Complex qual study guide
 James C. Hateley

General Complex Analysis

Problem: Let $p(z)$ be a polynomial. Suppose that $p(z) \neq 0$ for $\Re(z)>0$. Prove that $p^{\prime}(z) \neq 0$ for $\Re(z)>0$.

Solution: Let $p(z)$ be such a polynomial. Suppose that $a_{i} \in \mathbb{C}$ are the zeros of $\mathrm{p}(\mathrm{z})$. Then we have

$$
p(z)=c \prod_{i=1}^{n}\left(z-a_{i}\right), \quad p^{\prime}(z)=c \sum_{i=1}^{n} \prod_{i \neq j}\left(z-a_{j}\right)
$$

Now the quotient is given by

$$
\frac{p^{\prime}(z)}{p(z)}=\sum_{i=1}^{n} \frac{1}{z-a_{i}}
$$

If $p^{\prime}(z)=0$, then the sum above must be equal to zero. Now if $\Re\left(a_{i}\right) \leq 0$ this implies that $\Re\left(z_{0}-a_{i}\right)>0$, by the assumption of the hypothesis. So there is a w such that $w=z_{0}-a_{i}=x+\imath y$, where $x>0$. Now we have

$$
\frac{1}{z_{0}-a_{i}}=\frac{1}{w}=\frac{1}{x+\imath y}=\frac{x-\imath y}{x^{2}+y^{2}} \quad \Rightarrow \quad \Re\left(\frac{1}{z_{0}-a_{i}}\right)>0
$$

Since each term in the sum $\frac{1}{z-a_{i}}$ has a positive real part we have $p^{\prime}(z) \neq 0$ for $\Re(z)>0 \square$.
Problem: Describe those polynomials $a+b x+c y+d x^{2}+e x y+f y^{2}$ with real coefficients that are the real parts of analytic functions on \mathbb{C}.

Solution: let $u(x, y)=a+b x+c y+d x^{2}+e x y+f y^{2} . u(x, y)$ being the real part of a holomorphic function implies that $u(x, y)$ is harmonic. So $\Delta u(x, y)=0$ and

$$
\partial_{x x} u=2 d, \partial_{y y} u=2 f \quad \Rightarrow \quad d+f=0 \square
$$

Problem: Prove or disprove that there exists an analytic function $f(z)$ in the unit disc $D(0,1)$ such that

$$
f\left(\frac{1}{n}\right)=f\left(-\frac{1}{n}\right)=\frac{1}{n^{3}}, \quad \forall n \in \mathbb{N}
$$

Solution: Suppose there exists such a function with the above property. Since $f(z)$ is analytic, it is uniquely determined by a cauchy sequence. Now $\{1 / n\}$ is clearly cauchy, hence

$$
f\left(\frac{1}{n}\right)=\frac{1}{n^{3}} \quad \Rightarrow \quad f(z)=z^{3}
$$

but clearly $f(z)$ is an odd function and hence $f\left(-\frac{1}{n}\right) \neq \frac{1}{n^{3}}$. Therefore there is no such function that satisfies the hypothesis

Problem: Let $p(z)$ be a polynomial such that all the roots of $p(z)$ lie in $D(0,1)$. Prove that the roots of $p^{\prime}(z)$ lie in $D(0,1)$.

Proof: We will prove something stronger, that all the roots of $p^{\prime}(z)$ lie inside the convex hull of the roots of $p(z)$. Suppose all the roots of $p(z)$ lie in $D(0,1)$, Let $\left\{a_{i}\right\}$ be the set of roots of $p(z)$ including multiplicities, then we have

$$
p(z)=c \prod_{i=1}^{n}\left(z-a_{i}\right), \quad\left|a_{i}\right| \in D(0,1), c \in \mathbb{C}
$$

Taking the logarithmic derivative we have

$$
\frac{p^{\prime}(z)}{p(z)}=\sum_{i=1}^{n} \frac{1}{z-a_{i}}
$$

In particular, if z is a zero of $p^{\prime}(z)$ and still $p(z) \neq 0$, then

$$
\sum_{i=1}^{n} \frac{1}{z-a_{i}}=0
$$

which implies

$$
\sum_{i=1}^{n} \frac{\bar{z}-\overline{a_{i}}}{\left|z-a_{i}\right|^{2}}=0
$$

This may also be written as

$$
\left(\sum_{i=1}^{n} \frac{1}{\left|z-a_{i}\right|^{2}}\right) \bar{z}=\sum_{i=1}^{n} \frac{1}{\left|z-a_{i}\right|^{2}} \overline{a_{i}} .
$$

Taking their conjugates, we see that z is a weighted sum with positive coefficients that sum to one. If $p(z)=p^{\prime}(z)=0$, then $z=1 z+0 a_{i}$, and is still a convex combination of the roots of $p(z)$. Since the unit disk is a convex hull of the roots of $\mathrm{p}(\mathrm{z})$, then all roots of $\mathrm{p}^{\prime}(\mathrm{z})$ are inside the unit disk.

Problem: Prove or disprove that there is a sequence of analytic polynomials $\left\{p_{n}(z)\right\}, n \in \mathbb{N}$, so that $p_{n}(z) \rightarrow \bar{z}^{4}$ as $n \rightarrow \infty$ uniformly for $z \in \partial D(0,1)$.

Solution: The statement is not true. Suppose that there exists such a sequence of analytic polynomials such that $p_{n}(z) \rightarrow \bar{z}^{4}$. Then for all n we have $\frac{d}{d \bar{z}} p_{n}(z)=0$ since $p_{n}(z)$ is analytic. However $\frac{d}{d \bar{z}} \bar{z}^{4}=$ $4 \bar{z}^{3} \neq 0$ for all $z \in \mathbb{C}$. Clearly $0 \nrightarrow 4 \bar{z}^{3}$ for all $z \in \mathbb{C}$

Problem: The Bernoulli polynomials $\phi_{n}(z)$ are defined by the expansion

$$
\frac{e^{t z}-1}{e^{t}-1}=\sum_{n=1}^{\infty} \frac{\phi_{n}(z)}{n!} t^{n-1}
$$

Prove the following two statements:
a) $\phi_{n}(z+1)-\phi_{n}(z)=n z^{n-1}$

Proof: Let $B(z)=\frac{e^{t z}-1}{e^{t}-1}$, then $B(z+1)-B(z)=e^{t z}$. Now by definition of $B(z)$ we have the following expansion

$$
\sum_{n=1}^{\infty} \frac{\phi_{n}(z+1)}{n!} t^{n-1}-\sum_{n=1}^{\infty} \frac{\phi_{n}(z)}{n!} t^{n-1}=\sum_{n=0}^{\infty} \frac{(t z)^{n}}{n!}
$$

reindexing we have

$$
\sum_{n=0}^{\infty} \frac{\phi_{n}(z+1)}{n!} t^{n-1}-\sum_{n=0}^{\infty} \frac{\phi_{n}(z)}{n!} t^{n-1}=\sum_{n=0}^{\infty} \frac{(t z)^{n-1}}{(n-1)!}
$$

Hence we have $\phi_{n}(z+1)-\phi_{n}(z)=(n+1) z^{n-1}$
b) $\frac{\phi_{n+1}(n+1)}{n+1}=\sum_{k=1}^{n} k^{k}$

Proof: By the previous part we have

$$
\begin{aligned}
\phi_{n+1}(n+1)-\phi_{n+1}(n) & =(n+1) n^{n} \\
\phi_{n+1}(n)-\phi_{n+1}(n-1) & =(n+1)(n-1)^{n} \\
& \vdots \\
\phi_{n+1}(2)-\phi_{n+1}(1) & =(n+1) 1^{n}
\end{aligned}
$$

Rearraging and using the recursive relation above we have

$$
\begin{aligned}
\phi_{n+1}(n+1) & =(n+1) n^{n}+\phi_{n+1}(n) \\
& =(n+1) n^{n}+(n+1)(n-1)^{n}+\phi_{n+1}(n-1) \\
& \vdots \\
& =(n+1) \sum_{k=0} \sum_{k=1}^{n} k^{k} \\
\Rightarrow \quad \frac{\phi_{n+1}(n+1)}{n+1} & =\sum_{k=1}^{n} k^{k}
\end{aligned}
$$

Complex Integration

Computer the area of the image of the unit disk $D=\{z:|z|<1\}$ under the map $f(z)=z+\frac{z}{2}$.
Solution: Denote $\Omega=f(D)$, and let $d \sigma$ denote the surface measure, then an integral for the surface area is given by ;

$$
\int_{\Omega} d \sigma=\iint_{D} J(u, v) d A
$$

Now let $f(z)=f(x, y)=u(x, y)+\imath v(x, y)$, then we have

$$
f(x, y)=x+\imath y+\frac{(x+\imath y)^{2}}{2}=x+\frac{x^{2}-y^{2}}{2}+\imath(y+x y)
$$

Computing $J(u, v)$, we have

$$
J(u, v)=\left|\begin{array}{cc}
1+x & -y \\
y & 1+x
\end{array}\right|=(1+x)^{2}+y^{2}
$$

Converting to polar coordinates we come to the integral

$$
\left.\int_{\Omega} d \sigma=\int_{0}^{2 \pi} \int_{0}^{1} 1+2 r \cos (\theta)+r^{2}\right) r d r d \theta=\frac{3 \pi}{2} \square
$$

Problem: Evaluate the integral:

$$
\int_{0}^{\infty} \frac{\sin ^{2}(x)}{x^{2}} d x
$$

Solution: Consider the following contour Γ :

$$
\Gamma= \begin{cases}\gamma_{1}:=t & t \in[-R,-1 / R] \\ \gamma_{2}:=e^{\imath t} / R & t \in[\pi, 2 \pi] \\ \gamma_{3}:=t & t \in[1 / R, R] \\ \gamma_{4}:=R e^{\imath t} & t \in[0, \pi]\end{cases}
$$

Now our function has a removable singularity at $x=0$, so consider the following

$$
f(x)=\frac{1-e^{2 x x}}{2 x^{2}} \Rightarrow \Re(f(x))=\frac{1-\cos (2 x)}{2 x^{2}}=\frac{\left.\sin ^{(} x\right)}{x^{2}}
$$

Now for the integral around Γ we have

$$
\int_{\Gamma} f(z) d z=2 \pi \imath \operatorname{Res}(f(z))=2 \pi \imath \lim _{z \rightarrow 0} \frac{d}{d z} z^{2} f(z)=2 \pi \imath \lim _{z \rightarrow 0}-\imath e^{2 \imath z}=2 \pi \imath(-\imath)=2 \pi
$$

Now for the integral on γ_{1} we have

$$
\int_{\gamma_{1}} f(z) d z=\frac{1}{2} \int_{-R}^{-1 / R} \frac{1-e^{2 \imath t}}{t^{2}} d t \Rightarrow \frac{1}{2} \int_{-\infty}^{0} \frac{1-e^{2 \imath t}}{t^{2}} d t \text { as } R \rightarrow \infty
$$

For the integral on γ_{2} we have

$$
\begin{aligned}
\int_{\gamma_{2}} f(z) d z & =\frac{1}{2} \int_{\pi}^{2 \pi} \frac{\left(1-e^{2 e e^{2 t} / R}\right) e^{\imath t} / R}{e^{2 \imath t} / R^{2}} \\
& =\frac{\imath}{2} \int_{\pi}^{2 \pi} \frac{1-e^{2 \imath e^{2 t} / R}}{e^{2 \imath t} / R}
\end{aligned}
$$

Now letting $R \rightarrow \infty$ and using L'Hospitals rule we have

$$
\left.\frac{\imath}{2} \int_{\pi}^{2 \pi} \frac{-e^{2 \imath e^{\imath t}} / R}{\imath e^{\imath t} / R}=\int_{\pi}^{2 \pi} / R\right)(\imath) ~ d t=\pi
$$

For the integral on γ_{3} we have

$$
\int_{\gamma_{3}} f(z) d z=\frac{1}{2} \int_{1 / R}^{R} \frac{1-e^{2 \imath t}}{t^{2}} d t \Rightarrow \frac{1}{2} \int_{0}^{\infty} \frac{1-e^{2 \imath t}}{t^{2}} d t \text { as } R \rightarrow \infty
$$

