
Complex qual study guide
James C. Hateley

General Complex Analysis

Problem: Let p(z) be a polynomial. Suppose that p(z) 6= 0 for <(z) > 0. Prove that p′(z) 6= 0 for
<(z) > 0.

Solution: Let p(z) be such a polynomial. Suppose that ai ∈ C are the zeros of p(z). Then we have

p(z) = c

n∏
i=1

(z − ai), p′(z) = c

n∑
i=1

∏
i6=j

(z − aj)

Now the quotient is given by
p′(z)
p(z)

=
n∑
i=1

1
z − ai

If p′(z) = 0, then the sum above must be equal to zero. Now if <(ai) ≤ 0 this implies that <(z0−ai) > 0,
by the assumption of the hypothesis. So there is a w such that w = z0− ai = x+ ıy, where x > 0. Now
we have

1
z0 − ai

=
1
w

=
1

x+ ıy
=

x− ıy
x2 + y2

⇒ <
(

1
z0 − ai

)
> 0

Since each term in the sum
1

z − ai
has a positive real part we have p′(z) 6= 0 for <(z) > 0 �.

Problem: Describe those polynomials a+ bx+ cy+ dx2 + exy+ fy2 with real coefficients that are the
real parts of analytic functions on C.

Solution: let u(x, y) = a + bx + cy + dx2 + exy + fy2. u(x, y) being the real part of a holomorphic
function implies that u(x, y) is harmonic. So ∆u(x, y) = 0 and

∂xxu = 2d, ∂yyu = 2f ⇒ d+ f = 0 �

Problem: Prove or disprove that there exists an analytic function f(z) in the unit disc D(0, 1) such
that

f

(
1
n

)
= f

(
− 1
n

)
=

1
n3
, ∀n ∈ N

Solution: Suppose there exists such a function with the above property. Since f(z) is analytic, it is
uniquely determined by a cauchy sequence. Now {1/n} is clearly cauchy, hence

f

(
1
n

)
=

1
n3

⇒ f(z) = z3

but clearly f(z) is an odd function and hence f
(
− 1
n

)
6= 1
n3

. Therefore there is no such function that

satisfies the hypothesis �

Problem: Let p(z) be a polynomial such that all the roots of p(z) lie in D(0, 1). Prove that the roots
of p′(z) lie in D(0, 1).

Proof: We will prove something stronger, that all the roots of p′(z) lie inside the convex hull of the
roots of p(z). Suppose all the roots of p(z) lie in D(0, 1), Let {ai} be the set of roots of p(z) including
multiplicities, then we have

p(z) = c

n∏
i=1

(z − ai), |ai| ∈ D(0, 1), c ∈ C

1
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Taking the logarithmic derivative we have

p′(z)
p(z)

=
n∑
i=1

1
z − ai

In particular, if z is a zero of p′(z) and still p(z) 6= 0, then
n∑
i=1

1
z − ai

= 0

which implies
n∑
i=1

z − ai
|z − ai|2

= 0

This may also be written as (
n∑
i=1

1
|z − ai|2

)
z =

n∑
i=1

1
|z − ai|2

ai.

Taking their conjugates, we see that z is a weighted sum with positive coefficients that sum to one. If
p(z) = p′(z) = 0, then z = 1z + 0ai, and is still a convex combination of the roots of p(z). Since the
unit disk is a convex hull of the roots of p(z), then all roots of p’(z) are inside the unit disk. �

Problem: Prove or disprove that there is a sequence of analytic polynomials {pn(z)}, n ∈ N, so that
pn(z)→ z̄4 as n→∞ uniformly for z ∈ ∂D(0, 1).

Solution: The statement is not true. Suppose that there exists such a sequence of analytic polynomials

such that pn(z) → z̄4. Then for all n we have
d

dz̄
pn(z) = 0 since pn(z) is analytic. However

d

dz̄
z̄4 =

4z̄3 6= 0 for all z ∈ C. Clearly 0 6→ 4z̄3 for all z ∈ C �

Problem: The Bernoulli polynomials φn(z) are defined by the expansion

etz − 1
et − 1

=
∞∑
n=1

φn(z)
n!

tn−1

Prove the following two statements:
a) φn(z + 1)− φn(z) = nzn−1

Proof: Let B(z) =
etz − 1
et − 1

, then B(z + 1) − B(z) = etz. Now by definition of B(z) we have the

following expansion
∞∑
n=1

φn(z + 1)
n!

tn−1 −
∞∑
n=1

φn(z)
n!

tn−1 =
∞∑
n=0

(tz)n

n!

reindexing we have
∞∑
n=0

φn(z + 1)
n!

tn−1 −
∞∑
n=0

φn(z)
n!

tn−1 =
∞∑
n=0

(tz)n−1

(n− 1)!

Hence we have φn(z + 1)− φn(z) = (n+ 1)zn−1
�

b)
φn+1(n+ 1)

n+ 1
=

n∑
k=1

kk

Proof: By the previous part we have

φn+1(n+ 1)− φn+1(n) = (n+ 1)nn

φn+1(n)− φn+1(n− 1) = (n+ 1)(n− 1)n

...
φn+1(2)− φn+1(1) = (n+ 1)1n
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Rearraging and using the recursive relation above we have

φn+1(n+ 1) = (n+ 1)nn + φn+1(n)
= (n+ 1)nn + (n+ 1)(n− 1)n + φn+1(n− 1)
...

= (n+ 1)
∑
k=0

n∑
k=1

kk

⇒ φn+1(n+ 1)
n+ 1

=
n∑
k=1

kk �

Complex Integration

Computer the area of the image of the unit disk D = {z : |z| < 1} under the map f(z) = z +
z

2
.

Solution: Denote Ω = f(D), and let dσ denote the surface measure, then an integral for the surface
area is given by ; ∫

Ω

dσ =
∫ ∫

D

J(u, v) dA

Now let f(z) = f(x, y) = u(x, y) + ıv(x, y), then we have

f(x, y) = x+ ıy +
(x+ ıy)2

2
= x+

x2 − y2

2
+ ı (y + xy)

Computing J(u, v), we have

J(u, v) =
∣∣∣∣ 1 + x −y

y 1 + x

∣∣∣∣ = (1 + x)2 + y2

Converting to polar coordinates we come to the integral∫
Ω

dσ =
∫ 2π

0

∫ 1

0

1 + 2r cos(θ) + r2)r drdθ =
3π
2 �

Problem: Evaluate the integral: ∫ ∞
0

sin2(x)
x2

dx

Solution: Consider the following contour Γ:

Γ =


γ1 := t t ∈ [−R,−1/R]
γ2 := eıt/R t ∈ [π, 2π]
γ3 := t t ∈ [1/R,R]
γ4 := Reıt t ∈ [0, π]

Now our function has a removable singularity at x = 0, so consider the following

f(x) =
1− e2ıx

2x2
⇒ <(f(x)) =

1− cos(2x)
2x2

=
sin( x)
x2

Now for the integral around Γ we have∫
Γ

f(z) dz = 2πıRes(f(z)) = 2πı lim
z→0

d

dz
z2f(z) = 2πı lim

z→0
−ıe2ız = 2πı(−ı) = 2π

Now for the integral on γ1 we have∫
γ1

f(z) dz =
1
2

∫ −1/R

−R

1− e2ıt

t2
dt ⇒ 1

2

∫ 0

−∞

1− e2ıt

t2
dt as R→∞
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For the integral on γ2 we have∫
γ2

f(z) dz =
1
2

∫ 2π

π

(
1− e2ıeıt/R

)
ıeıt/R

e2ıt/R2

=
ı

2

∫ 2π

π

1− e2ıeıt/R

e2ıt/R

Now letting R→∞ and using L’Hospitals rule we have

ı

2

∫ 2π

π

−e2ıeıt/R (2ıeıt/R) (ı)
ıeıt/R

=
∫ 2π

π

dt = π

For the integral on γ3 we have∫
γ3

f(z) dz =
1
2

∫ R

1/R

1− e2ıt

t2
dt ⇒ 1

2

∫ ∞
0

1− e2ıt

t2
dt as R→∞

Now for γ4 we have ∫
γ4

f(z) dz =
1
2

∫ π

0

1−Re2ıt

R2e2ıt
Rıeıt dt

=
ı

2

∫ π

0

1−Re2ıt

Reıt

Putting this all together we have

2π = π +
1
2

∫ 0

−∞

1− e2ıt

t2
dt+

1
2

∫ ∞
0

1− e2ıt

t2
dt

Taking real parts we have

π =
∫ 0

−∞

sin2(t)
t2

dt+
∫ ∞

0

sin2(t)
t2

dt = 2
∫ ∞

0

sin2(t)
t2

dt

Hence we have
∫ ∞

0

sin2(t)
t2

dt =
π

2 �

Taylor and Laurent series

Problem: Find the largest disc centered at 1 in which the Taylor series for

1
1 + z2

=
∞∑
k=1

ak(z − 1)k

will converge.

