φm,l|

≤ ε+ |y0,n − y0,m|+
∫ x

x0

|f(yk(t))− f(yl(t))| dx

≤ 3ε

The above can be choosen small enought if k, l,m, n are large enough by assumptions of the problem.
This implies the sequence of solutions converge uniformly, since the values does not depend on x, since
the integral over a large set of something small can be made small. All of the hypothesis satisfy the the
Picard-Lindelof theorem, hence the solution is unique.

Exercise 1.8. In this problem you are asked to find, amoung all function y(x), for which y′′(x) exists
and is continuous at each point in the interval 0 ≤ x ≤ 1, the one which minimizes the integral.

I[y] =

∫ 1

0

[(y′(x))2 + y2(x)− xy(x)] dx

Note that no restrictions are imposed on the boundary conditions of the function y(x).

(a) Write the corresponding Euler-Lagrange equation including boundary conditions.
(b) Prove that if y ∈ C2([0, 1]) is a solution of the Euler-Lagrange equation, then

I[y + w] ≥ I[y], ∀w ∈ C1([0, 1])

and conclude that y is a minimizer of I
(c) Solve the Euler-Lagrange equation to find the minimizer.

Proof: Recall that the Euler-Lagrange equation is looking for the minimizer of the following

S(y) =

∫ b

a

L(x, y, y′) dx

with the boundary conditions that y(a) = c, y(b) = d. The equation is given by

Ly −
d

dx
Ly′ = 0

Using the problem given we have

2y + x− d

dx
(2y′) = 0 ⇒ y′′ − y′ + x

2
= 0
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The characteristic equation is r2 − r = 0 so the homogenious solution is yH(x) = c1e
x + c2. Using the

method of undetermed coefficents we have

yP = a+ bx+ cx2 ⇒ yP = −x
4
− x2

2

Hence y(x) = yH(x) + yP (x) Let fε(x) = y(x) = εw(x). Show that

S(fε) =

∫ 1

0

F (x, fε, fε)
′

minimizes when ε = 0 by computing d
dε and showing that y is the minimizer.

Exercise 1.9. Consider the boundary value problem

−∂
2x(t)

∂t2
+ λx(t) = g(t), x′(0) = x′(π) = 0.

(a) if g = 0, for which values of the parameter λ ∈ R does the problem have a nontrivial solution?
(b) Given g ∈ C([0, π]), under what conditions on g and λ does the problem have a solution? Under

what conditions on g and λ is the solution unique? Justify your answer.

Proof: Let g(t) = 0. Look at the 3 cases λ = 0, λ > 0, λ < 0. The only case that is not trivial is if
λ = µ2 > 0 in which the eigenvalues and eigenvectors are

λn =
2n− 1

2
, φn(x) = bn sin(λnx), n ∈ Z

Now if g(t) 6= 0, use variation of parameters with fundamental solutions y1 = eıµt, y2 = e−ıµt. Compute
the Wronskian, given by W = y1y

′
2−y2y

′
1 = −2ıu, then need the general solution as y = a(x)y1+b(x)y2.

Where

a(x) = −
∫

1

w
u2g(x) dx b(x) = −

∫
1

w
u1g(x) dx

Exercise 1.10. Consider the equation of the undamped pendulum

∂2x(t)

∂t2
+ sin(x(t)) = 0.

(a) Write the equation as a first order system, and find the fixed points.
(b) show that the system obtained in part (a) is Hamiltonian, and find the Hamiltonian H(x, y).
(c) Describe the stability of the stationary solutions in (a).
(d) Draw a phase portrait of the solutions near the stationary points.

Proof: Written as a system we have

y′ = − sin(x), x′ = y

Now the critical points are y = 0 and x = kπ, k ∈ mZ. Integrating each equation we have the
Hamiltonian,

H(x, y) =
y

2
− cos(x)

This comes from

H(x, y) =

∫
x′ dy −

∫
y′ dx

Exercise 1.11. Let f1(x) = ex and f2(x) = sin(x)

(a) Find a1(x) and a2(x) such that for |x| < δ with δ ∈ (0, π/4) the funcitons f1, f2 form a
fundamental set of solutions of the second order linear equation

∂2f(x)

∂x2
+ a1(x)

df(x)

dx
+ a2(x)f(x) = 0, |x| < δ

(b) Can one extend a1, a2 to the closed interval [−π/4, π/4] such that f1, f2 still staify the property
in part (a) in this interval? Justify your answer.
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Proof: text

Exercise 1.12. Define

A =

(
0 1
−1 0

)
(a) Compute the fundamental matrix of A.
(b) Explain how to use the fundamental matrix of A to solve the initial problem

x′′ + x = 0, x(0) = x0, x
′(0) = x1

Proof: text

2. Partial Differential Equations

Exercise 2.1. Consider the second order PDE

∂2
xu(x, t)− 3∂xtu(x, t)− 4∂2

t u(x, t) = 0, x ∈ R, t ≥ 0

(a) Factor the differential operator as the product of two first order differential operators.
(b) Using part (a) find the general solution of the equation.
(c) Find the solution of the equation satisfying the initial data

u(x, 0) = x, ∂tu(x, 0) = 1.