Now for γ_{4} we have

$$
\begin{aligned}
\int_{\gamma_{4}} f(z) d z & =\frac{1}{2} \int_{0}^{\pi} \frac{1-R e^{2 \imath t}}{R^{2} e^{2 \imath t}} R \imath e^{\imath t} d t \\
& =\frac{\imath}{2} \int_{0}^{\pi} \frac{1-R e^{2 \imath t}}{R e^{\imath t}}
\end{aligned}
$$

Putting this all together we have

$$
2 \pi=\pi+\frac{1}{2} \int_{-\infty}^{0} \frac{1-e^{2 \imath t}}{t^{2}} d t+\frac{1}{2} \int_{0}^{\infty} \frac{1-e^{2 \imath t}}{t^{2}} d t
$$

Taking real parts we have

$$
\pi=\int_{-\infty}^{0} \frac{\sin ^{2}(t)}{t^{2}} d t+\int_{0}^{\infty} \frac{\sin ^{2}(t)}{t^{2}} d t=2 \int_{0}^{\infty} \frac{\sin ^{2}(t)}{t^{2}} d t
$$

Hence we have $\int_{0}^{\infty} \frac{\sin ^{2}(t)}{t^{2}} d t=\frac{\pi}{2} \square$

Taylor and Laurent series

Problem: Find the largest disc centered at 1 in which the Taylor series for

$$
\frac{1}{1+z^{2}}=\sum_{k=1}^{\infty} a_{k}(z-1)^{k}
$$

will converge.
Solution: The singularities of $\frac{1}{1+z^{2}}$ occur at $\pm \imath$. First consider the taylor series centered at 0 ;

$$
\frac{1}{1+z^{2}}=\sum_{k=1}^{\infty}(-1)^{k} z^{2 k}
$$

instead of recomputing the coeffients a_{k} and taking the limsup, notice the raduis of converge for the series at 0 is 1 . Since the series must avoid the sigularities the radius will be the distance from the center to the closest singularity, i.e. $r=\inf \{|1-\imath|,|1+\imath|\}=\sqrt{2} \square$

Problem: Find the raduis of convergence for the series:

$$
\sum_{n=1}^{\infty} \frac{z^{2 n}}{n!} \quad \text { and } \quad \sum_{n=1}^{\infty} \frac{z^{n!}}{2 n}
$$

Solution: For the first one we have

$$
\limsup _{n \rightarrow}\left|\frac{z^{2 n}}{n!}\right|^{1 / n}<1 \Rightarrow|z|^{2}<\lim _{n \rightarrow \infty} \sup n!^{1 / n}
$$

Now $\lim _{n \rightarrow \infty} n!^{1 / n}=\infty$, hence $|z|<\infty$.
For the second series we have

$$
\limsup _{n \rightarrow}\left|\frac{z^{n!}}{2 n}\right|^{1 / n}<1 \Rightarrow|z|<\left(\lim _{n \rightarrow \infty} \sup (2 n)^{1 / n}\right)^{1 /(n-1)!}=1
$$

Hence the series converges for $|z|<1 \square$
Problem: Let f be a non-constant entire function. Prove that if $\lim _{|z| \rightarrow \infty}|f(z)|=\infty$, then $|f|$ must be a polynomial.

Solution: Consider $g(z)=f\left(\frac{1}{z}\right)$, then $\lim _{z \rightarrow 0} g(z)=\infty$. Now suppose that $g(z)$ has a pole of order k and consider the Laurent expansion:

$$
g(z)=\frac{a_{-k}}{z^{k}}+\frac{a_{-k+1}}{z^{k-1}}+\cdots+a_{0}+a_{1} z+\cdots \quad \Rightarrow \quad z^{k} g(z)=z^{k} \sum_{n=-k}^{\infty} a_{n} z^{n}
$$

Now $\left|z^{k} g(z)\right| \rightarrow c=f(0)$ as $|z| \rightarrow \infty$. This implies by continuity that $\left|z^{k} g(z)\right| \leq(|c|+1) z^{k}$ for large z.
Hence $z^{k} g(z)$ is a polynomial of at most degree k. Now we have:

$$
\begin{aligned}
g(z) z^{k}=\sum_{n=0}^{k} a_{n} z^{n} & \Rightarrow f\left(\frac{1}{z}\right)=g(z)=\sum_{n=0}^{k} \frac{a_{n}}{z^{k-n}} \\
& \Rightarrow f(z)=\sum_{n=0}^{k} a_{n} z^{k-n}
\end{aligned}
$$

Problem: Show that for $R>0$, there is N_{R} such that when $n>N_{R}$, the function

$$
P_{n}(z)=1+z+\frac{z^{2}}{2}+\cdots+\frac{z^{n}}{n!} \neq 0, \quad \forall|z| \leq R
$$

Solution: First notice that $P_{n}(z)=\sum_{k=0}^{n} \frac{z^{k}}{k!}$ and that $P_{n}(z) \rightarrow e^{z}$ uniformly as $n \rightarrow \infty$ on compact sets of \mathbb{C}. Fix $R>0$

$$
\forall \epsilon>0 \exists N_{R} \text { s.t. }\left|\sum_{k=0}^{n} \frac{z^{k}}{k!}-\sum_{k=0}^{m} \frac{z^{k}}{k!}\right|=\left|\sum_{k=m}^{n} \frac{z^{k}}{k!}\right| \leq \epsilon, \quad \forall n>m>N_{R}
$$

This implies that

$$
\left|e^{z}-\sum_{k=0}^{n} \frac{z^{k}}{k!}\right|<\epsilon, \quad \forall n>N_{R}
$$

which implies that

$$
\begin{gathered}
1 \leq\left|e^{z}\right|<\epsilon+\left|\sum_{k=0}^{n} \frac{z^{k}}{k!}\right|, \quad \forall n>N_{R}, \forall z \in \overline{D(0, R)} \\
\quad \therefore \forall R>0 \exists N_{R} \text { s.t. } \sum_{k=0}^{n} \frac{z^{k}}{k!} \neq 0, \quad \forall n>N_{R} \square
\end{gathered}
$$

Problem: Let $f(z)$ be analytic on $\mathbb{C}-\{1\}$ and have a simple pole at $z=1$ with residue λ. Prove that for every $R>0$,

$$
\lim _{n \rightarrow \infty} R^{n}\left|(-1)^{n} \frac{f^{(n)}(2)}{n!}-\lambda\right|=0
$$

Proof: Since $f(z)$ has simple pole at one we have the Laurent expansion.

$$
f(z)=\frac{\lambda}{z-1}+\sum_{n=0}^{\infty} a_{n}(z-1)^{n}
$$

Define $g(z)=f(z)-\frac{\lambda}{z-1}$, then $g(z)$ is an entire function. Now for $|z-2|<1 \mathrm{f}(\mathrm{z})$ has the taylor expansion

$$
f(z)=\sum_{n=0}^{\infty} \frac{f^{(n)}(2)}{n!}(z-2)^{2}
$$

Also we have the geometric series for $\frac{\lambda}{z-1}$

$$
\frac{\lambda}{z-1}=\frac{\lambda}{1+(z-2))}=\lambda \sum_{n=0}^{\infty}(-1)^{n}(z-2)^{n}
$$

This implies that the series for $g(z)$ about 2 is

$$
g(z)=\sum_{n=0}^{\infty} \frac{f^{(n)}(2)}{n!}(z-2)^{n}-\lambda \sum_{n=0}^{\infty}(-1)^{n}(z-2)^{n}=\sum_{n=0}^{\infty}(z-2)^{n}\left(\frac{f^{(n)}(2)}{n!}-\lambda(-1)^{n}\right)
$$

Now for $|z-2|<1$ we have that $(z-2)^{n}\left|\frac{f^{(n)}(2)}{n!}-\lambda(-1)^{n}\right| \rightarrow 0$. But since $g(z)$ is entire we this holds for any $z \in \mathbb{C}$ Hence for any $R>0$ we have

$$
R^{n}\left|\frac{f^{(n)}(2)}{n!}-\lambda(-1)^{n}\right| \rightarrow 0 \text { as } n \rightarrow \infty
$$

So the result is shown.
Problem: Find the radius of convergence R_{1} of the series

$$
\sum_{n=1}^{\infty} \frac{z^{n}}{n^{2}}
$$

and show the series converges uniformly on $\bar{D}\left(0, R_{1}\right)$. What is the radius of convergence R_{2} of the derivative of this series? Does it converge uniformly on $\bar{D}\left(0, R_{2}\right)$?

Solution: Denote the above series by $f(z)$. By taking limsup we find that the raduis of convergence is 1. Let $z \in \bar{D}(0,1)$, then we have

$$
\left|\sum_{n=1}^{\infty} \frac{z^{n}}{n^{2}}\right| \leq \sum_{n=1}^{\infty} \frac{1}{n^{2}}<\infty
$$

hence the series converges uniformly on $\bar{D}(0,1)$. Now the derivative $f^{\prime}(z)$ of the series will converge on the unit disc by Abel's theorem. But will not converge uniformly on $\bar{D}(0,1)$, since if $z=1$, the series diverges \square.

Problem: Let $f(z)$ be analytic in the punctured unit disk $U_{0}=\{z: 0<|z|<1\}$ such that thre is a positive interger n with $\left|f^{n}(z)\right| \leq|z|^{-n}$ for all $z \in U_{0}$. Show that $z=0$ is a removable singularity for $f(z)$

Solution: Let $g(z)=z^{n} f^{(n)}(z)$, then $g(z) \leq 1$ for all $z \in D(0,1)$. This implies that $z=0$ is a removable singularity of $g(z)$. Now consider the Laurent series expansion for $g(z)$ inside $D(0,1)$.

$$
g(z)=\sum_{n=0}^{\infty} a_{n} z^{n} \quad \Rightarrow \quad f^{(n)}(z)=\sum_{n=0}^{\infty} a_{n} z^{k-n}
$$

Now $f(z)$ has the laurent expansion

$$
f(z)=\sum_{n=-k}^{\infty} b_{n} z^{k} \Rightarrow f^{(n)}(z)=\sum_{n=0}^{\infty} b_{n} \frac{(-1)^{n}(n+k-1)!}{(k-1!)} z^{n-k}
$$

but since the Laurent expansion is unique, we must have $b_{k}=0$ for all $k<0$. Which implies that $f(z)$ has a Taylor expansion about $z=0$. Therefore $f(z)$ has a removeable singularity at $z=0$.

Problem: Let $f(z)$ be analytic in the disk $U=\{|z|<1\}$, with $f(0)=f^{\prime}(0)=0$. Show that $g(z)=\sum_{n=1}^{\infty} f\left(\frac{z}{n}\right)$ defines an analytic function on U. Moreover, show that the above function $g(z)$ satisfies

$$
g(z)=f(z) \sum_{n=1}^{\infty} \frac{1}{n^{2}}
$$

if and only if $f(z)=c z^{2}$.
Solution: Consider the Taylor expansion for $f(z)$ with the conditions $f(0)=f^{\prime}(0)=0$, this implies that

$$
f(z)=z^{2} \sum_{k=0}^{\infty} a_{k} z^{k}=z^{2} h(z)
$$

for some holomorphic function $h(z)$. Plugging in z / n we have

$$
f\left(\frac{z}{n}\right)=\frac{z^{2}}{n^{2}} \sum_{k=0}^{\infty} a_{k}\left(\frac{z^{k}}{n^{k}}\right)=\frac{z^{2}}{n^{2}} h\left(\frac{z}{n}\right)
$$

Since $f(z / n)$ is analytic for all n it suffices to show that the series $\sum_{n=1}^{\infty} f\left(\frac{z}{n}\right)$ converges normally on U. Let K be a compact set of U Since $h(z)$ is analytic on K it is continuous. Hence $h(z)$ attains it's maximum on K, denote this value as M. Now we have

$$
\left|f\left(\frac{z}{n}\right)\right|=\left|\frac{z^{2}}{n^{2}} h\left(\frac{z}{n}\right)\right| \leq \frac{|z|^{2}}{n^{2}} M
$$

Hence if $z \in K$ then the seris $\sum_{n=1}^{\infty} f\left(\frac{z}{n}\right)$ convergies absolutely on K. Hences by the Weierstrass Mtest $\sum_{n=1}^{\infty} f\left(\frac{z}{n}\right)$ converges uniformly on K, which implies the series converges normally since K was an arbitrary closed set in U. Therefore $g(z)$ is analytic in U, since it's the normal limit of analytic function on U.