Solution: The singularities of
1

1 + z2
occur at ±ı. First consider the taylor series centered at 0;

1
1 + z2

=
∞∑
k=1

(−1)kz2k

instead of recomputing the coeffients ak and taking the limsup, notice the raduis of converge for the
series at 0 is 1. Since the series must avoid the sigularities the radius will be the distance from the
center to the closest singularity, i.e. r = inf{|1− ı|, |1 + ı|} =

√
2 �

Problem: Find the raduis of convergence for the series:
∞∑
n=1

z2n

n!
and

∞∑
n=1

zn!

2n
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Solution: For the first one we have

lim
n→

sup
∣∣∣∣z2n

n!

∣∣∣∣1/n < 1 ⇒ |z|2 < lim
n→∞

supn!1/n

Now lim
n→∞

n!1/n =∞, hence |z| <∞.

For the second series we have

lim
n→

sup
∣∣∣∣zn!

2n

∣∣∣∣1/n < 1 ⇒ |z| <
(

lim
n→∞

sup(2n)1/n
)1/(n−1)!

= 1

Hence the series converges for |z| < 1 �

Problem: Let f be a non-constant entire function. Prove that if lim
|z|→∞

|f(z)| = ∞, then |f | must be

a polynomial.

Solution: Consider g(z) = f

(
1
z

)
, then lim

z→0
g(z) = ∞. Now suppose that g(z) has a pole of order k

and consider the Laurent expansion:

g(z) =
a−k
zk

+
a−k+1

zk−1
+ · · ·+ a0 + a1z + · · · ⇒ zkg(z) = zk

∞∑
n=−k

anz
n

Now |zkg(z)| → c = f(0) as |z| → ∞. This implies by continuity that |zkg(z)| ≤ (|c|+ 1)zk for large z.
Hence zkg(z) is a polynomial of at most degree k. Now we have:

g(z)zk =
k∑

n=0

anz
n ⇒ f

(
1
z

)
= g(z) =

k∑
n=0

an
zk−n

⇒ f(z) =
k∑

n=0

anz
k−n

Problem: Show that for R > 0, there is NR such that when n > NR, the function

Pn(z) = 1 + z +
z2

2
+ · · ·+ zn

n!
6= 0, ∀ |z| ≤ R.

Solution: First notice that Pn(z) =
n∑
k=0

zk

k!
and that Pn(z)→ ez uniformly as n→∞ on compact sets

of C. Fix R > 0

∀ε > 0 ∃NR s.t.

∣∣∣∣∣
n∑
k=0

zk

k!
−

m∑
k=0

zk

k!

∣∣∣∣∣ =

∣∣∣∣∣
n∑

k=m

zk

k!

∣∣∣∣∣ ≤ ε, ∀n > m > NR.

This implies that ∣∣∣∣∣ez −
n∑
k=0

zk

k!

∣∣∣∣∣ < ε, ∀n > NR

which implies that

1 ≤ |ez| < ε+

∣∣∣∣∣
n∑
k=0

zk

k!

∣∣∣∣∣ , ∀n > NR,∀z ∈ D(0, R)

∴ ∀R > 0 ∃NR s.t.

n∑
k=0

zk

k!
6= 0, ∀n > NR �

Problem: Let f(z) be analytic on C−{1} and have a simple pole at z = 1 with residue λ. Prove that
for every R > 0,

lim
n→∞

Rn
∣∣∣∣(−1)n

f (n)(2)
n!

− λ
∣∣∣∣ = 0
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Proof: Since f(z) has simple pole at one we have the Laurent expansion.

f(z) =
λ

z − 1
+
∞∑
n=0

an(z − 1)n

Define g(z) = f(z) − λ

z − 1
, then g(z) is an entire function. Now for |z − 2| < 1 f(z) has the taylor

expansion

f(z) =
∞∑
n=0

f (n)(2)
n!

(z − 2)2

Also we have the geometric series for λ
z−1

λ

z − 1
=

λ

1 + (z − 2))
= λ

∞∑
n=0

(−1)n(z − 2)n

This implies that the series for g(z) about 2 is

g(z) =
∞∑
n=0

f (n)(2)
n!

(z − 2)n − λ
∞∑
n=0

(−1)n(z − 2)n =
∞∑
n=0

(z − 2)n
(
f (n)(2)
n!

− λ(−1)n
)

Now for |z−2| < 1 we have that (z−2)n
∣∣∣∣f (n)(2)

n!
− λ(−1)n

∣∣∣∣→ 0. But since g(z) is entire we this holds

for any z ∈ C Hence for any R > 0 we have

Rn
∣∣∣∣f (n)(2)

n!
− λ(−1)n

∣∣∣∣→ 0 as n→∞

So the result is shown. �

Problem: Find the radius of convergence R1 of the series
∞∑
n=1

zn

n2

and show the series converges uniformly on D(0, R1). What is the radius of convergence R2 of the
derivative of this series? Does it converge uniformly on D(0, R2)?

Solution: Denote the above series by f(z). By taking limsup we find that the raduis of convergence is
1. Let z ∈ D(0, 1), then we have ∣∣∣∣∣

∞∑
n=1

zn

n2

∣∣∣∣∣ ≤
∞∑
n=1

1
n2

<∞

hence the series converges uniformly on D(0, 1). Now the derivative f ′(z) of the series will converge on
the unit disc by Abel’s theorem. But will not converge uniformly on D(0, 1), since if z = 1, the series
diverges �.

Problem: Let f(z) be analytic in the punctured unit disk U0 = {z : 0 < |z| < 1} such that thre is a
positive interger n with |fn(z)| ≤ |z|−n for all z ∈ U0. Show that z = 0 is a removable singularity for
f(z)

Solution: Let g(z) = znf (n)(z), then g(z) ≤ 1 for all z ∈ D(0, 1). This implies that z = 0 is a
removable singularity of g(z). Now consider the Laurent series expansion for g(z) inside D(0, 1).

g(z) =
∞∑
n=0

anz
n ⇒ f (n)(z) =

∞∑
n=0

anz
k−n

Now f(z) has the laurent expansion

f(z) =
∞∑

n=−k

bnz
k ⇒ f (n)(z) =

∞∑
n=0

bn
(−1)n(n+ k − 1)!

(k − 1!)
zn−k
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but since the Laurent expansion is unique, we must have bk = 0 for all k < 0. Which implies that f(z)
has a Taylor expansion about z = 0. Therefore f(z) has a removeable singularity at z = 0. �

Problem: Let f(z) be analytic in the disk U = {|z| < 1}, with f(0) = f ′(0) = 0. Show that

g(z) =
∞∑
n=1

f
( z
n

)
defines an analytic function on U . Moreover, show that the above function g(z)

satisfies

g(z) = f(z)
∞∑
n=1

1
n2

if and only if f(z) = cz2.