Proof: text

Exercise 2.2. Find the explicit solution of the initial value problem{
ut + uux = 0, t ≥ 0, x ∈ R
u(0, x) = x, x ∈ R

Proof: text

Exercise 2.3. Find the solution of the boundary value problem for the Laplace equation
∆u(x, y) = 0, 1 < x2 + y2 < 4

u(x, y) = −5, x2 + y2 = 1

u(x, y) = 0, x2 + y2 = 4

Proof: text

Exercise 2.4. Find the solution of the initial boundary value problem
ut(x, y) = uxx(t, x), (t, x) ∈ R+ × (0, 1)

u(t, 0) = 0, u(t, 1) = 1 t ∈ R+

u(0, x) = sin
(πx

2

)
, x ∈ [0, 1]

and find limt→∞.

Proof: text
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Exercise 2.5. Consider the Dirichlet problem for the Laplace equation in the unit Ball B1(0) of R2

written in polar coordinates

∂2
ru+

1

r
∂ru+

1

r2
u = 0, u(1, θ) = f(θ), r ∈ (0, 1), θ ∈ [0, 2π)

whose solution is given by the formula

u(r, θ) =
1

2π

∫ 2π

)

1− r2

1− 2r cos(θ − t
f(t) dt.

If f(θ) = (θ − π)2, answer the following questions:

(a) What is the value of u at the origin?
(b) Show that for any (r, θ) ∈ (0, 1)× [0, 2π) it follows that

u(0)
1− r
1 + 4

< u(r, θ) < u(0)
1 + r

1− r
(c) Can one find (r0, θ0) ∈ (0, 1/2]× [0, 2π) such that u(r0, θ0) < 1. Justify your answer.

Proof: text

Exercise 2.6. Let u(x, t) be a solution of the boundary value problem


ut(x, t) = uxx(x, t), t > 0, x ∈ (−1, 1)

u(x, 0) = 1− x2, u(t, 1) = 1 x ∈ [−1, 1]

u(0, t) = u(1, t) = 0, t > 0

Prove that u(x, t) = u(−x, t) for all (x, t) ∈ [−1, 1]× [0,∞) Proof: text

Exercise 2.7. Find the solution of the initial value problem{
ut − c2uxx = 2t, t > 0, x ∈ R,
u(x, 0) = x2, ut(x, 0) = 1 x ∈ R.

Assume that c 6= 0, justify your answer.

Proof: text

Exercise 2.8. Solve the initial value problem

{
x∂xu+ ∂yu = y, y > 0, x ∈ R,
u(x, 0) = x2, x ∈ R.

Justify your answer.

Proof: text

Exercise 2.9. (a) Suppose u ∈ C2(R2) is a solution of the wave equation

utt(t, x)− uxx(t, x) = 0, (t, x) ∈ R2

such that u(0, x) = ut(0, x) = 0 for all |x| ≤ 1. Prove that u(t, x) = 0 in the region

R = {(t, x) ∈ R2 : |x+ t| ≤ 1, |x− t| ≤ 1}.



8

(b) Suppose that uj ∈ C(R2), j = 1, 2, are solutions of the wave equation for all (t, x) ∈ R2 such
that

u1(0, x) = u2(0, x) and (u1)t(0, x) = (u2)t(0, x),

for all x ≤ 1. Prove that u1(t, x) = u2(t, x) in R.
Proof: text

Exercise 2.10. Let f ∈ C(R) and a ∈ C1(R). Solve the initial value problem{
ut(t, x) + a′(t)ux(t, x) = 0, (t, x) ∈ R2

u(0, x) = f(x), fx ∈ R

Proof: text

Exercise 2.11. Let Ω ⊂ R2 be a bounded domain with smooth boundary.

(a) Prove that if the eigenvalue prolem

−∆u = λu in Ω, u = 0 on ∂Ω

has a nonzero solution u ∈ C2(Ω) ∩ C1(Ω) then the eigenvalue λ must be strictly postive.
(b) Suppose that λ > 0 is a value for which the eigenvalue problem in part (a) has a nonzero solution

u ∈ C2(Ω) ∩ C1(Ω). Given f ∈ C(Ω), prove that if the problem

−∆u = λu+ f in Ω, u = 0 on ∂Ω,

has a solution u ∈ C2(Ω) ∩ C1(Ω), then ∫
Ω

u(x)f(x) dx = 0.

Proof: text

Exercise 2.12. Suppose that φ ∈ C([0, 1]) with φ(0) = φ(1) = 0. Solve the initial boundary value
problem. 

ut(t, x) = uxx(t, x) + sin(t) sin(πx), (t, x) ∈ R+ × (0, 1)

u(t, 0) = u(t, 1) = 0, t ∈ R+

u(0, x) = φ(x), x ∈ [0, 1].

Your solution will involve the Fourier sine coefficients {ck}∞k=1 of φ

Proof: text
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