For the second part, if $f(z)=c z^{2}$, then we have

$$
\sum_{n=0}^{\infty} f\left(\frac{z}{n}\right)=\sum_{n=0}^{\infty} c \frac{z^{2}}{n^{2}}=c z^{2} \sum_{n=0}^{\infty} \frac{1}{n^{2}}=f(z) \sum_{n=0}^{\infty} \frac{1}{n^{2}}
$$

On the other hand, suppose

$$
g(z)=f(z) \sum_{n=0}^{\infty} \frac{1}{n^{2}}
$$

consider the talyor expansion for $f(z)$, plugging this in we have

$$
g(z)=\left(\sum_{k=0}^{\infty} a_{k} z^{k}\right)\left(\sum_{n=0}^{\infty} \frac{1}{n^{2}}\right)=\sum_{k=0}^{\infty} a_{k}\left(\sum_{n=0}^{\infty} \frac{1}{n^{k}}\right) z^{k}
$$

but

$$
g(z)=\sum_{n=0}^{\infty} f\left(\frac{z}{n}\right)=\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} a_{k} \frac{z^{k}}{n^{k}}=\sum_{k=0}^{\infty} a_{k}\left(\sum_{n=0}^{\infty} \frac{1}{n^{2}}\right) z^{k}
$$

Since the power series for an analytic function is unique, this implies that $a_{k}=0$ for all $k \neq 2$. Therefore $f(z)=a_{2} z^{2} \square$

Applications of Cauchy's Interal formula

Problem: Let $U \subset \mathbb{C}$ be a connected open set, and γ be a closed curve in U. Suppose that for any function $f(z)$ holomorphic on U we have

$$
\oint f(z) d z=0
$$

Does it imply that γ is homotopic to a constant curve?
Solution: No γ does not have to a constant curve, consider the function $f(z)=z^{-1}$, on the punctured disk $U=D(2,1)-\{2\}$. Then $f(z)$ is holomorphic on U, now fix $r \in(0,1)$ and let $\gamma=r e^{\imath t}+2$ for $t \in[0,2 \pi]$, then by Cauchy's theorem we have

$$
\int_{\gamma} f(z) d z=0
$$

but $r e^{\imath t}+2$ is clearly not a constant curve.
Problem: Let $f(z)$ be entire holomorphic function on \mathbb{C} such that $|f(z)| \leq|\cos (z)|$. Prove $f(z)=$ $c \cos (z)$ for some constant c.

Solution: Consider $g(z)=\frac{f(z)}{\cos (z)}$, then $|g(z)| \leq 1$, hence $g(z)$ is a bounded function. Define $\widehat{g}(z)$ as follows:

$$
\widehat{g}(z)=\left\{\begin{array}{lr}
g(z) & \text { if } \cos (z) \neq 0 \\
\lim _{z \rightarrow w} g(z) & \text { if } \cos (w)=0
\end{array}\right.
$$

Then $\widehat{g}(z)$ is a bounded entire function. Hence by Lioville's theorem it must, i.e. $\widehat{g}(z)=c$ for some $c \in \mathbb{C}$. It follows from the definition of $g(z)$ that $f(z)=c \cos (z)$

Problem: Prove that there is no entire analytic function such that

$$
\bigcup_{n=0}^{\infty}\left\{z \in \mathbb{C}: f^{(n)}(z)=0\right\}=\mathbb{R}
$$

Solution: First there exists an N such that $S=\left\{z \in \mathbb{C}: f^{(N)}(z)=0\right\}$ is dense in \mathbb{R}, if not then \mathbb{R} is a countable union of nowhere dense sets, which is a contradiction to the Baire Cateogry theorem. Now let $z_{0} \in S$, then for every $\epsilon>0$, the disc $D\left(z_{0}, \epsilon\right)$ contains infintely many points in S. Now let $\zeta \in D\left(z_{0}, \epsilon\right)$ such that $\zeta \notin S$, now by Cauchy estimates we have

$$
\left|f^{(N)}(\zeta)\right| \leq \frac{N!}{2 \pi} \int_{\left|z+z_{0}\right|=\epsilon} \frac{|f(z)|}{|z-\zeta|}^{N+1} d z
$$

Now consider the change of variables $w=z-\epsilon$, then

$$
\frac{N!}{2 \pi} \int_{\left|z+z_{0}\right|=\epsilon} \frac{|f(z)|}{|z-\zeta|}{ }^{N+1} d z=\frac{N!}{2 \pi} \int_{D(w, \epsilon)} \frac{\mid f(w+\epsilon \mid)}{|w|^{N+1}} \rightarrow 0 \text { as } \epsilon \rightarrow 0
$$

This implies that $f^{(N)}(\zeta)=0$, hence $\zeta \in S$ which is a contradiction to $\zeta \notin S$. Therefore there cannot exist such a function

Problem: Find all entire functions $f(z)$ on \mathbb{C} satisfying

$$
|f(z)| \leq|z| e^{x}, \quad z=x+\imath y \in \mathbb{C}
$$

Solution: First notice the following:

$$
|z| e^{x}=\left|z e^{x}\right|=\left|z e^{x} e^{\imath y}\right|=\left|z e^{z}\right|
$$

Let $g(z)=\frac{f(z)}{z e^{z}}$, then $g(z)$ is a bounded function since $\left\lvert\, g(z)=\frac{|f(z)|}{\left|z e^{z}\right|}<1\right.$. Hence the discontinuity at $z=0$ is removable. Define

$$
\widehat{g}(z)= \begin{cases}\frac{f(z)}{z e^{z}} & z \neq 0 \\ \lim _{z \rightarrow 0} \frac{f(z)}{z e^{z}} \quad z=0\end{cases}
$$

Now since $f(z)$ and $z e^{z}$ are entire we have $\widehat{g}(z)$ as a bounded entire function. Hence by louvilles theorem $\widehat{g}(z)=k \in \mathbb{C}$. So we have $f(z) \leq k z e^{z}$, where $|k| \leq 1 \square$.

Problem: Complete the following problems:
a) State the Lioville's theorem

Lioville's theorem states that a bounded entire function is constant.
b) Prove the Lioville's theorem by calculating the following integral

$$
\int_{|z|=R} \frac{f(z)}{(z-a)(z-b)} d z
$$

and taking the limit $R \rightarrow \infty$.
Solution: Suppose that $f(z)$ is a bounded entire function, that is, there exists $M \in \mathbb{R}$ such that $|f(z)|<M$ for all $z \in \mathbb{C}$. Fix $R>0$, now for $a, b \in D(0, R)$ the integral is bounded by;

$$
\left|\int_{|z|=R} \frac{f(z)}{(z-a)(z-b)} d z\right| \leq \frac{2 \pi R M}{(R-|a|)(R-|b|)} \rightarrow 0 \text { as } R \rightarrow \infty
$$

Now by direct computation we have

$$
\begin{aligned}
\int_{|z|=R} \frac{f(z)}{(z-a)(z-b)} d z & =2 \pi \imath(\operatorname{Res} f(a)+\operatorname{Res} f(b)) \\
& =2 \pi \imath \frac{f(b)-f(a)}{b-a}=0
\end{aligned}
$$

This implies that $f(b)=f(a)$ for all $a, b \in \mathbb{C}$, hence $f(z)$ is constant.

Problem: Find the number of zeros of the function $f(z)=2 z^{5}+8 z-1$ in the annulus $1<|z|<2$.
Solution: Let $D=\{z \in \mathbb{C}: 1<|z|<2\}$, then $\partial D=\{z \in \mathbb{C}:|z|=1$ or $|z|=2\}$. Now consider the function $g(z)=2 z^{5}+8 z$. Then $|f(z)-g(z)|=1$ on ∂D. Now

$$
|g(z)|=\left|2 z^{5}+8 z\right|=|z|\left|2 z^{4}+8\right|, \text { on } \partial D \text { and } 1=\min _{z \partial D}|z| \leq|g(z)|
$$

So we have $|f(z)-g(z)|=1<1+|f(z)|$ on ∂D. Also both $f(z)$ and $g(z)$ are holomorphic on \bar{D}. Hence By Rouche's theorem $f(z)$ and $g(z)$ have the same number of zeros in D. Now $g(z)=z\left(2 z^{4}+8\right)$, which implies $z=0$ and $z^{4}=-4$. So the set of zeros that lie in D are

$$
z=4^{1 / 4} e^{2 \imath \pi k / 4}, \quad k=0,1,2,3
$$

So $g(z)$ has 4 roots in $D \therefore f(z)$ has 4 roots in D_{\square}
Problem: Find all roots of the equation $2 z+\sin (z)=0$ in the unit disc.
Solution: Clearly $z=0$ is a root, to show that this is the only root consider $f(z)=2 z, g(z)=\sin (z)$. Let $z \in \partial D(0,1)$, now by convexity of e^{z} we have

$$
|g(z)|=\frac{\left|e^{\imath z}-e^{\imath z}\right|}{2} \leq \frac{e^{|z|}+e^{-|z|}}{2}=\frac{e}{2}+\frac{1}{2 e}<2
$$

This implies that

$$
|g(z)|<2=2|z|=|f(z)| \quad \forall z \in \partial D(0,1)
$$

Hence by Rouche's theorem $f(z)$ and $f(g)+g(z)$ have the same number of roots in $D(0,1)$. $2 z$ has 1 root in $D(0,1)$, therefore $2 z+\sin (z)$ has 1 root in $D(0,1)$, which is $z=0 \square$

Problem: If $f(z)$ is an entire function satisfying the estimate

$$
|f(z)| \leq 1+|z|^{\sqrt{2010}} \quad \forall z \in \mathbb{C}
$$

Show that $f(z)$ is a polynomial and determine the best upperbound for the degree of $f(z)$.
Solution: First observe that $44<\sqrt{2010}<45$. Let $R>0$ and consider the Cauchy estimate for $f^{(n)}(0)$ on $D(0, R)$.

$$
\left|f^{(n)}(0)\right| \leq \frac{n!\left(1+R^{\sqrt{2010}}\right)}{R^{n}}
$$

Now if we consider the Taylor expansion for $f(z)$ about $z=0$, we have

$$
f(z)=\sum_{n=0}^{\infty} a_{n} z^{n} \quad \forall z \in \mathbb{C} \quad \text { where } a_{n}=\frac{f^{(n)}(0)}{n!}
$$

If $n>\sqrt{2010}$, let $\alpha=n-\sqrt{2010}>0$ then we have the estimates let

$$
\left|a_{n}\right|=\frac{\left|f^{(n)}(0)\right|}{n!} \leq \frac{1}{n!} \cdot \frac{n!\left(1+R^{\sqrt{2010}}\right)}{R^{n}}=\frac{1}{R^{n}}+\frac{1}{R^{\alpha}} \rightarrow 0 \text { as } R \rightarrow \infty
$$

Hence we have $a_{n}=0$ for all $n>\sqrt{2010}$, which implies that $a_{n}=0$ for all $n \geq 45$. Therefore $f(z)$ is a polynomial of degree at most 44 .

Problem: Show that $f(z)=\alpha e^{z}-z$ has only one zero in $U=\{|z|<1\}$ if $|\alpha|<1 / 3$ and no zeros if $|\alpha|>3$.

Solution: For $|\alpha|<1 / 3$, let $g(z)=-z$ then we have

$$
|f(z)-g(z)|=\left|\alpha e^{z}\right| \leq|\alpha| e^{x}<\frac{1}{3} e<1=|g(z)| \text { on } \partial U
$$

Thus by Rouche's thoerem $f(z)$ and $g(z)$ have the same number of zeros in U. Therefore $f(z)$ has exactly one zero in U since $g(z)=-z$ has one zero.