Solution: Consider the Taylor expansion for f(z) with the conditions f(0) = f ′(0) = 0, this implies
that

f(z) = z2
∞∑
k=0

akz
k = z2h(z)

for some holomorphic function h(z). Plugging in z/n we have

f
( z
n

)
=
z2

n2

∞∑
k=0

ak

(
zk

nk

)
=
z2

n2
h
( z
n

)
Since f(z/n) is analytic for all n it suffices to show that the series

∞∑
n=1

f
( z
n

)
converges normally on

U . Let K be a compact set of U Since h(z) is analytic on K it is continuous. Hence h(z) attains it’s
maximum on K, denote this value as M . Now we have∣∣∣f ( z

n

)∣∣∣ =
∣∣∣∣ z2

n2
h
( z
n

)∣∣∣∣ ≤ |z|2n2
M

Hence if z ∈ K then the seris
∞∑
n=1

f
( z
n

)
convergies absolutely on K. Hences by the Weierstrass M-

test
∞∑
n=1

f
( z
n

)
converges uniformly on K, which implies the series converges normally since K was an

arbitrary closed set in U . Therefore g(z) is analytic in U , since it’s the normal limit of analytic function
on U .

For the second part, if f(z) = cz2, then we have
∞∑
n=0

f
( z
n

)
=
∞∑
n=0

c
z2

n2
= cz2

∞∑
n=0

1
n2

= f(z)
∞∑
n=0

1
n2

On the other hand, suppose

g(z) = f(z)
∞∑
n=0

1
n2
.

consider the talyor expansion for f(z), plugging this in we have

g(z) =

( ∞∑
k=0

akz
k

)( ∞∑
n=0

1
n2

)
=
∞∑
k=0

ak

( ∞∑
n=0

1
nk

)
zk

but

g(z) =
∞∑
n=0

f
( z
n

)
=
∞∑
n=0

∞∑
k=0

ak
zk

nk
=
∞∑
k=0

ak

( ∞∑
n=0

1
n2

)
zk

Since the power series for an analytic function is unique, this implies that ak = 0 for all k 6= 2. Therefore
f(z) = a2z

2
�
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Applications of Cauchy’s Interal formula

Problem: Let U ⊂ C be a connected open set, and γ be a closed curve in U . Suppose that for any
function f(z) holomorphic on U we have ∮

f(z)dz = 0.

Does it imply that γ is homotopic to a constant curve?

Solution: No γ does not have to a constant curve, consider the function f(z) = z−1, on the punctured
disk U = D(2, 1) − {2}. Then f(z) is holomorphic on U , now fix r ∈ (0, 1) and let γ = reıt + 2 for
t ∈ [0, 2π], then by Cauchy’s theorem we have∫

γ

f(z)dz = 0.

but reıt + 2 is clearly not a constant curve. �

Problem: Let f(z) be entire holomorphic function on C such that |f(z)| ≤ | cos(z)|. Prove f(z) =
c cos(z) for some constant c.

Solution: Consider g(z) =
f(z)

cos(z)
, then |g(z)| ≤ 1, hence g(z) is a bounded function. Define ĝ(z) as

follows:

ĝ(z) =

{
g(z) if cos(z) 6= 0
lim
z→w

g(z) if cos(w) = 0

Then ĝ(z) is a bounded entire function. Hence by Lioville’s theorem it must, i.e. ĝ(z) = c for some
c ∈ C. It follows from the definition of g(z) that f(z) = c cos(z) �

Problem: Prove that there is no entire analytic function such that
∞⋃
n=0

{z ∈ C : f (n)(z) = 0} = R

Solution: First there exists an N such that S = {z ∈ C : f (N)(z) = 0} is dense in R, if not then R
is a countable union of nowhere dense sets, which is a contradiction to the Baire Cateogry theorem.
Now let z0 ∈ S, then for every ε > 0, the disc D(z0, ε) contains infintely many points in S. Now let
ζ ∈ D(z0, ε) such that ζ /∈ S, now by Cauchy estimates we have

|f (N)(ζ)| ≤ N !
2π

∫
|z+z0|=ε

|f(z)|
|z − ζ|

N+1

dz

Now consider the change of variables w = z − ε, then

N !
2π

∫
|z+z0|=ε

|f(z)|
|z − ζ|

N+1

dz =
N !
2π

∫
D(w,ε)

|f(w + ε|)
|w|N+1

→ 0 as ε→ 0.

This implies that f (N)(ζ) = 0, hence ζ ∈ S which is a contradiction to ζ /∈ S. Therefore there cannot
exist such a function �

Problem: Find all entire functions f(z) on C satisfying

|f(z)| ≤ |z|ex, z = x+ ıy ∈ C

Solution: First notice the following:

|z|ex = |zex| = |zexeıy| = |zez|



9

Let g(z) =
f(z)
zez

, then g(z) is a bounded function since |g(z) =
|f(z)|
|zez|

< 1. Hence the discontinuity at

z = 0 is removable. Define

ĝ(z) =


f(z)
zez z 6= 0

lim
z→0

f(z)
zez

z = 0

Now since f(z) and zez are entire we have ĝ(z) as a bounded entire function. Hence by louvilles theorem
ĝ(z) = k ∈ C. So we have f(z) ≤ kzez, where |k| ≤ 1 �.

Problem: Complete the following problems:
a) State the Lioville’s theorem

Lioville’s theorem states that a bounded entire function is constant.

b) Prove the Lioville’s theorem by calculating the following integral∫
|z|=R

f(z)
(z − a)(z − b)

dz

and taking the limit R→∞.

Solution: Suppose that f(z) is a bounded entire function, that is, there exists M ∈ R such that
|f(z)| < M for all z ∈ C. Fix R > 0, now for a, b ∈ D(0, R) the integral is bounded by;∣∣∣∣∣

∫
|z|=R

f(z)
(z − a)(z − b)

dz

∣∣∣∣∣ ≤ 2πRM
(R− |a|)(R− |b|)

→ 0 as R→∞

Now by direct computation we have∫
|z|=R

f(z)
(z − a)(z − b)

dz = 2πı (Res f(a) + Res f(b))

= 2πı
f(b)− f(a)

b− a
= 0

This implies that f(b) = f(a) for all a, b ∈ C, hence f(z) is constant.

Problem: Find the number of zeros of the function f(z) = 2z5 + 8z − 1 in the annulus 1 < |z| < 2.

Solution: Let D = {z ∈ C : 1 < |z| < 2}, then ∂D = {z ∈ C : |z| = 1 or |z| = 2}. Now consider the
function g(z) = 2z5 + 8z. Then |f(z)− g(z)| = 1 on ∂D. Now

|g(z)| = |2z5 + 8z| = |z||2z4 + 8|, on ∂D and 1 = min
z∂D
|z| ≤ |g(z)|

So we have |f(z)−g(z)| = 1 < 1+ |f(z)| on ∂D. Also both f(z) and g(z) are holomorphic on D. Hence
By Rouche’s theorem f(z) and g(z) have the same number of zeros in D. Now g(z) = z(2z4 + 8), which
implies z = 0 and z4 = −4. So the set of zeros that lie in D are

z = 41/4e2ıπk/4, k = 0, 1, 2, 3

So g(z) has 4 roots in D ∴ f(z) has 4 roots in D �

Problem: Find all roots of the equation 2z + sin(z) = 0 in the unit disc.

Solution: Clearly z = 0 is a root, to show that this is the only root consider f(z) = 2z, g(z) = sin(z).
Let z ∈ ∂D(0, 1), now by convexity of ez we have

|g(z)| = |e
ız − eız|

2
≤ e|z| + e−|z|

2
=
e

2
+

1
2e

< 2
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This implies that
|g(z)| < 2 = 2|z| = |f(z)| ∀z ∈ ∂D(0, 1)

Hence by Rouche’s theorem f(z) and f(g) + g(z) have the same number of roots in D(0, 1). 2z has 1
root in D(0, 1), therefore 2z + sin(z) has 1 root in D(0, 1), which is z = 0 �

Problem: If f(z) is an entire function satisfying the estimate

|f(z)| ≤ 1 + |z|
√

2010 ∀z ∈ C

Show that f(z) is a polynomial and determine the best upperbound for the degree of f(z).

Solution: First observe that 44 <
√

2010 < 45. Let R > 0 and consider the Cauchy estimate for
f (n)(0) on D(0, R). ∣∣∣f (n)(0)

∣∣∣ ≤ n!(1 +R
√

2010)
Rn

Now if we consider the Taylor expansion for f(z) about z = 0, we have

f(z) =
∞∑
n=0

anz
n ∀z ∈ C where an =

f (n)(0)
n!