For $|\alpha|>3$, let $h(z)=\alpha e^{z}$, then we have

$$
|f(z)-g(z)|=|z|=1 \leq \frac{3}{e}<\frac{|\alpha|}{e} \leq\left|\alpha e^{z}\right|=|h(z)| \text { on } \partial U
$$

Thus by Rouche's thoerem $f(z)$ and $h(z)$ have the same number of zeros in U. Therefore $f(z)$ has no zeros in U, since $h(z)$ no roots.

Problem: Show that there is a holomorphic function defined in the set

$$
\Omega=\{z \in \mathbb{C}:|z|>4\}
$$

Whose derivative is

$$
\frac{z}{(z-1)(z-2)(z-3)} .
$$

Is there a holomophic function on Ω whose derivative is

$$
\frac{z^{2}}{(z-1)(z-2)(z-3)} ?
$$

Solution: Let γ be a closed curve lying outside of Ω. Now if there exists such a function $F(z)$, such that

$$
F^{\prime}(z)=f(z)=\frac{z}{(z-1)(z-2)(z-3)}
$$

then the following condition should be satisfied

$$
\int_{\gamma} F^{\prime}(z)=0
$$

It suffices to show this is true for $\gamma=r e^{\imath t}$, where $r>0$. Now $F^{\prime}(z)$ has 3 simple poles $\{1,2,3\}$ lying inside of γ. Hence we have

$$
\begin{aligned}
\int_{\gamma} f(z) & =2 \pi \imath(\operatorname{Res} f(1) \operatorname{Res} f(2)+\operatorname{Res} f(3)) \\
& =2 \pi \imath\left(\frac{1}{2}-2+\frac{3}{2}\right)=0
\end{aligned}
$$

Hence by Morera's there does exists such a function $F(z)$ such that $F^{\prime}(z)=f(z) \square$
Now consider the function

$$
g(z)=\frac{z^{2}}{(z-1)(z-2)(z-3)}
$$

Using the same ideas above, we have

$$
\begin{aligned}
\int_{\gamma} g(z) & =2 \pi \imath(\operatorname{Res} f(1) \operatorname{Res} f(2)+\operatorname{Res} f(3)) \\
& =2 \pi \imath\left(\frac{1}{2}-4+\frac{9}{2}\right) \neq 0
\end{aligned}
$$

Hence there cannot exist a homomorphic function $G(z)$ such that $G^{\prime}(z)=g(z) \square$
Find the integral

$$
\int_{|z|=2} \frac{4 z^{7}-1}{z^{8}-2 z+1} d z
$$

Solution: Let $f(z)=z^{8}-2 z+1$ and $g(z)=z^{8}$, then we have

$$
|f(z)-g(z)|=|-2 z+1| \leq 2|z|+1=5 \quad \text { on } \quad \partial D(0,2)
$$

Also we have

$$
5<2^{8}=|z|^{8}=|g(z)| \quad \text { on } \quad \partial D(0,2)
$$

Hence by Rouche's theorem $f(z)$ and $g(z)$ have the same number of zeros including multiplicties in $D(0,2)$. Since $g(z)$ has 8 zeros, $f(z)$ has 8 zeros in $D(0,2)$. Now observe

$$
\int_{|z|=2} \frac{4 z^{7}-1}{z^{8}-2 z+1} d z=\frac{1}{2} \int_{|z|=2} \frac{f^{\prime}(z)}{f(z)} d z
$$

and $f(z)$ is entire and non-vanishing on $\partial D(0,2)$, since all of the roots of $f(z)$ lie inside $D(0,2)$. Hence by the argument principle we have

$$
\int_{|z|=2} \frac{4 z^{7}-1}{z^{8}-2 z+1} d z=\frac{1}{2}(8)=4 \square
$$

Normal Families

Problem: Let \mathcal{F} be a family of holomorphic functions on the unit disk D for which there exists $M>0$ such that

$$
\int_{D}|f(z)| d x d y \leq M, \quad \forall f \in \mathcal{F}
$$

Show that \mathcal{F} is a normal family.
Solution: We want to show $f \in \mathcal{F}$ is bounded. Consider the following construction, fix $r \in(0,1)$

$$
\bar{D}(0,1) \subset \bigcup_{z \in D(0,1)} D(z, r)
$$

Since $\bar{D}(0,1)$ is compact there exists a finite number of $\left\{z_{k}\right\}$ such that

$$
D(0,1) \subset \bar{D}(0,1) \subset \bigcup_{k=1}^{n} D\left(z_{k}, r\right)
$$

Let $\epsilon=\inf \left\{r, \mid z_{k}-\partial D(0,1)\right\}$, now for any $f \in \mathcal{F}$ we have

$$
\begin{aligned}
f\left(z_{k}\right) & =\frac{1}{\pi \epsilon^{2}} \int_{D\left(z_{k}, \epsilon\right)} f(z) d A \\
\Rightarrow \quad\left|f\left(z_{k}\right)\right| & \leq \frac{1}{\pi \epsilon^{2}} \int_{D\left(z_{k}, \epsilon\right)}|f(z)| d A \\
& \leq \frac{1}{\pi \epsilon^{2}} \int_{D(0,1)}|f(z)| d A \\
& \leq \frac{M}{\pi \epsilon^{2}}=M_{\epsilon}
\end{aligned}
$$

Since $D\left(z_{k}, \epsilon\right) \subset D(0,1)$. Now this is for all z_{k} and for all $f \in \mathcal{F}$. Let $M_{0}=\max M_{\epsilon}$. where the sup is taken over all possible finite covers of $\bigcup_{z \in D(0,1)} D(z, r)$. Then we have $|f(z)| \leq M_{0}$. Hence \mathcal{F} is a bounded family. Therefore by Montel's theorem

$$
\forall\left\{f_{k}\right\} \subset \mathcal{F} \exists f_{k_{j}} \text { s.t. } f_{k_{j}} \xrightarrow{u} f_{0}
$$

Where f_{0} is holomorphic in $D(0,1)$, i.e. \mathcal{F} is a normal family.
Problem: Consider the family of functions $\left\{f_{\alpha}\right\}_{\alpha \in A}$ that is holomorphic on a domain U. Suppose that for all $z \in U$, and for all $\alpha \in A$ we have $\Re\left(f(z) \neq\left(\Im(z)(f(z))^{2}\right.\right.$. Prove that $\left\{f_{\alpha}\right\}$ is a normal family.

Solution: Consider the following two domains $U_{1}:=\left\{z: x<y^{2}\right\}$ and $U_{2}:=\left\{z: x>y^{2}\right\}$. By the Riemann open mapping theorem, there exists maps ϕ_{1} such that $\phi_{1}: U_{1} \rightarrow D(0,1)$ and ϕ_{2} such that $\phi_{2}: U_{2} \rightarrow D(2,1)$. Now consider the following function:

$$
h(z)_{\alpha}= \begin{cases}\phi_{1} \circ f_{\alpha}, & f_{\alpha} \in U_{1} \\ \phi_{2} \circ f_{\alpha}, & f_{\alpha} \in U_{2}\end{cases}
$$

then h_{α} is holomorphic in U and bounded hence by Montels theorem h_{α} is a normal family \square. Therefore $\left\{f_{\alpha}\right\}$ is a normal family.

Problem: Let $\mathcal{F}=\left\{f_{\alpha}\right\}$ be a family of holomorhiphc functions on $D(0,1)$ and for all $z \in D(0,1)$

$$
\left|f^{\prime}(z)\right|\left(1-|z|^{2}\right)+|f(0)| \leq 1
$$

Prove that \mathcal{F} is a normal family.
Proof: Let $\epsilon>0$ and consider $D(0, r)$ where $r=1-\epsilon$. Now for $z \in \bar{D}(0, r)$ we have

$$
\left|f^{\prime}(z)\right| \leq \frac{1-|f(0)|}{1-|z|^{2}}
$$

Using the triangle inequality and integrating we have

$$
f(z)=\left|\int f^{\prime}(z) d z\right| \leq \int\left|f^{\prime}(z)\right| d z \leq \int \frac{1-|f(0)|}{1-|z|^{2}} d z<\infty
$$

this is valid for all $z \in \bar{D}(0, r)$ and for any $f(z) \in \mathcal{F}$. Hence by Montel's theorem \mathcal{F} is a normal family.

Problem: Let Ω be a bounded domain in \mathbb{C}, and let $\left\{f_{j}\right\}, j \in \mathbb{N}$ be a sequence of analytic functions on Ω such that

$$
\int_{\Omega}\left|f_{j}(z)\right|^{2} d A(z) \leq 1
$$

Prove that $\left\{f_{j}\right\}$ is a normal family in Ω

Proof: By definition a normal family implies that for every compact subset K of Ω, there exists a subsequence $\left\{f_{j_{k}}\right\}$ that converges uniformly some f_{0} in K. Fix a compact set $K \subset \Omega$. Let $r>0$, now we have

$$
K \subset \bigcup_{x \in K} D(x, r)
$$

as an open cover for K. Since K is compact there exists finite set $\left\{x_{i}\right\}$, such that

$$
K \subset \bigcup_{i=1}^{n} D\left(x_{i}, r\right)
$$

Now for each x_{j}, we have the by the mean value theorem for holomorphic functions

$$
\begin{aligned}
\qquad\left|f_{j}\left(x_{i}\right)\right| & \leq \frac{1}{\pi r^{2}} \int_{D\left(x_{i}, r\right)}\left|f_{j}(x, y)\right| d A \\
\text { by Hölders inequality } & \leq \frac{1}{\pi r^{2}} \mu\left(D\left(x_{i}, r\right)\right)\left\|f_{j}(x, y)\right\|_{2} \leq 1
\end{aligned}
$$

Since $\mu\left(D\left(x_{i}, r\right)\right)=\pi r^{2}$ and $\left\|f_{j}(x, y)\right\|_{2}^{2} \leq 1$ by the hypothesis. Now this implies that $f_{j}\left(x_{i}\right)$ is bounded for all j and x_{i}, hence it is uniformly bounded. Therefore by Montel's theorem there exists a subsequence $\left\{f_{j_{k}}\right\}$ such that $f_{j_{k}}$ converges uniformly on K. Thus $\left\{f_{j}\right\}$ is a normal family in Ω_{\square}

Problem: (a) State the Montel Theorem for normal family.
Montel's Theorem: Let \mathcal{F} be a family of holomorphic functions on an open set $U \subset \mathbb{C}$. Suppose that for each compact set $K \subset U$, there is $M=M(K)$ such that $|f(z)| \leq M$ for all $z \in K$ and all $f \in \mathcal{F}$. Then for every $\left\{f_{\alpha}\right\} \subset \mathcal{F}$, there is a subsequence $\left\{f_{\alpha_{k}}\right\}$ that converges uniformly on compact subsets of U to a holomorphic limit, in otherwords, \mathcal{F} is a normal family.
(b) Let \mathcal{F} be a set of holomorphic functions on the unit disk $D(0,1)$ so that

$$
\sup _{0<r<1} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right| d \theta<1
$$

Show that \mathcal{F} is a normal family.
Solution: Let $K \subset U$ be compact. Since K is compact and contained in $D(0,1)$, there is $0<R<1$ such that $K \subset D(0, R) \subset D(0,1)$. Define $\epsilon>0$ as follows:

$$
\epsilon=\frac{1}{2} \operatorname{dist}(\partial K, \partial U) .
$$

If $z \in K$ and $f \in \mathcal{F}$, then

$$
\begin{aligned}
f(z) & =\frac{1}{2 \pi i} \oint_{|w-z|=\epsilon} \frac{f(w)}{w-z} d w \\
& =\frac{1}{2 \pi i} \oint_{|w|=R+\epsilon} \frac{f(w)}{w-z} d w
\end{aligned}
$$

where the second line is by Cauchy's integral theorem. Hence we have

$$
|f(z)| \leq \frac{1}{2 \pi} \oint_{|w|=R+\epsilon} \frac{|f(w)|}{|w-z|} d w
$$

Now if $|w|=R+\epsilon$ and $z \in K$, we have $|w-z| \geq \epsilon$ since $|z| \leq R$. Hence $\frac{1}{|w-z|} \leq \frac{1}{\epsilon}$. Thus,

$$
\begin{aligned}
|f(z)| & \leq \frac{1}{2 \pi \epsilon} \oint_{|w|=R+\epsilon}|f(w) d w| \\
& =\frac{1}{2 \pi \epsilon} \int_{0}^{2 \pi}\left|f\left((R+\epsilon) e^{i \theta}\right)\right|(R+\epsilon) d \theta \\
& =\frac{(R+\epsilon)}{2 \pi \epsilon} \int_{0}^{2 \pi}\left|f\left((R+\epsilon) e^{i \theta}\right)\right| d \theta \leq \frac{(R+\epsilon)}{2 \pi \epsilon} .
\end{aligned}
$$

Therefore $|f(z)|$ is uniformly bounded on K. The same bound holds for all $f \in \mathcal{F}$. Since this is for any $K \subset \subset U$, by Montel's theorem \mathcal{F} is a normal family.

Harmonic Functions

Problem: Let U be a bounded, connected, open subset of \mathbb{C}, and let f be a nonconstant continuous function on \bar{U} which is holomorphic on U. Assume that $|f(z)|=1$ for z on the boundary of U.
(a) Show that 0 is in the range of f.

Solution: By the max mod principle, the maximum of the function takes its max on the boundary, hence we know that $f(U) \subset D$. If $0 \notin f(U)$ then let $g(z)=\frac{1}{f(z)}$, then we have $|g(z)|=\frac{1}{|f(z)|}=1$ which implies that $f(z)=1$ for all $z \in \bar{U}$, which is a contradiction to the open mapping theorem. Hence 0 is in the range of f.
(b) Show that f maps U onto the unit disk.

Solution: Let $\alpha \in D$, set $B_{\alpha}=\frac{z-\alpha}{1-\bar{a} z}$. Consider $h(z)=B_{\alpha} \circ f(z)$, then $|h(z)|=1$ on ∂U which implies that $0 \in h(U)$, by part (a), which implies that $a \in f(U)$. Hence the image of f is the unit disk.

Problem: Let $U: \mathbb{C} \rightarrow \mathbb{R}$ be harmonic. Prove or disprove each of the following.
(a) If $u \leq 0$ for all $z \in \mathbb{C}$, then u is constant on \mathbb{C}.

Proof: Suppose $u \geq 0$ in \mathbb{C}, then $u \geq 0$ on $D(0, R)$ for any $R>0$, so by Harnacks inequality we have

$$
\frac{R-|z|}{R+|z|} u(0) \leq u(z) \leq \frac{R+|z|}{R-|z|} u(0), \quad \forall z \in D(0, R)
$$

taking $R \rightarrow \infty$, we have $u(0) \leq u(z) \leq u(0)$. Therefore $u(z)=u(0)$ hence u is constant.
(b) If $u=0$ for all $|z|=1$, then $u(z)=0$ for all $z \in \mathbb{C}$.

Proof: Suppose $u=0$ for all $z \in \partial D(0,1)$, now consider $D(0,1)$, then by the maximum/minimum modulus principle we have

$$
\max _{z \in \bar{D}(0,1)} u(z) \quad=\max _{z \in D(0,1)} u(z) \quad=\min _{z \in \bar{D}(0,1)} u(z)=0 \quad \Rightarrow \quad u \equiv 0 \quad \forall z \in \bar{D}(0,1)
$$

Now we have

$$
0=u(z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(p+r e^{2 \theta}\right) d \theta
$$

This implies that $u=0$ on $D(z, r)$, for all $z \in \bar{D}(0,1)$ and for all $r>0 . \therefore u(z)=0$ on $\mathbb{C} \square$
(c) If $u=0$ for all $z \in \mathbb{R}$, then $u(z)=0$ for all $z \in \mathbb{C}$.

Solution: The statement is not true, consider $u(z)=u(x+\imath y)=y$, then $\Delta u \equiv 0$ and $u(z)=0$ for all $z \in \mathbb{R}$ but $u \neq 0_{\square}$

Problem: Let u be a harmonic function on \mathbb{R}^{2} that does not take zero value (i.e. $u(x) \neq 0, \forall x \in \mathbb{R}^{2}$). Show that u is constant.

Proof: $u(x, y) \neq 0$ implies that $u(x, y)$ is either strictly positive or strictly negative. It suffices to consider $u(x, y)$ as strictly positive, (otherwise consider $-u(x, y))$. Then there exist $f(z)$ holomorphic on \mathbb{C}, such that $f(z)=f(x, y)=u(x, y)+v v(x, y)$, where $u(x, y)$ is the given harmonic function and
$v(x, y)$ is the harmonic conjugate of $u(x, y)$. Now consider the following: $e^{-f(z)}$

$$
\left|e^{-f(z)}\right| \leq\left|e^{-u(x, y)}\right|<1
$$

So $e^{-f(z)}$ is a bounded entire function. Hence by Liouville's theorem $e^{-f(z)}$ must be constant, which implies that $f(z)$ is constant and thus that $\Re(f(z))=u(x, y)$ is constant

Problem: Let u be a positive harmonic function on the right half plane $\{\Re(z)>0\}$, and $\lim _{r \rightarrow 0^{+}} u(r)=0$.
Prove that then $\lim _{r \rightarrow 0^{+}} u\left(r e^{\imath \theta}\right)=0$ for all $\theta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.
Solution: Since u is harmonic on $R=\{z: \Re(z)>0\}$, there exists a function v which is conjugate to u, i.e, the function $f(z)=u+v$ is holomophic on R. Now $f(z)$ is continuous on this set R and $\lim _{r \rightarrow+} f(r)=0$. Now let $\theta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and let $\rho(z)=e^{r \imath \phi}$. Now consider $g(z)=f \circ \rho \circ \rho^{-1}$, then we have

$$
\lim _{r \rightarrow 0^{+}} g(z)=0 \quad \rightarrow \quad \lim _{r \rightarrow 0^{+}}(f \circ \rho) z=\lim _{r \rightarrow 0^{+}} \rho(z)=0
$$

Hence we have $\lim _{r \rightarrow 0^{+}} u \circ \rho(z)=\lim _{r \rightarrow 0^{+}} u\left(r e^{2 \theta}\right)=0 \square$
Problem: (a) Suppose a continuous function $u: \mathbb{C} \rightarrow \mathbb{R}$ has the following property:

$$
u(x+\imath y)=\frac{1}{4}(u(x+a+\imath y)+u(x-a+\imath y)+u(x+\imath(y+a))+u(x+\imath(y-a)))
$$

for all $a \in \mathbb{R}$. Does it imply that u is harmonic?
Solution: Yes, $u(z)$ is harmonic and $u(z)$ is in the following the set $A=\{u: \mathbb{C} \rightarrow \mathbb{R}: u$ is continuous $\}$, check conditions. A is the space of the following polynomials $a\left(x y^{3}-y x^{3}\right)+b\left(x^{3}-3 x y^{2}\right)+c\left(y^{3}-\right.$ $\left.3 x^{2} y\right)+d\left(x^{2}-y^{2}\right)+e x+f y+g$, where the letters are complex numbers.
(b) Suppose a continuous function $u: \mathbb{C} \rightarrow \mathbb{R}$ has the following property:

$$
u(x+\imath y)=\frac{1}{4}(u(x+a+\imath y)+u(x-a+\imath y)+u(x+\imath(y+a))+u(x+\imath(y-a)))
$$

for all $a \in \mathbb{C}$. Does it imply that u is harmonic?
Solution: write $z=x+\imath y$ and write a in it's polar form, then for any $a \in \mathbb{C}$ we have the following:

$$
u(z)=\frac{1}{4}\left(u\left(z+a e^{i \theta}\right)+u\left(z+a e^{i(\theta+\pi)}+u\left(z+r e^{i(\theta+\pi / 2)}\right)+u\left(z+r e^{i(\theta+3 \pi / 2)}\right)\right.\right.
$$

by integrating both sides with respect to θ from $0 t o 2 \pi$ we have

$$
2 \pi u(z)=\int_{0}^{2 \pi} u\left(z+a e^{\imath \theta}\right) d \theta
$$

so $u(z)$ has the mean value property, hence $u(z)$ is harmonic
Problem: Let u and v be real-valued harmonic functions on the whole complex plane such that

$$
u(z) \leq v(z), \quad z \in \mathbb{C}
$$

Find the relation between u and v.
Solution: Let $h(z)=v(z)-u(z)$, then $\Delta h(z)=\Delta v(z)-\Delta u(z) \equiv 0$ on \mathbb{C}. Let $R>0$. Then by the Harnack inequality, if $|z|<R$, as $h(z)$ is real-valued harmonic on $\bar{D}(0, R) \subset \mathbb{C}, 0 \leq h(z)$ on \mathbb{C},

$$
h(0) \cdot \frac{R-|z|}{R+|z|} \leq h(z) \leq h(0) \cdot \frac{R+|z|}{R-|z|}
$$

Now fix $z \in \mathbb{C}$. Then for all $R>|z|$, the above holds, and so

$$
\lim _{R \rightarrow \infty} h(0) \cdot \frac{R-|z|}{R+|z|} \leq h(z) \leq \lim _{R \rightarrow \infty} h(0) \cdot \frac{R+|z|}{R-|z|} .
$$

Hence we have $h(0) \leq h(z) \leq h(0)$, which implies that $h(z)=h(0), \forall z \in \mathbb{C}$. Thus

$$
\begin{aligned}
v(z)-u(z)=v(0)-u(0) & \Rightarrow \quad v(z)=u(z)+v(0)-u(0) \\
& \therefore v(z)=u(z)+\alpha \text { for some } \alpha \in \mathbb{C}_{\square}
\end{aligned}
$$

Remark: Harnack's inequality: Let u be a nonnegative, harmonic function on a neighborhood of $\bar{D}(0, R)$. Then, for any $z \in D(0, R)$

$$
u(0) \cdot \frac{R-|z|}{R+|z|} \leq u(z) \leq u(0) \cdot \frac{R+|z|}{R-|z|}
$$

Problem: Prove or disprove each of the statements:
(a) If f is a function on the unit disk D such that $f^{2}(z)$ is analytic on D, then f itself is analytic.

Solution: This statement is false. Let $f(z)=\sqrt{z}$, then $f^{2}(z)=z$ which is holomorphic on $D(0,1)$, but $f(z)$ is not holomorphic at $z=0$.
(b) If $f(z)$ is a continuously differentiable function on D, and if $f^{2}(z)$ is analytic on D, then $f(z)$ itself is analytic.

Proof: Let $f(z)=f(x, y)=u(x, y)+\imath v(x, y)$ where u, v are harmonic. Then $f^{2}(z)=u^{2}(z)-v^{2}(z)+$ $2 \imath u(z) v(z)$. Define $\mathrm{g}(\mathrm{z})$ and $\mathrm{h}(\mathrm{z})$ as follows:

$$
\begin{array}{r}
g(z):=\Re\left(f^{2}(z)\right)=u^{2}(z)-v^{2}(z) \\
h(z):=\Im\left(f^{2}(z)\right)=2 u(z) v(z)
\end{array}
$$

Now since $f^{2}(z)$ is holomorphic we know that $f^{2}(z)$ satisfies the Cauchy-Riemann equations, i.e.,

$$
\frac{\partial g}{\partial x}=\frac{\partial h}{\partial y} \quad \frac{\partial g}{\partial y}=-\frac{\partial h}{\partial x}
$$

Computing the above we have

$$
\frac{\partial g}{\partial x}=2 u \frac{\partial u}{\partial x}-2 v \frac{\partial v}{\partial x}=\frac{\partial h}{\partial y}=2 u \frac{\partial v}{\partial y}+2 v \frac{\partial u}{\partial y}
$$

this implies that

$$
\begin{equation*}
u\left(\frac{\partial u}{\partial x}-\frac{\partial v}{\partial y}\right)=v\left(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}\right) \tag{1}
\end{equation*}
$$

Computing the other equality we have

$$
\frac{\partial g}{\partial y}=2 u \frac{\partial u}{\partial y}-2 v \frac{\partial v}{\partial y}=-\frac{\partial h}{\partial x}=-2 u \frac{\partial v}{\partial x}-2 v \frac{\partial u}{\partial x}
$$

which implies that

$$
\begin{equation*}
u\left(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}\right)=v\left(\frac{\partial v}{\partial y}-\frac{\partial u}{\partial x}\right) \tag{2}
\end{equation*}
$$

Solving the above system of equations in (1) and (2) implies that for all $z \in D(0,1)$ either,

$$
u^{2}+v^{2}=0 \quad \text { or } \quad \frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}, \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
$$

The former case implies that $u=v=0$, which implies $f(z)=0$ and thus $f(z)$ is analytic in $D(0,1)$. The latter case implies $f(z)$ satisfies the Cauchy-Riemann equations, and thus $f(z)$ is analytic in $D(0,1)$. Either way $f(z)$ is analytic in $D(0,1)$.