If n >
√

2010, let α = n−
√

2010 > 0 then we have the estimates let

|an| =
|f (n)(0)|

n!
≤ 1
n!
· n!(1 +R

√
2010)

Rn
=

1
Rn

+
1
Rα
→ 0 as R→∞

Hence we have an = 0 for all n >
√

2010, which implies that an = 0 for all n ≥ 45. Therefore f(z) is a
polynomial of degree at most 44. �

Problem: Show that f(z) = αez − z has only one zero in U = {|z| < 1} if |α| < 1/3 and no zeros if
|α| > 3.

Solution: For |α| < 1/3, let g(z) = −z then we have

|f(z)− g(z)| = |αez| ≤ |α|ex < 1
3
e < 1 = |g(z)| on ∂U

Thus by Rouche’s thoerem f(z) and g(z) have the same number of zeros in U . Therefore f(z) has
exactly one zero in U since g(z) = −z has one zero.

For |α| > 3, let h(z) = αez, then we have

|f(z)− g(z)| = |z| = 1 ≤ 3
e
<
|α|
e
≤ |αez| = |h(z)| on ∂U

Thus by Rouche’s thoerem f(z) and h(z) have the same number of zeros in U . Therefore f(z) has no
zeros in U , since h(z) no roots. �

Problem: Show that there is a holomorphic function defined in the set

Ω = {z ∈ C : |z| > 4}
Whose derivative is

z

(z − 1)(z − 2)(z − 3)
.

Is there a holomophic function on Ω whose derivative is

z2

(z − 1)(z − 2)(z − 3)
?

Solution: Let γ be a closed curve lying outside of Ω. Now if there exists such a function F (z), such
that

F ′(z) = f(z) =
z

(z − 1)(z − 2)(z − 3)
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then the following condition should be satisfied∫
γ

F ′(z) = 0

It suffices to show this is true for γ = reıt, where r > 0. Now F ′(z) has 3 simple poles {1, 2, 3} lying
inside of γ. Hence we have ∫

γ

f(z) = 2πı (Res f(1) Res f(2) + Res f(3))

= 2πı
(

1
2
− 2 +

3
2

)
= 0

Hence by Morera’s there does exists such a function F (z) such that F ′(z) = f(z) �

Now consider the function

g(z) =
z2

(z − 1)(z − 2)(z − 3)
.

Using the same ideas above, we have∫
γ

g(z) = 2πı (Res f(1) Res f(2) + Res f(3))

= 2πı
(

1
2
− 4 +

9
2

)
6= 0

Hence there cannot exist a homomorphic function G(z) such that G′(z) = g(z) �

Find the integral ∫
|z|=2

4z7 − 1
z8 − 2z + 1

dz

Solution: Let f(z) = z8 − 2z + 1 and g(z) = z8, then we have

|f(z)− g(z)| = | − 2z + 1| ≤ 2|z|+ 1 = 5 on ∂D(0, 2)

Also we have
5 < 28 = |z|8 = |g(z)| on ∂D(0, 2)

Hence by Rouche’s theorem f(z) and g(z) have the same number of zeros including multiplicties in
D(0, 2). Since g(z) has 8 zeros, f(z) has 8 zeros in D(0, 2). Now observe∫

|z|=2

4z7 − 1
z8 − 2z + 1

dz =
1
2

∫
|z|=2

f ′(z)
f(z)

dz

and f(z) is entire and non-vanishing on ∂D(0, 2), since all of the roots of f(z) lie inside D(0, 2). Hence
by the argument principle we have∫

|z|=2

4z7 − 1
z8 − 2z + 1

dz =
1
2

(8) = 4 �

Normal Families

Problem: Let F be a family of holomorphic functions on the unit disk D for which there exists M > 0
such that ∫

D

|f(z)|dxdy ≤M, ∀f ∈ F .

Show that F is a normal family.

Solution: We want to show f ∈ F is bounded. Consider the following construction, fix r ∈ (0, 1)

D(0, 1) ⊂
⋃

z∈D(0,1)

D(z, r)
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Since D(0, 1) is compact there exists a finite number of {zk} such that

D(0, 1) ⊂ D(0, 1) ⊂
n⋃
k=1

D(zk, r)

Let ε = inf{r, |zk − ∂D(0, 1)}, now for any f ∈ F we have

f(zk) =
1
πε2

∫
D(zk,ε)

f(z) dA

⇒ |f(zk)| ≤ 1
πε2

∫
D(zk,ε)

|f(z)| dA

≤ 1
πε2

∫
D(0,1)

|f(z)| dA

≤ M

πε2
= Mε

Since D(zk, ε) ⊂ D(0, 1). Now this is for all zk and for all f ∈ F . Let M0 = maxMε. where the sup
is taken over all possible finite covers of

⋃
z∈D(0,1)

D(z, r). Then we have |f(z)| ≤ M0. Hence F is a

bounded family. Therefore by Montel’s theorem

∀{fk} ⊂ F ∃fkj s.t. fkj
u→ f0

Where f0 is holomorphic in D(0, 1), i.e. F is a normal family. �

Problem: Consider the family of functions {fα}α∈A that is holomorphic on a domain U . Suppose that
for all z ∈ U , and for all α ∈ A we have <(f(z) 6= (=(z)(f(z))2. Prove that {fα} is a normal family.

Solution: Consider the following two domains U1 := {z : x < y2} and U2 := {z : x > y2}. By the
Riemann open mapping theorem, there exists maps φ1 such that φ1 : U1 → D(0, 1) and φ2 such that
φ2 : U2 → D(2, 1). Now consider the following function:

h(z)α =

{
φ1 ◦ fα, fα ∈ U1

φ2 ◦ fα, fα ∈ U2

then hα is holomorphic in U and bounded hence by Montels theorem hα is a normal family �. Therefore
{fα} is a normal family.

Problem: Let F = {fα} be a family of holomorhiphc functions on D(0, 1) and for all z ∈ D(0, 1)

|f ′(z)|(1− |z|2) + |f(0)| ≤ 1.

Prove that F is a normal family.

Proof: Let ε > 0 and consider D(0, r) where r = 1− ε. Now for z ∈ D(0, r) we have

|f ′(z)| ≤ 1− |f(0)|
1− |z|2

Using the triangle inequality and integrating we have

f(z) =
∣∣∣∣∫ f ′(z) dz

∣∣∣∣ ≤ ∫ |f ′(z)|dz ≤ ∫ 1− |f(0)|
1− |z|2

dz <∞

this is valid for all z ∈ D(0, r) and for any f(z) ∈ F . Hence by Montel’s theorem F is a normal family.
�

Problem: Let Ω be a bounded domain in C, and let {fj}, j ∈ N be a sequence of analytic functions
on Ω such that ∫

Ω

|fj(z)|2dA(z) ≤ 1

Prove that {fj} is a normal family in Ω
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Proof: By definition a normal family implies that for every compact subset K of Ω, there exists a
subsequence {fjk} that converges uniformly some f0 in K. Fix a compact set K ⊂ Ω. Let r > 0, now
we have

K ⊂
⋃
x∈K

D(x, r)

as an open cover for K. Since K is compact there exists finite set {xi}, such that

K ⊂
n⋃
i=1

D(xi, r)

Now for each xj , we have the by the mean value theorem for holomorphic functions

|fj(xi)| ≤
1
πr2

∫
D(xi,r)

|fj(x, y)|dA

by Hölders inequality ≤ 1
πr2

µ(D(xi, r))‖fj(x, y)‖2 ≤ 1

Since µ(D(xi, r)) = πr2 and ‖fj(x, y)‖22 ≤ 1 by the hypothesis. Now this implies that fj(xi) is bounded
for all j and xi, hence it is uniformly bounded. Therefore by Montel’s theorem there exists a subsequence
{fjk} such that fjk converges uniformly on K. Thus {fj} is a normal family in Ω �

Problem: (a) State the Montel Theorem for normal family.