Suppose a function $f: \bar{D}(0,1) \rightarrow \mathbb{C}$ is continuous and holomorphic in D. Suppose also that for any $z \in \partial D$ we have $\Re f(z)=(\Im f(z))^{2}$. Prove that $f(z)$ is constant.

Proof: Let $f(z)=f(x, y)=u(x, y)+v v(x, y)$, where u and v are harmonic functions. From the hypothesis we know that $u=v^{2}$. Computing the partials we have

$$
u_{x x}=2 v v_{x x}+2 v_{x}^{2} \quad u_{y y}=2 v v_{y y}+2 v_{y}^{2}=
$$

adding and factoring we have

$$
0=u_{x x}+u_{y y}=2 v\left(v_{x x}+v_{y y}\right)+2\left(v_{x}^{2} v_{y}^{2}\right)=2\left(v_{x}^{2} v_{y}^{2}\right)
$$

this implies that $v_{x}=v_{y}=0$ for all $z \in \partial D$, hence v and u are constant on ∂D. Then by uniquness of the taylor expansion for $f(z)=u(x, y)+\imath v(x, y), f(z)$ must be constant as well.

Conformal Mappings

Important Conformal maps

- $\operatorname{Aut}(\mathbb{C})=\{f(z): f(z)=a z+b, a \neq 0\}$
- $\operatorname{Aut}\left(D(0,1)=\left\{f(z): f(z)=e^{\imath \theta} \frac{z-a}{1-\bar{a} z}, a \in D(0,1), \theta \in[0,2 \pi]\right\}\right.$
- $\operatorname{Aut}(D(0,1)-\{0\})=\left\{f(z): f(z)=z e^{\imath \theta}, \theta \in[0,2 \pi]\right\}$
- $\operatorname{Aut}(\mathbb{C} \cup\{\infty\})=\left\{f(z): f(z)=\frac{a z+b}{c z+d}, a d-b c \neq 0\right\}$
- $\operatorname{Biholo}(\{z: \Im(z)>0\}, D(0,1))=\frac{z-\imath}{z+\imath}$ (Cayley transform)
- $\operatorname{Biholo}(D(0,1),\{z: \Im(z)>0\})=\imath \frac{1+z}{1-z}$ (inverse Cayley transform)
$\cdot \operatorname{Biholo}(\{z: \Im(z)>0\},\{z: \Im(z)>0, \Re(z)>0\})=\sqrt{z}$ (applies for the half disk as well)
- Two annli $\left\{z: r_{1}<|z|<r_{2}\right\},\left\{z: s_{1}<|z|<s_{2}\right\}$ are conformally equivalent iff $r_{2} / r_{1}=s_{2} / s_{1}$
- Biholo $\left(\{z: 0<\Im(z)<\imath, D(0,1))=e^{z}\right.$
- Biholo $(\{z:-\pi / 4<\Re(z)<\pi / 4, D(0,1))=\tan (z)$
- $\operatorname{Biholo}\left(\{z: 1 / 2<\Re(z), D(1,1))=\frac{1}{z}\right.$
$\cdot \operatorname{Biholo}\left(\{z: 0<\Im(z),\{0<\Im(z), 0<\Re(z)<\infty\})=\sin ^{-1}(z)\right.$
Problem: Find explicitly a conformal mapping ϕ which maps the strip

$$
\left\{z \in \mathbb{C}: \frac{1}{3}<\Re(z)<1\right\}
$$

to the unit disk.
Solution: Let $\Omega=\left\{z \in \mathbb{C}: \frac{1}{3}<\Re(z)<1\right\}$, define ϕ_{1} on Ω by

$$
\phi_{1}: z \rightarrow \frac{3}{2}\left(z-\frac{1}{3}\right)
$$

Then $\phi_{1}(\Omega)=\Omega_{1}:=\{z \in \mathbb{C}: 0<\Re(z)<1\}$. Now define ϕ_{2} on Ω_{1} by

$$
\phi_{2}: z \rightarrow \imath \pi z
$$

Then $\phi_{1}\left(\Omega_{1}\right)=\Omega_{2}:=\{z \in \mathbb{C}: 0<\Im(z)<\pi\}$. Now define ϕ_{3} on Ω_{2} by

$$
\phi_{3}: z \rightarrow e^{z}
$$

Then $\phi_{3}\left(\Omega_{2}\right)=\Omega_{3}:=\{z \in \mathbb{C}: 0<\Im(z)\}$. Finally define ϕ_{4} on Ω_{3} by

$$
\phi_{4}: z \rightarrow \frac{z-\imath}{z+\imath}
$$

Then $\phi_{4}\left(\Omega_{3}\right)=D(0,1)$. Hence the composition

$$
\phi:=\phi_{4} \circ \phi_{3} \circ \phi_{2} \circ \phi_{1}=\frac{e^{\imath \pi\left(\frac{3}{2} z-\frac{1}{2}\right)}-\imath}{e^{\imath \pi\left(\frac{3}{2} z-\frac{1}{2}\right)}+\imath}
$$

maps Ω conformally onto $D(0,1)$
Problem: Find explicitly a conformal mapping of the domain

$$
U=\{z \in \mathbb{C}:|z|<1, \Re(z)>0, \Im(z)>0\}
$$

to the unit disk.

Solution: First consider the map

$$
\phi_{1}(z)=z^{2}
$$

this takes the quarter disk into the upper half disk. Then the map

$$
\phi_{2}(z)=\imath \frac{1+z}{1-z}
$$

takes the half disk into the upper half plane and finally the cayley transform

$$
\phi_{3}(z)=\frac{z-\imath}{z+\imath}
$$

which takes the upper half plane into the unit disk. Therefore the map

$$
\left(\phi_{3} \circ \phi_{2} \circ \phi_{1}\right) z=\frac{(1+z)-\imath(1-z)^{2}}{(1+z)+\imath(1-z)^{2}}
$$

maps the quarter disk U conformally to the unit disk
Problem: Find explicitly a conformal mapping of G onto the unit disk, where

$$
G=\{z=x+\imath y ;|z|<1 \text { and } y>-1 / \sqrt{2}\}
$$

Solution: Consider the map $\phi_{1}(z)$ defined as

$$
\phi_{1}(z)=\frac{\sqrt{2} z+i+1}{\sqrt{2} z+i-1} .
$$

This sends $\frac{1}{\sqrt{2}}(-1-i)$ to $0,-\frac{1}{\sqrt{2}} i$ to -1 , and $\frac{1}{\sqrt{2}}(1-i)$ to ∞. Then let $G_{1}:=\phi_{1}(G)$, so we have

$$
G_{1}=\left\{z=r e^{\imath \theta}: 0<r<\infty, \pi / 4<\theta<\pi\right\}
$$

Now ϕ_{1} maps G into G_{1} conformally. Next consider the map $\phi_{2}(z)$ defined by

$$
\phi_{2}(z)=e^{-\frac{\pi}{4} i} z
$$

Then let $G_{2}:=\phi_{2}\left(G_{1}\right)$, so we have

$$
G_{2}=\left\{z=r e^{\imath \theta}: 0<r<\infty, 0 \theta 3 \pi / 4\right\}
$$

Then ϕ_{2} maps G_{1} into G_{2} conformally. Now define $\phi_{3}(z)$ by

$$
\phi_{3}(z)=z^{\frac{4}{3}}
$$

Then let $G_{3}:=\phi_{3}\left(G_{2}\right)$, so we have

$$
G_{3}=\{z=x+\imath y: y>0\}
$$

Then ϕ_{3} maps G_{2} into G_{3} conformally. Finally define ϕ_{4} as the Cayley transform, which maps the upper half plane into the unit disk. So define $\phi(z)$ as

$$
\phi(z)=\left(\phi_{4} \circ \phi_{3} \circ \phi_{2} \circ \phi_{1}\right)(z) \Rightarrow \phi(z)=\frac{\left(e^{-\frac{\pi}{4} i}\left(\frac{\sqrt{2} z+i+1}{\sqrt{2} z+i-1}\right)\right)^{\frac{4}{3}}-i}{\left(e^{-\frac{\pi}{4} i}\left(\frac{\sqrt{2} z+i+1}{\sqrt{2} z+i-1}\right)\right)^{\frac{4}{3}}+i}
$$

Then $\phi(z)$ maps the set G into the unit disk conformally.

Schwarz Reflection Priciple

Problem: Let $L \subset \mathbb{C}$ be the line $L=\{x+\imath y: x=y\}$. Assume that f is an entire function, such that for any $z \in L, f(z) \in L$. Assume that $f(1)=0$. Prove that $f(\imath)=0$.

Proof: Because 1 and \imath have symmetry about L, we want to consider the Schwarz reflection principle. First consider the following change of coordinates:

$$
\phi(z)=z e^{-\imath \pi / 4} \quad \Rightarrow \quad \bar{p}:=\phi(1)=\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right), \quad p:=\phi(\imath)=\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)
$$

Now consider the function $h(z)=\left(\phi \circ f \circ \phi^{-1}\right) z$ then $h(z)$ maps the real line to the real line. since $\left(f \circ \phi^{-1}\right)(\mathbb{R})=f(L) \subset L$. So for $z=x \in \mathbb{R}$ we have $h(z)=\overline{h(\bar{z})}$.

$$
h(p)=\left(\phi \circ f \circ \phi^{-1}\right) p=(\phi \circ f) 1=\phi(0)=0
$$

and since $h(z)=\overline{h(\bar{z})}$ on the real line we have

$$
0=h(p)=\overline{h(\bar{z})}=\left(\phi \circ f \circ \phi^{-1}\right) \bar{p}=(\phi \circ f) \imath
$$

Which implies that $\phi^{-1}(0)=f(\imath)=0_{\square}$
Problem: Let $f(z)$ be holomorphic in the upper half plane $U=\{z=x+i y: y>0\}$ and continuous on \bar{U}. Assume $f(x)=i x^{3}$ for all $x \in(0,10)$. Find all such $f(z)$.