Montel’s Theorem: Let F be a family of holomorphic functions on an open set U ⊂ C. Suppose
that for each compact set K ⊂ U , there is M = M(K) such that |f(z)| ≤ M for all z ∈ K and all
f ∈ F . Then for every {fα} ⊂ F , there is a subsequence {fαk} that converges uniformly on compact
subsets of U to a holomorphic limit, in otherwords, F is a normal family.

(b) Let F be a set of holomorphic functions on the unit disk D(0, 1) so that

sup
0<r<1

∫ 2π

0

|f(reiθ)| dθ < 1.

Show that F is a normal family.

Solution: Let K ⊂ U be compact. Since K is compact and contained in D(0, 1), there is 0 < R < 1
such that K ⊂ D(0, R) ⊂ D(0, 1). Define ε > 0 as follows:

ε =
1
2

dist (∂K, ∂U) .

If z ∈ K and f ∈ F , then

f(z) =
1

2πi

∮
|w−z|=ε

f(w)
w − z

dw

=
1

2πi

∮
|w|=R+ε

f(w)
w − z

dw,

where the second line is by Cauchy’s integral theorem. Hence we have

|f(z)| ≤ 1
2π

∮
|w|=R+ε

|f(w)|
|w − z|

dw.

Now if |w| = R+ ε and z ∈ K, we have |w − z| ≥ ε since |z| ≤ R. Hence 1
|w−z| ≤

1
ε . Thus,

|f(z)| ≤ 1
2πε

∮
|w|=R+ε

|f(w)dw|

=
1

2πε

∫ 2π

0

|f((R+ ε)eiθ)|(R+ ε)dθ

=
(R+ ε)

2πε

∫ 2π

0

|f((R+ ε)eiθ)|dθ ≤ (R+ ε)
2πε

.
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Therefore |f(z)| is uniformly bounded on K. The same bound holds for all f ∈ F . Since this is for any
K ⊂⊂ U , by Montel’s theorem F is a normal family. �

Harmonic Functions

Problem: Let U be a bounded, connected, open subset of C, and let f be a nonconstant continuous
function on U which is holomorphic on U . Assume that |f(z)| = 1 for z on the boundary of U .

(a) Show that 0 is in the range of f .

Solution: By the max mod principle, the maximum of the function takes its max on the boundary,
hence we know that f(U) ⊂ D. If 0 /∈ f(U) then let g(z) = 1

f(z) , then we have |g(z)| = 1
|f(z)| = 1 which

implies that f(z) = 1 for all z ∈ U , which is a contradiction to the open mapping theorem. Hence 0 is
in the range of f .

(b) Show that f maps U onto the unit disk.

Solution: Let α ∈ D, set Bα =
z − α
1− az

. Consider h(z) = Bα ◦ f(z), then |h(z)| = 1 on ∂U which

implies that 0 ∈ h(U), by part (a), which implies that a ∈ f(U). Hence the image of f is the unit disk.

Problem: Let U : C→ R be harmonic. Prove or disprove each of the following.

(a) If u ≤ 0 for all z ∈ C, then u is constant on C.

Proof: Suppose u ≥ 0 in C, then u ≥ 0 on D(0, R) for any R > 0, so by Harnacks inequality we have

R− |z|
R+ |z|

u(0) ≤ u(z) ≤ R+ |z|
R− |z|

u(0), ∀z ∈ D(0, R)

taking R→∞, we have u(0) ≤ u(z) ≤ u(0). Therefore u(z) = u(0) hence u is constant.

(b) If u = 0 for all |z| = 1, then u(z) = 0 for all z ∈ C.

Proof: Suppose u = 0 for all z ∈ ∂D(0, 1), now consider D(0, 1), then by the maximum/minimum
modulus principle we have

max
z∈D(0,1)

u(z) = max
z∈D(0,1)

u(z) = min
z∈D(0,1)

u(z) = 0 ⇒ u ≡ 0 ∀z ∈ D(0, 1)

Now we have

0 = u(z) =
1

2π

∫ 2π

0

u(p+ reıθ) dθ

This implies that u = 0 on D(z, r), for all z ∈ D(0, 1) and for all r > 0. ∴ u(z) = 0 on C �

(c) If u = 0 for all z ∈ R, then u(z) = 0 for all z ∈ C.

Solution: The statement is not true, consider u(z) = u(x+ ıy) = y, then ∆u ≡ 0 and u(z) = 0 for all
z ∈ R but u 6= 0 �

Problem: Let u be a harmonic function on R2 that does not take zero value (i.e. u(x) 6= 0,∀x ∈ R2).
Show that u is constant.

Proof: u(x, y) 6= 0 implies that u(x, y) is either strictly positive or strictly negative. It suffices to
consider u(x, y) as strictly positive, (otherwise consider −u(x, y)). Then there exist f(z) holomorphic
on C, such that f(z) = f(x, y) = u(x, y) + ıv(x, y), where u(x, y) is the given harmonic function and
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v(x, y) is the harmonic conjugate of u(x, y). Now consider the following: e−f(z)

|e−f(z)| ≤ |e−u(x,y)| < 1

So e−f(z) is a bounded entire function. Hence by Liouville’s theorem e−f(z) must be constant, which
implies that f(z) is constant and thus that <(f(z)) = u(x, y) is constant �

Problem: Let u be a positive harmonic function on the right half plane {<(z) > 0}, and lim
r→0+

u(r) = 0.

Prove that then lim
r→0+

u(reıθ) = 0 for all θ ∈
(
−π2 ,

π
2

)
.

Solution: Since u is harmonic on R = {z : <(z) > 0}, there exists a function v which is conjugate
to u, i.e, the function f(z) = u + ıv is holomophic on R. Now f(z) is continuous on this set R and
lim
r→+

f(r) = 0. Now let θ ∈
(
−π2 ,

π
2

)
and let ρ(z) = erıφ. Now consider g(z) = f ◦ ρ ◦ ρ−1, then we have

lim
r→0+

g(z) = 0 → lim
r→0+

(f ◦ ρ)z = lim
r→0+

ρ(z) = 0

Hence we have lim
r→0+

u ◦ ρ(z) = lim
r→0+

u(reıθ) = 0 �

Problem: (a) Suppose a continuous function u : C→ R has the following property:

u(x+ ıy) =
1
4

(u(x+ a+ ıy) + u(x− a+ ıy) + u(x+ ı(y + a)) + u(x+ ı(y − a)))

for all a ∈ R. Does it imply that u is harmonic?

Solution: Yes, u(z) is harmonic and u(z) is in the following the set A = {u : C→ R : u is continuous},
check conditions. A is the space of the following polynomials a(xy3 − yx3) + b(x3 − 3xy2) + c(y3 −
3x2y) + d(x2 − y2) + ex+ fy + g, where the letters are complex numbers.

(b) Suppose a continuous function u : C→ R has the following property:

u(x+ ıy) =
1
4

(u(x+ a+ ıy) + u(x− a+ ıy) + u(x+ ı(y + a)) + u(x+ ı(y − a)))

for all a ∈ C. Does it imply that u is harmonic?

Solution: write z = x+ ıy and write a in it’s polar form, then for any a ∈ C we have the following:

u(z) =
1
4

(u(z + aeiθ) + u(z + aei(θ+π) + u(z + rei(θ+π/2)) + u(z + rei(θ+3π/2))

by integrating both sides with respect to θ from 0to2π we have

2πu(z) =
∫ 2π

0

u
(
z + aeıθ

)
dθ

so u(z) has the mean value property, hence u(z) is harmonic �

Problem: Let u and v be real-valued harmonic functions on the whole complex plane such that

u(z) ≤ v(z), z ∈ C

Find the relation between u and v.

Solution: Let h(z) = v(z) − u(z), then ∆h(z) = ∆v(z) −∆u(z) ≡ 0 on C. Let R > 0. Then by the
Harnack inequality, if |z| < R, as h(z) is real-valued harmonic on D(0, R) ⊂ C, 0 ≤ h(z) on C,

h(0) · R− |z|
R+ |z|

≤ h(z) ≤ h(0) · R+ |z|
R− |z|

.

Now fix z ∈ C. Then for all R > |z|, the above holds, and so

lim
R→∞

h(0) · R− |z|
R+ |z|

≤ h(z) ≤ lim
R→∞

h(0) · R+ |z|
R− |z|

.
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Hence we have h(0) ≤ h(z) ≤ h(0), which implies that h(z) = h(0), ∀z ∈ C. Thus

v(z)− u(z) = v(0)− u(0) ⇒ v(z) = u(z) + v(0)− u(0)
∴ v(z) = u(z) + α for some α ∈ C �

Remark: Harnack’s inequality: Let u be a nonnegative, harmonic function on a neighborhood of
D(0, R). Then, for any z ∈ D(0, R)

u(0) · R− |z|
R+ |z|

≤ u(z) ≤ u(0) · R+ |z|
R− |z|

.

Problem: Prove or disprove each of the statements:

(a) If f is a function on the unit disk D such that f2(z) is analytic on D, then f itself is analytic.

Solution: This statement is false. Let f(z) =
√
z, then f2(z) = z which is holomorphic on D(0, 1),

but f(z) is not holomorphic at z = 0.

(b) If f(z) is a continuously differentiable function on D, and if f2(z) is analytic on D, then f(z) itself
is analytic.

Proof: Let f(z) = f(x, y) = u(x, y) + ıv(x, y) where u, v are harmonic. Then f2(z) = u2(z)− v2(z) +
2ıu(z)v(z). Define g(z) and h(z) as follows:

g(z) := <(f2(z)) = u2(z)− v2(z)
h(z) := =(f2(z)) = 2u(z)v(z)

Now since f2(z) is holomorphic we know that f2(z) satisfies the Cauchy-Riemann equations, i.e.,

∂g

∂x
=
∂h

∂y

∂g

∂y
= −∂h

∂x

Computing the above we have

∂g

∂x
= 2u

∂u

∂x
− 2v

∂v

∂x
=
∂h

∂y
= 2u

∂v

∂y
+ 2v

∂u

∂y

this implies that

(1) u

(
∂u

∂x
− ∂v

∂y

)
= v

(
∂u

∂y
+
∂v

∂x

)
Computing the other equality we have

∂g

∂y
= 2u

∂u

∂y
− 2v

∂v

∂y
= −∂h

∂x
= −2u

∂v

∂x
− 2v

∂u

∂x

which implies that

(2) u

(
∂u

∂y
+
∂v

∂x

)
= v

(
∂v

∂y
− ∂u

∂x

)
Solving the above system of equations in (1) and (2) implies that for all z ∈ D(0, 1) either,

u2 + v2 = 0 or
∂u

∂x
=
∂v

∂y
,
∂u

∂y
= −∂v

∂x

The former case implies that u = v = 0, which implies f(z) = 0 and thus f(z) is analytic in D(0, 1). The
latter case implies f(z) satisfies the Cauchy-Riemann equations, and thus f(z) is analytic in D(0, 1).
Either way f(z) is analytic in D(0, 1). �

Suppose a function f : D(0, 1) → C is continuous and holomorphic in D. Suppose also that for any
z ∈ ∂D we have <f(z) = (=f(z))2. Prove that f(z) is constant.
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Proof: Let f(z) = f(x, y) = u(x, y) + ıv(x, y), where u and v are harmonic functions. From the
hypothesis we know that u = v2. Computing the partials we have

uxx = 2vvxx + 2v2
x uyy = 2vvyy + 2v2

y =

adding and factoring we have

0 = uxx + uyy = 2v(vxx + vyy) + 2(v2
xv

2
y) = 2(v2

xv
2
y)

this implies that vx = vy = 0 for all z ∈ ∂D, hence v and u are constant on ∂D. Then by uniquness of
the taylor expansion for f(z) = u(x, y) + ıv(x, y), f(z) must be constant as well. �

Conformal Mappings

Important Conformal maps

· Aut(C) = {f(z) : f(z) = az + b, a 6= 0}
· Aut(D(0, 1) = {f(z) : f(z) = eıθ z−a1−az , a ∈ D(0, 1), θ ∈ [0, 2π]}
· Aut(D(0, 1)− {0}) = {f(z) : f(z) = zeıθ, θ ∈ [0, 2π]}
· Aut(C ∪ {∞}) = {f(z) : f(z) = az+b

cz+d , ad− bc 6= 0}
· Biholo({z : =(z) > 0}, D(0, 1)) = z−ı

z+ı (Cayley transform)
· Biholo(D(0, 1), {z : =(z) > 0}) = ı 1+z

1−z (inverse Cayley transform)
· Biholo({z : =(z) > 0}, {z : =(z) > 0,<(z) > 0}) =

√
z (applies for the half disk as well)

· Two annli {z : r1 < |z| < r2}, {z : s1 < |z| < s2} are conformally equivalent iff r2/r1 = s2/s1

· Biholo({z : 0 < =(z) < ı,D(0, 1)) = ez

· Biholo({z : −π/4 < <(z) < π/4, D(0, 1)) = tan(z)
· Biholo({z : 1/2 < <(z), D(1, 1)) = 1

z

· Biholo({z : 0 < =(z), {0 < =(z), 0 < <(z) <∞}) = sin−1(z)

Problem: Find explicitly a conformal mapping φ which maps the strip{
z ∈ C :

1
3
< <(z) < 1

}
to the unit disk.

Solution: Let Ω =
{
z ∈ C : 1

3 < <(z) < 1
}

, define φ1 on Ω by

φ1 : z → 3
2

(
z − 1

3

)
Then φ1(Ω) = Ω1 := {z ∈ C : 0 < <(z) < 1}. Now define φ2 on Ω1 by

φ2 : z → ıπz

Then φ1(Ω1) = Ω2 := {z ∈ C : 0 < =(z) < π}. Now define φ3 on Ω2 by

φ3 : z → ez

Then φ3(Ω2) = Ω3 := {z ∈ C : 0 < =(z)}. Finally define φ4 on Ω3 by

φ4 : z → z − ı
z + ı

Then φ4(Ω3) = D(0, 1). Hence the composition

φ := φ4 ◦ φ3 ◦ φ2 ◦ φ1 =
eıπ( 3

2 z−
1
2 ) − ı

eıπ( 3
2 z−

1
2 ) + ı

maps Ω conformally onto D(0, 1) �

Problem: Find explicitly a conformal mapping of the domain

U = {z ∈ C : |z| < 1,<(z) > 0,=(z) > 0}
to the unit disk.
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Solution: First consider the map
φ1(z) = z2

this takes the quarter disk into the upper half disk. Then the map

φ2(z) = ı
1 + z

1− z
takes the half disk into the upper half plane and finally the cayley transform

φ3(z) =
z − ı
z + ı

which takes the upper half plane into the unit disk. Therefore the map

(φ3 ◦ φ2 ◦ φ1)z =
(1 + z)− ı(1− z)2

(1 + z) + ı(1− z)2

maps the quarter disk U conformally to the unit disk �

Problem: Find explicitly a conformal mapping of G onto the unit disk, where

G =
{
z = x+ ıy; |z| < 1 and y > −1/

√
2
}

Solution: Consider the map φ1(z) defined as

φ1(z) =
√

2z + i+ 1√
2z + i− 1

.

This sends 1√
2
(−1− i) to 0, − 1√

2
i to −1, and 1√

2
(1− i) to ∞. Then let G1 := φ1(G), so we have

G1 = {z = reıθ : 0 < r <∞, π/4 < θ < π}
Now φ1 maps G into G1 conformally. Next consider the map φ2(z) defined by

φ2(z) = e−
π
4 iz

Then let G2 := φ2(G1), so we have

G2 = {z = reıθ : 0 < r <∞, 0θ3π/4}
Then φ2 maps G1 into G2 conformally. Now define φ3(z) by

φ3(z) = z
4
3

Then let G3 := φ3(G2), so we have

G3 = {z = x+ ıy : y > 0}
Then φ3 maps G2 into G3 conformally. Finally define φ4 as the Cayley transform , which maps the
upper half plane into the unit disk. So define φ(z) as

φ(z) = (φ4 ◦ φ3 ◦ φ2 ◦ φ1)(z)⇒ φ(z) =

(
e−

π
4 i
(√

2z+i+1√
2z+i−1

)) 4
3 − i(

e−
π
4 i
(√

2z+i+1√
2z+i−1

)) 4
3

+ i

.