Solution: Let $g(z)=f(z)-i z^{3}$, then $g(z)$ is holomorphic on U. Define U_{0} as follows:

$$
U_{0}=\{z=x+i y: 0<x<10, y>0\}
$$

Then $g(z)$ is holomorphic on U_{0} and continuous on $U_{0} \cup(0,10)$, furthermore

$$
\lim _{z \rightarrow(0,10)} \Im(g(z))=0, \quad \forall z \in U_{0}
$$

Hence by the Schwarz reflection principle for holomorphic functions, we have

$$
\widehat{g}(z)=\left\{\begin{array}{lr}
g(z) & z \in U_{0} \\
\frac{g(x)}{g(\bar{z})}=f(x)-i x^{3} & z=x \in(0,10) \\
\bar{z} \in U_{0}
\end{array}\right.
$$

is holomorphic on $U_{1}=\{z=x+i y: 0<x<10, y \in \mathbb{R}\}$. Now $\left\{z \in U_{1}: \widehat{g}(z)=0\right\} \supset(0,10)$, which has an accumulation point in V. Thus by uniqueness, $\widehat{g} \equiv 0$ on U_{1}. This implies $g \equiv 0$ on U_{0}, and hence $U_{0} \subset\{z \in U: g(z)=0\}$, which has an accumulation point on U. Which again implies, by the uniqueness theorem, $g \equiv 0$ on U. Therefore $f(z)=i z^{3}$ on U

Remark: Schwarz reflection principle for holomorphic functions: Let V be a connected open set in \mathbb{C} such that $U_{\mathbb{R}}=V \cap$ (real axis) $=\{x \in \mathbb{R}: a<x<b\}$ for some $a, b \in \mathbb{R}$. Set $U=\{z \in V: \Im(z)>0\}$. Suppose that $F: U \rightarrow \mathbb{C}$ is holomorphic and that

$$
\lim _{z \rightarrow x} \Im(F(z))=0, \quad z \in U
$$

for each $x \in U_{\mathbb{R}}$. Define $\widehat{U}=\{z \in \mathbb{C}: \bar{z} \in U\}$. Then there is a holomorphic function G on $U \cup \widehat{U} \cup V_{\mathbb{R}}$ such that $\left.G\right|_{U}=F$. In particular,

$$
G(z)=\left\{\begin{array}{lr}
F(z) & z \in U \\
\lim _{z \rightarrow x} \Re(F(z)) & z \in U, x \in U_{\mathbb{R}} \\
\overline{F(\bar{z})} & z \in \widehat{U}
\end{array}\right.
$$

Problem: Let $\mathrm{f}(\mathrm{z})$ be analytic and satisfy $|f(z)| \leq 100|z|^{-2}$ in strip $\alpha_{1} \leq \Re(z) \leq \alpha_{2}$. Prove the function

$$
h(x)=\int_{-\infty}^{\infty} f(x+\imath y) d y
$$

is a constant function of $x \in\left[\alpha_{1}, \alpha_{2}\right]$.
Proof: Let $x_{1}, x_{2} \in\left[\alpha_{1}, \alpha_{2}\right]$ such that $x_{1}<x_{2}, R>0$ and consider the following contour Γ.

$$
\Gamma= \begin{cases}\gamma_{1}:=x_{2}+\imath t & t \in[-R, R] \\ \gamma_{2}:=-t & t \in\left[x_{1}+\imath R, x_{2}+\imath R\right] \\ \gamma_{3}:=x_{1}-\imath t & t \in[-R, R] \\ \gamma_{4}:=t & t \in\left[x_{1}-\imath R, x_{2}-\imath R\right]\end{cases}
$$

Now since $f(x)$ is analytic we know that $\int_{\Gamma} f(z) d z=0$. Now computing γ_{1} we have

$$
\int_{\gamma_{1}} f(z) d z=\imath \int_{-R}^{R} f\left(x_{2}+\imath t\right) d t \quad \Rightarrow \quad \imath \int_{-\infty}^{\infty} f\left(x_{2}+\imath t\right) d t \text { as } R \rightarrow \infty
$$

Also for γ_{3} and with the change of variable $y=-t$ we have

$$
\int_{\gamma_{3}} f(z) d z=\imath \int_{-R}^{R} f\left(x_{1}-\imath t\right) d t \quad \Rightarrow \quad-\imath \int_{-\infty}^{\infty} f\left(x_{1}+\imath y\right) d y \text { as } R \rightarrow \infty
$$

Now for γ_{2} and z lying on the line γ_{2} we have

$$
\begin{aligned}
\left|\int_{\gamma_{2}} f(z) d z\right| & \leq \int_{x_{1}+\imath R}^{x_{2}+\imath R} f(t) d t \\
& \leq \int_{x_{1}+\imath R}^{x_{2}+\imath R} \overline{100} \overline{|z|^{2}} \\
& =\frac{100}{|z|^{2}}\left(x_{2}-x_{1}\right) \rightarrow 0 \text { as } R \rightarrow \infty
\end{aligned}
$$

For γ_{4} and z lying on the line γ_{4} we obtain the same result as in γ_{2}. This implies that

$$
0=\imath \int_{-\infty}^{\infty} f\left(x_{2}+\imath t\right) d t-\imath \int_{-\infty}^{\infty} f\left(x_{1}+\imath t\right) d t \quad \Rightarrow \quad \int_{-\infty}^{\infty} f\left(x_{2}+\imath t\right) d t=\int_{-\infty}^{\infty} f\left(x_{1}+\imath t\right) d t
$$

Now this is for all $x_{1}, x_{2} \in\left[\alpha_{1}, \alpha_{2}\right]$. Therefore $h(x)$ must be constant \square.
Problem: Prove that the product

$$
\prod_{k=1}^{\infty}\left(\frac{z^{n}}{n!}+\exp \left(\frac{z}{2^{n}}\right)\right)
$$

converges uniformly on compact sets to an entire function.
Solution: Denote the above product $p(z)$. Fix $r>0$ and consider $D(0, r)$. By the triangle inequality we have

$$
\sum_{n=1}^{\infty} 1-\frac{z^{n}}{n!}+\exp \left(\frac{z}{2^{n}}\right) \leq \sum_{n=1}^{\infty}\left|1-e^{z / 2^{n}}\right|+\sum_{n=1}^{\infty}\left|\frac{z^{n}}{n!}\right|
$$

now the last series converges everywhere on \mathbb{C} to e^{z}. So all the needs to be shown is the first series $\sum_{n=1}^{\infty}\left|1-e^{z / 2^{n}}\right|$ is finite on compact disks. Now there exists $\rho>0$ such that for all $z \in D(0, \rho)$ we have $\left|1-e^{z}\right| \leq c_{\rho}|z|$. This implies

$$
\forall z \text { s.t. }\left|\frac{z}{2^{n}}\right|<\epsilon \quad \Rightarrow\left|1-e^{z / 2^{n}}\right| \leq c_{\rho} \frac{|z|}{2^{n}}
$$

Hence we have

$$
\sum_{n=1}^{\infty}\left|1-e^{z / 2^{n}}\right|<c_{\rho} \sum_{n=1}^{\infty} \frac{|z|}{2^{n}}, \quad z \in \bar{D}(0, \rho-\epsilon)
$$

Therefore the product $p(z)$ converges
Problem: Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be an entire function such that

$$
f(z+1)=f(z), \quad|f(z)| \leq e^{|z|}, \quad z \in \mathbb{C}
$$

Prove that f must be constant.
Solution: Consider $A=\{z \in \mathbb{C}: 0 \leq \Re(z)<\leq 1\}$, and

$$
g(z)=\frac{f(z)-f(1 / 2)}{\cos (\pi z)} \text { for } \quad z \in A
$$

Now at $g(z)$ is bounded on A, since $z=1 / 2$ is a removable singularity. Hence by Louville's theorem $g(z)=c$, this implies that

$$
f(z)=f(1 / 2)+c \cos (\pi z) \quad \Rightarrow \quad|f(z)|=|f(1 / 2)+c \cos (\pi z)| \leq e^{|z|} \Leftrightarrow c=0
$$

Which implies that $f(z)=f(1 / 2)$, hence $f(z)$ is constant
Problem: Let $h: \mathbb{C} \rightarrow \mathbb{R}$ be harmonic and non-constant. Show that $h(\mathbb{C})=\mathbb{R}$
Solution: Suppose that $h(\mathbb{C}) \subset[k, \infty)$ then, $h(z)-k \subset[0, \infty)$. Now consider and entire function $f(z) \in O(\mathbb{C})$ st $\Re(f(z))=h(z)$ then $e^{-f(z)} \in O \mathbb{C}$ and $\left|e^{-f}\right|=e^{-h} \leq 1$. so e^{-h} is constant, which is a contradiction, therefore $h(\mathbb{C})=\mathbb{R}$.

Problem: Let f be holomorphic in $D(0,2)$ and continuous in $\bar{D}(0,2)$. Suppose that $|f(z)| \leq 16$ for $z \in D(0,2)$ and $f(0)=1$. Prove that f has at most 4 zeros in $D(0,1)$.

Solution: Consider the following:

$$
\ln (f(0))+\sum_{k=1}^{n} \ln \left|\frac{z}{a_{k}}\right|=\frac{1}{2 \pi} \int_{0}^{2 \pi} \ln \left|f\left(2 e^{\imath \theta}\right)\right| d \theta \leq \ln (16)
$$

Now if $\left|a_{k}\right|<1$ we have

$$
\ln \left|\frac{2}{a_{k}}\right| \geq \ln |2|
$$

Hence we have

$$
\ln (2) \leq \sum_{k=1}^{n} \ln \left|\frac{2}{a_{k}}\right| \leq 4 \ln (2)
$$

Thus $f(z)$ has at most 4 zeros inside $D(0,1)$
Problem: Denote $A=\{r<|z|<R\}$, where $0<r<R<\infty$. TRUE OR FALSE: For every $\epsilon>0$ there exists a polynomial $p(z)$ such that

$$
\sup \left\{\left|p(z)-\frac{1}{z^{2}}\right|, z \in A\right\}<\epsilon
$$

Solution: The statement is true. Let $\rho=\frac{R+r}{2}$ and consider the following:

$$
\sup _{|z|=\rho} \frac{1}{|z|^{2}}\left|p(z) z^{2}-1\right|<\epsilon \quad \forall \epsilon>0
$$

Fix $\epsilon>0$ now this implies that

$$
\sup _{|z|=\rho}\left|p(z) z^{2}-1\right|<\epsilon \rho^{2}=\delta
$$

Now let $f(z)=z^{2} p(z)-1$, then $f(0)=-1$, since $f(z)$ is a polynomial $f(z)=u(z)+\imath v(z)$, for some harmonic functions $u(z)$ and $v(z)$. Now $|f(z)|^{2}=|u(z)|^{2}+|v(z)|^{2}$, so if $|f(z)|^{2} \leq \delta$, then $|u(z)|^{2}<\delta$; however on $D(0, \rho)$ we have $|u(0)|=1$, which is a contradiction to the maximum principle, since $|u(0)|=1$ and $u(z)<\delta \square$

Infinite productions and their applications

Convergence of infinite products

$$
\sum_{k=1}^{\infty}\left|a_{k}\right|<\infty \quad \Leftrightarrow \quad \prod_{k=1}^{\infty}\left(1+\left|a_{k}\right|\right)<\infty \quad \Rightarrow \quad \prod_{k=1}^{\infty}\left(1+a_{k}\right)<\infty
$$

Remark: Let $E_{0}=1-z, E_{p}=E_{0} \exp \left(\sum_{k=1}^{p} \frac{z^{k}}{k!}\right)$

Lemma: Let $\left\{a_{k}\right\}$ such that $a_{k} \neq 0$ be a sequence with no accumulation point. If p_{j} are positive integers such that

$$
\sum_{k=1}^{\infty}\left(\frac{r}{\left|a_{k}\right|}\right)^{p_{j}}<\infty \quad \forall r>0
$$

Then the product

$$
\prod_{k=1}^{\infty} E_{p_{k}}\left(\frac{z}{a_{k}}\right)
$$

converges uniformly on compact subsets of \mathbb{C} to an entire function.
Proof:
$\left|E_{p_{k}} \frac{z}{a_{k}}-1\right| \leq\left|\frac{z}{a_{k}}\right|^{p_{k+1}} \leq\left|\frac{r}{a_{k}}\right|^{p_{k}}$
Now $\sum_{k=1}^{\infty}\left|\frac{r}{a_{k}}\right|^{p_{k}}<\infty$ hence $\sum_{k=1}^{\infty}\left|E_{p_{k}} \frac{z}{a_{k}}-1\right|<\infty$, thus $\prod_{k=1}^{\infty} E_{p_{k}}\left(\frac{z}{a_{k}}\right)$ converges normally to an entire function.