Then φ(z) maps the set G into the unit disk conformally. �

Schwarz Reflection Priciple

Problem: Let L ⊂ C be the line L = {x+ ıy : x = y}. Assume that f is an entire function, such that
for any z ∈ L, f(z) ∈ L. Assume that f(1) = 0. Prove that f(ı) = 0.

Proof: Because 1 and ı have symmetry about L, we want to consider the Schwarz reflection principle.
First consider the following change of coordinates:

φ(z) = ze−ıπ/4 ⇒ p := φ(1) =
(

1√
2
,− 1√

2

)
, p := φ(ı) =

(
1√
2
,

1√
2

)
.
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Now consider the function h(z) = (φ ◦ f ◦ φ−1)z then h(z) maps the real line to the real line. since
(f ◦ φ−1)(R) = f(L) ⊂ L. So for z = x ∈ R we have h(z) = h(z).

h(p) = (φ ◦ f ◦ φ−1)p = (φ ◦ f)1 = φ(0) = 0

and since h(z) = h(z) on the real line we have

0 = h(p) = h(z) = (φ ◦ f ◦ φ−1)p = (φ ◦ f)ı

Which implies that φ−1(0) = f(ı) = 0 �

Problem: Let f(z) be holomorphic in the upper half plane U = {z = x + iy : y > 0} and continuous
on U . Assume f(x) = ix3 for all x ∈ (0, 10). Find all such f(z).

Solution: Let g(z) = f(z)− iz3, then g(z) is holomorphic on U . Define U0 as follows:

U0 = {z = x+ iy : 0 < x < 10, y > 0}

Then g(z) is holomorphic on U0 and continuous on U0 ∪ (0, 10), furthermore

lim
z→(0,10)

=(g(z)) = 0, ∀z ∈ U0

Hence by the Schwarz reflection principle for holomorphic functions, we have

ĝ(z) =


g(z) z ∈ U0

g(x) = f(x)− ix3 z = x ∈ (0, 10)
g (z) z ∈ U0

is holomorphic on U1 = {z = x + iy : 0 < x < 10, y ∈ R}. Now {z ∈ U1 : ĝ(z) = 0} ⊃ (0, 10), which
has an accumulation point in V . Thus by uniqueness, ĝ ≡ 0 on U1. This implies g ≡ 0 on U0, and
hence U0 ⊂ {z ∈ U : g(z) = 0}, which has an accumulation point on U . Which again implies, by the
uniqueness theorem, g ≡ 0 on U . Therefore f(z) = iz3 on U �

Remark: Schwarz reflection principle for holomorphic functions: Let V be a connected
open set in C such that UR = V ∩(real axis) = {x ∈ R : a < x < b} for some a, b ∈ R. Set
U = {z ∈ V : =(z) > 0}. Suppose that F : U → C is holomorphic and that

lim
z→x
=(F (z)) = 0, z ∈ U

for each x ∈ UR. Define Û = {z ∈ C : z ∈ U}. Then there is a holomorphic function G on U ∪ Û ∪ VR
such that G

∣∣
U

= F . In particular,

G(z) =


F (z) z ∈ U
limz→x<(F (z)) z ∈ U, x ∈ UR
F (z) z ∈ Û

Problem: Let f(z) be analytic and satisfy |f(z)| ≤ 100|z|−2 in strip α1 ≤ <(z) ≤ α2. Prove the
function

h(x) =
∫ ∞
−∞

f(x+ ıy)dy

is a constant function of x ∈ [α1, α2].

Proof: Let x1, x2 ∈ [α1, α2] such that x1 < x2, R > 0 and consider the following contour Γ.

Γ =


γ1 := x2 + ıt t ∈ [−R,R]
γ2 := −t t ∈ [x1 + ıR, x2 + ıR]
γ3 := x1 − ıt t ∈ [−R,R]
γ4 := t t ∈ [x1 − ıR, x2 − ıR]
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Now since f(x) is analytic we know that
∫

Γ

f(z) dz = 0. Now computing γ1 we have∫
γ1

f(z) dz = ı

∫ R

−R
f(x2 + ıt) dt ⇒ ı

∫ ∞
−∞

f(x2 + ıt) dt as R→∞

Also for γ3 and with the change of variable y = −t we have∫
γ3

f(z) dz = ı

∫ R

−R
f(x1 − ıt) dt ⇒ − ı

∫ ∞
−∞

f(x1 + ıy) dy as R→∞

Now for γ2 and z lying on the line γ2 we have∣∣∣∣∫
γ2

f(z) dz
∣∣∣∣ ≤ ∫ x2+ıR

x1+ıR

f(t) dt

≤
∫ x2+ıR

x1+ıR

100
|z|2

=
100
|z|2

(x2 − x1)→ 0 as R→∞

For γ4 and z lying on the line γ4 we obtain the same result as in γ2. This implies that

0 = ı

∫ ∞
−∞

f(x2 + ıt) dt− ı
∫ ∞
−∞

f(x1 + ıt) dt ⇒
∫ ∞
−∞

f(x2 + ıt) dt =
∫ ∞
−∞

f(x1 + ıt) dt

Now this is for all x1, x2 ∈ [α1, α2]. Therefore h(x) must be constant �.

Problem: Prove that the product
∞∏
k=1

(
zn

n!
+ exp

( z
2n
))

converges uniformly on compact sets to an entire function.

Solution: Denote the above product p(z). Fix r > 0 and consider D(0, r). By the triangle inequality
we have

∞∑
n=1

1− zn

n!
+ exp

( z
2n
)
≤
∞∑
n=1

∣∣∣1− ez/2n ∣∣∣+
∞∑
n=1

∣∣∣∣znn!

∣∣∣∣
now the last series converges everywhere on C to ez. So all the needs to be shown is the first series
∞∑
n=1

|1− ez/2
n

| is finite on compact disks. Now there exists ρ > 0 such that for all z ∈ D(0, ρ) we have

|1− ez| ≤ cρ|z|. This implies

∀z s.t.
∣∣∣ z
2n

∣∣∣ < ε ⇒ |1− ez/2
n

| ≤ cρ
|z|
2n

Hence we have
∞∑
n=1

∣∣∣1− ez/2n ∣∣∣ < cρ

∞∑
n=1

|z|
2n
, z ∈ D(0, ρ− ε)

Therefore the product p(z) converges �

Problem: Let f : C→ C be an entire function such that

f(z + 1) = f(z), |f(z)| ≤ e|z|, z ∈ C

Prove that f must be constant.

Solution: Consider A = {z ∈ C : 0 ≤ <(z) <≤ 1}, and

g(z) =
f(z)− f(1/2)

cos(πz)
for z ∈ A
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Now at g(z) is bounded on A, since z = 1/2 is a removable singularity. Hence by Louville’s theorem
g(z) = c, this implies that

f(z) = f(1/2) + c cos(πz) ⇒ |f(z)| = |f(1/2) + c cos(πz)| ≤ e|z| ⇔ c = 0

Which implies that f(z) = f(1/2), hence f(z) is constant �

Problem: Let h : C→ R be harmonic and non-constant. Show that h(C) = R

Solution: Suppose that h(C) ⊂ [k,∞) then, h(z) − k ⊂ [0,∞). Now consider and entire function
f(z) ∈ O(C) st <(f(z)) = h(z) then e−f(z) ∈ OC and |e−f | = e−h ≤ 1. so e−h is constant, which is a
contradiction, therefore h(C) = R.

Problem: Let f be holomorphic in D(0, 2) and continuous in D(0, 2). Suppose that |f(z)| ≤ 16 for
z ∈ D(0, 2) and f(0) = 1. Prove that f has at most 4 zeros in D(0, 1).