Weierstrass Factorization: Let $f(z)$ be an entire function, and suppose $f(z)$ vanishes at 0 of order m. Let $\left\{a_{k}\right\}$ be the non-zero zeros of $f(z)$. Then there exists an entire function $g(z)$ such that

$$
f(z)=z^{m} e^{g(z)} \prod_{k=1}^{\infty} E_{k-1}\left(\frac{z}{a_{k}}\right)
$$

Mittag-Leffler Theorem: Let $U \subset \mathbb{C}$ open, and let $\left\{a_{j}\right\}$ be a set of distinct elements with no accumulation point in U. Suppose for all j, V_{j} is a neighborhood of a_{j} such that $a_{j} \notin V_{k}$ for $k \neq j$ and suppose that m_{j} is meromorphic on V_{j} with only pole a_{j}. Then there exists a meromorphic function $m(z)$ on U such that $m-m_{j}$ is holomorphic on V_{j} for all j which has no poles other then those at a_{j}

Second version: Let $U \subset \mathbb{C}$ open, and let $\left\{a_{j}\right\}$ be a set of distinct elements with no accumulation point in U. Let s_{j} be a sequence of Laurent polynomials, i.e.

$$
s_{j}=\sum_{n=-p(j)}^{-1} a_{n}^{j}\left(z-a_{j}\right)^{n}
$$

Then there exists a meromorphic function on U whose principle part at each a_{j} is s_{j} and has no other poles.

Jensen's formula: Let $f(z)$ be holomorphic in a neighborhood of $\bar{D}(0, r)$. Suppose that $f(0) \neq 0$, let $\left\{a_{k}\right\}$ be the zeros according to their multiplicities, then

$$
\ln (f(0))+\sum_{j=1}^{n(r)} \ln \left|\frac{r}{a_{j}}\right|=\frac{1}{2 \pi} \int_{0}^{\pi} \ln \left|f\left(r e^{\imath \theta}\right)\right| d \theta
$$

Where $n(r)$ is the number of zeros of $f(z)$ counting multiplicities.
Problem: Show that if $f(z)$ is a nonconstant holomorphic function on $D(0,1)$ with $f(0) \neq 0$ and $\left\{a_{k}\right\}$ as the roots then

$$
\sum_{k=1}^{\infty}\left(1-\left|a_{k}\right|\right)<\infty
$$

Solution: Let $M=\sup \{|f(z)|: z \in D(0, r)\}$, where $0<r<1$, by Jensen's formula we have

$$
\ln |f(0)|+\sum_{n=k}^{n(r)} \ln \left|\frac{1}{a_{k}}\right|=\frac{1}{2 \pi} \int_{0}^{2 \pi} \ln \left|f\left(r e^{\imath \theta}\right)\right| d \theta \leq \ln (M)
$$

where $n(r)$ is the number of roots inside $D(0,1)$, which implies that

$$
\sum_{n=k}^{n(r)} \ln \left|\frac{r}{a_{k}}\right| \leq \ln (M)-\ln (f(0))
$$

Letting $r \rightarrow 1^{-}$we have

$$
\sum_{n=k}^{n(r)} \ln \left|\frac{1}{a_{k}}\right| \leq \ln (M)-\ln (f(0))<\infty
$$

and

$$
\sum_{k=1}^{\infty}\left(1-\left|a_{k}\right|\right) \leq \sum_{n=k}^{n(r)} \ln \left|\frac{1}{a_{k}}\right|<\infty
$$

Problem: For which real values of ρ and μ does the following product converges normally on \mathbb{C}

$$
\prod_{n=1}^{\infty}\left(\frac{n^{\mu}-z}{n^{\rho}}\right)
$$

Solution: Denote $a_{n}=n^{\mu-\rho}-\frac{z}{n^{\rho}}$, now we have the following

$$
\prod_{n=1}^{\infty} a_{n}<\infty \quad \Leftrightarrow \quad \sum_{n=1}^{\infty}\left(1-\left|a_{n}\right|\right)<\infty
$$

Fix $r>0$ then for all z in $D(0, r)$ we have

$$
\frac{n^{\mu}-z}{n^{\rho}} \rightarrow 1 \quad \Leftrightarrow \quad \mu=\rho, \mu \rho>0
$$

Now let $\mu=\rho \in(0,1]$, then we have

$$
\sum_{n=1}^{\infty}\left(1-\left|1-\frac{z}{n^{\rho}}\right|\right) \leq \sum_{n=1}^{\infty}\left|\frac{z}{n^{\rho}}\right|=\infty
$$

Therefore if $\mu=\rho$ and $\mu, \rho>1, \prod_{n=1}^{\infty} a_{n}<\infty \square$
Problem: Let $f(z)$ be an entire functions such that $|f(z)|=1$ for each $|z|=1$. Find all such entire functions.

Solution: Consider $D(0,1)$ and first notice that the set of roots of $f(z)$ must be finite. Now let $\left\{a_{k}\right\}$ be the set of roots of $f(z)$ inside $D(0,1)$ and consider the following function.

$$
\phi(z)=\prod_{k=1}^{n} \frac{z-a_{k}}{1-\bar{a}_{k} z}
$$

Now since $\phi(z)$ shares the same roots as $f(z)$ inside $D(0,1)$ we have $\frac{f(z)}{\phi(z)}$ is holomorphic inside $D(0,1)$. Furthermore we have $\left|\frac{f(z)}{\phi(z)}\right|=1$ if $|z|=1$, this implies that $\frac{f(z)}{\phi(z)}=1$ for all $z \in \bar{D}(0,1)$. Hence $f(z)=\omega \phi(z)$ for some $\omega \in \partial D(0,1)$. Now $f(z)$ is entire which implies that $\bar{a}_{k}=0$ for all k. Therefore $f(z)=\omega z^{n}$, for any $n \in \mathbb{N}$ are all such entire functions

Problem: Set $U=\{z=x+\imath y: x>0,|y|<x\}$. Suppose that given a sequence of holomorphic functions $f_{n}: D \rightarrow U$, where D is the unit disk. Prove that if $\sum_{n=1}^{\infty} f(0)$ converges then the series $\sum_{n=1}^{\infty} f(z)$ converges normally on D.

Solution: Consider the translation $g_{n}(z)=e^{\imath \pi / 4} f_{n}(z)$. Now $g_{n}(z)=u_{n}(z)+\imath v_{n}(z)$ where $u_{n}(z)$ and $v_{n}(z)$ are harmonic functions. Also

$$
\sum_{n=1}^{\infty} g_{n}(0)<\infty \quad \Leftrightarrow \quad \sum_{n=1}^{\infty} f(0)<\infty
$$

Now Harnacks principle says that $u_{n}(z), v_{n}(z)$, either converge normally to infinity for all $z \in D(0,1)$, or $u_{n}(z), v_{n}(z)$ are finite for all $z \in D(0,1)$. Now

$$
\sum_{n=1}^{\infty} g_{n}(0)=\sum_{n=1}^{\infty} u_{n}(0)+\imath \sum_{n=1}^{\infty} v_{n}(0)<\infty
$$

by assupmtion. Therefore $\sum_{n=1}^{\infty} g_{n}(z)$ is finite for all $z \in D(0,1)$, and hence $\sum_{n=1}^{\infty} f_{n}(z)$ converges normally on $D(0,1) \square$.

Problem: Suppose that $f(z)$ is holomorphic in the unit disk D, continuous on \bar{D}, and has the following properties:
a) $|f(0)|=a>1$
b) $|f(z)|>a^{3}$ for every $z \in \partial D$
c) $f(z)$ does not have zeroes in $\bar{D}(0,1 / a)$

Prove that $f(z)$ must have at least three zeros in D.
Solution: Let $1>r>\left|\frac{1}{a}\right|$ and consider $D(0, r)$. Denote $n(r)$ as the number of roots inside $D(0, r)$. Now

$$
\ln (f(0))+\sum_{k=1}^{n(r)} \ln \left|\frac{r}{a_{k}}\right|=\frac{1}{2 \pi} \int_{0}^{2 \pi} \ln \left|f\left(r e^{2 \theta}\right)\right| d \theta
$$

where $\left\{a_{k}\right\}$ are the roots of $f(z)$ inside $D(0, r)$. So we have

$$
\ln (a)+\sum_{k=1}^{n(r)} \ln \left|\frac{r}{a_{k}}\right|>\frac{1}{2 \pi} \int_{0}^{2 \pi} d \theta=\ln \left(a^{3}\right)
$$

which implies that

$$
\sum_{k=1}^{n(r)} \ln \left|\frac{1}{a_{k}}\right|>2 \ln (a) \quad \text { as } \quad r \rightarrow 1^{-}
$$

Hence $n(r)>2$, therefore $f(z)$ must have at least 3 zeros inside $D(0,1) \square$.
Problem: Suppose that both series

$$
f(z)=\sum_{n=1}^{\infty} a_{n} z^{n} \quad \text { and } \quad g(z)=\sum_{n=1}^{\infty} b_{n} z^{n}
$$

converge in some neighborhoos of the origin. Assume that for each $n \in \mathbb{N}$ either $b_{n}=a_{n}$ or $b_{n}=0$. In other words, the series for $g(z)$ is obtained by "removing" some terms from the series for $f(z)$.
a) Is it possible that the radius of convergence for $g(z)$ is strictly larger than the radius of convergence for $f(z)$? Strictly smaller?

Solution: The raduis of convergence can be larger. Suppose there exists $N \in \mathbb{N}$ such that $b_{n}=0$ for all $n>N$, then the radius of convergence for $g(z)$ is infinite since $g(z)$ is a polynomial. Otherwise if there does not exist such an N. Consider the seqence $b_{n_{j}}=b_{n}$ if $b_{n}=a_{n}$ then we have

$$
\lim _{n \rightarrow \infty} \sup \left|a_{n}\right|^{-1 / n}=\lim _{n \rightarrow \infty} \sup \left|b_{n_{j}}\right|^{-1 / n}=\lim _{n \rightarrow \infty} \sup \left|b_{n}\right|^{-1 / n}
$$

Hence the radii of convergence are the same.
b) Is it possilbe that the domain of holomorphy for $g(z)$ (the largest open connect set where the function $g(z)$ can be extended) is strictly larger that the domain of holomorphy for $f(z)$? Strictly smaller?

Solution: The domain of holomorphy can be larger or smaller. For both cases consider the following function $f(z)$

$$
f(z)=\sum_{n=1}^{\infty} z^{n}=\frac{1}{1-z}
$$

The domain of holomorphy for $f(z)$ is $\mathbb{C}-\{1\}$. Now fix N and let $b_{n}=0$ for all $n>N$, then $g(z)$ is a polynomial of degree N, and hence is entire. For a smaller domain consider the following $g(z)$

$$
g(z)=\sum_{n=1}^{\infty} z^{2^{n}}
$$

where $b_{n}=0$ for the non 2^{n} terms in $f(z)$. Then the domain of holomorphy for $g(z)$ is exactly $D(0,1)$, which is much smaller then $\mathbb{C}-\{1\}$

Problem: Let f be analytic in the unit disk $D(0,1)$ and continuous on $\bar{D}(0,1)$. Assume that

$$
|f(z)|=\left|e^{z}\right| \quad \forall z \in \partial D(0,1)
$$

Find all such f.
Solution: Let α_{i} be the zeros of $f(z)$ inside $D(0,1)$. Then there exists only a finite number of $\alpha_{i} \in D(0,1)$, Otherwise $\left\{\alpha_{i}\right\}$ would have an accumulation point, hence $f(z) \equiv 0$. Consider the Blaschke factors, and the Blaschke product defined by:

$$
\phi_{j}(z)=\frac{z-\alpha_{j}}{1-\bar{\alpha}_{j} z} \quad \phi(z)=\prod_{j=1}^{n} \phi_{j}(z)
$$

where n is the number of roots includeing multiplicites. Note that $|\phi(z)=1|$ when $|z|=1$, now consider the following:

$$
g(z)=\frac{f(z)}{\phi(z) e^{z}} \quad \rightarrow \quad|g(z)|=1 \text { for } z \in \partial D(0,1)
$$

Now all sigularities of $g(z)$ are removable, so by Riemanns removeable singularity theorem, there is a holomorphic function $\widehat{g}(z)$ with the same properties as $g(z)$. Now by the maximum modulus principle we have $|g(z)| \leq 1$, for all $z \in D(0,1)$. Also, by the minimum modulus principle we have $|g(z)| \geq 1$ for all $z \in D(0,1)$. therefore we have $g(z)=\omega$, where $\omega \in \partial D(0,1)$.

$$
\therefore f(z)=\omega \phi(z) e^{z} \quad z \in \bar{D}(0,1)
$$