Solution: Consider the following:

ln(f(0)) +
n∑
k=1

ln
∣∣∣∣ zak

∣∣∣∣ =
1

2π

∫ 2π

0

ln |f(2eıθ)| dθ ≤ ln(16)

Now if |ak| < 1 we have

ln
∣∣∣∣ 2
ak

∣∣∣∣ ≥ ln |2|

Hence we have

ln(2) ≤
n∑
k=1

ln
∣∣∣∣ 2
ak

∣∣∣∣ ≤ 4 ln(2)

Thus f(z) has at most 4 zeros inside D(0, 1) �

Problem: Denote A = {r < |z| < R}, where 0 < r < R < ∞. TRUE OR FALSE: For every ε > 0
there exists a polynomial p(z) such that

sup
{∣∣∣∣p(z)− 1

z2

∣∣∣∣ , z ∈ A} < ε

Solution: The statement is true. Let ρ =
R+ r

2
and consider the following:

sup
|z|=ρ

1
|z|2

∣∣p(z)z2 − 1
∣∣ < ε ∀ε > 0

Fix ε > 0 now this implies that
sup
|z|=ρ

∣∣p(z)z2 − 1
∣∣ < ερ2 = δ

Now let f(z) = z2p(z) − 1, then f(0) = −1, since f(z) is a polynomial f(z) = u(z) + ıv(z), for some
harmonic functions u(z) and v(z). Now |f(z)|2 = |u(z)|2 + |v(z)|2, so if |f(z)|2 ≤ δ, then |u(z)|2 < δ;
however on D(0, ρ) we have |u(0)| = 1, which is a contradiction to the maximum principle, since
|u(0)| = 1 and u(z) < δ �

Infinite productions and their applications

Convergence of infinite products
∞∑
k=1

|ak| <∞ ⇔
∞∏
k=1

(1 + |ak|) <∞ ⇒
∞∏
k=1

(1 + ak) <∞

Remark: Let E0 = 1− z, Ep = E0exp

(
p∑
k=1

zk

k!

)
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Lemma: Let {ak} such that ak 6= 0 be a sequence with no accumulation point. If pj are positive
integers such that

∞∑
k=1

(
r

|ak|

)pj
<∞ ∀r > 0

Then the product
∞∏
k=1

Epk

(
z

ak

)
converges uniformly on compact subsets of C to an entire function.

Proof: ∣∣∣∣Epk zak − 1
∣∣∣∣ ≤ ∣∣∣∣ zak

∣∣∣∣pk+1

≤
∣∣∣∣ rak

∣∣∣∣pk
Now

∞∑
k=1

∣∣∣∣ rak
∣∣∣∣pk < ∞ hence

∞∑
k=1

∣∣∣∣Epk zak − 1
∣∣∣∣ < ∞, thus

∞∏
k=1

Epk

(
z

ak

)
converges normally to an entire

function. �

Weierstrass Factorization: Let f(z) be an entire function, and suppose f(z) vanishes at 0 of order
m. Let {ak} be the non-zero zeros of f(z). Then there exists an entire function g(z) such that

f(z) = zmeg(z)
∞∏
k=1

Ek−1

(
z

ak

)

Mittag-Leffler Theorem: Let U ⊂ C open, and let {aj} be a set of distinct elements with no
accumulation point in U . Suppose for all j, Vj is a neighborhood of aj such that aj /∈ Vk for k 6= j and
suppose that mj is meromorphic on Vj with only pole aj . Then there exists a meromorphic function
m(z) on U such that m−mj is holomorphic on Vj for all j which has no poles other then those at aj

Second version: Let U ⊂ C open, and let {aj} be a set of distinct elements with no accumulation
point in U . Let sj be a sequence of Laurent polynomials, i.e.

sj =
−1∑

n=−p(j)

ajn(z − aj)n

Then there exists a meromorphic function on U whose principle part at each aj is sj and has no other
poles.

Jensen’s formula: Let f(z) be holomorphic in a neighborhood of D(0, r). Suppose that f(0) 6= 0,
let {ak} be the zeros according to their multiplicities, then

ln(f(0)) +
n(r)∑
j=1

ln
∣∣∣∣ raj
∣∣∣∣ =

1
2π

∫ π

0

ln
∣∣f (reıθ)∣∣ dθ

Where n(r) is the number of zeros of f(z) counting multiplicities.

Problem: Show that if f(z) is a nonconstant holomorphic function on D(0, 1) with f(0) 6= 0 and {ak}
as the roots then

∞∑
k=1

(1− |ak|) <∞

Solution: Let M = sup{|f(z)| : z ∈ D(0, r)}, where 0 < r < 1, by Jensen’s formula we have

ln |f(0)|+
n(r)∑
n=k

ln
∣∣∣∣ 1
ak

∣∣∣∣ =
1

2π

∫ 2π

0

ln
∣∣f(reıθ)

∣∣ dθ ≤ ln(M)
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where n(r) is the number of roots inside D(0, 1), which implies that
n(r)∑
n=k

ln
∣∣∣∣ rak

∣∣∣∣ ≤ ln(M)− ln(f(0))

Letting r → 1− we have
n(r)∑
n=k

ln
∣∣∣∣ 1
ak

∣∣∣∣ ≤ ln(M)− ln(f(0)) <∞

and
∞∑
k=1

(1− |ak|) ≤
n(r)∑
n=k

ln
∣∣∣∣ 1
ak

∣∣∣∣ <∞
Problem: For which real values of ρ and µ does the following product converges normally on C

∞∏
n=1

(
nµ − z
nρ

)
Solution: Denote an = nµ−ρ − z

nρ , now we have the following
∞∏
n=1

an <∞ ⇔
∞∑
n=1

(1− |an|) <∞

Fix r > 0 then for all z in D(0, r) we have
nµ − z
nρ

→ 1 ⇔ µ = ρ, µρ > 0

Now let µ = ρ ∈ (0, 1], then we have
∞∑
n=1

(
1−

∣∣∣1− z

nρ

∣∣∣) ≤ ∞∑
n=1

∣∣∣ z
nρ

∣∣∣ =∞

Therefore if µ = ρ and µ, ρ > 1,
∞∏
n=1

an <∞ �

Problem: Let f(z) be an entire functions such that |f(z)| = 1 for each |z| = 1. Find all such entire
functions.

Solution: Consider D(0, 1) and first notice that the set of roots of f(z) must be finite. Now let {ak}
be the set of roots of f(z) inside D(0, 1) and consider the following function.

φ(z) =
n∏
k=1

z − ak
1− akz

Now since φ(z) shares the same roots as f(z) inside D(0, 1) we have
f(z)
φ(z)

is holomorphic inside D(0, 1).

Furthermore we have
∣∣∣∣f(z)
φ(z)

∣∣∣∣ = 1 if |z| = 1, this implies that
f(z)
φ(z)

= 1 for all z ∈ D(0, 1). Hence

f(z) = ωφ(z) for some ω ∈ ∂D(0, 1). Now f(z) is entire which implies that āk = 0 for all k. Therefore
f(z) = ωzn, for any n ∈ N are all such entire functions �

Problem: Set U = {z = x + ıy : x > 0, |y| < x}. Suppose that given a sequence of holomorphic

functions fn : D → U , where D is the unit disk. Prove that if
∞∑
n=1

f(0) converges then the series

∞∑
n=1

f(z) converges normally on D.
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Solution: Consider the translation gn(z) = eıπ/4fn(z). Now gn(z) = un(z) + ıvn(z) where un(z) and
vn(z) are harmonic functions. Also

∞∑
n=1

gn(0) <∞ ⇔
∞∑
n=1

f(0) <∞

Now Harnacks principle says that un(z), vn(z), either converge normally to infinity for all z ∈ D(0, 1),
or un(z), vn(z) are finite for all z ∈ D(0, 1). Now

∞∑
n=1

gn(0) =
∞∑
n=1

un(0) + ı

∞∑
n=1

vn(0) <∞

by assupmtion. Therefore
∞∑
n=1

gn(z) is finite for all z ∈ D(0, 1), and hence
∞∑
n=1

fn(z) converges normally

on D(0, 1) �.

Problem: Suppose that f(z) is holomorphic in the unit disk D, continuous on D, and has the following
properties:

a) |f(0)| = a > 1
b) |f(z)| > a3 for every z ∈ ∂D
c) f(z) does not have zeroes in D(0, 1/a)

Prove that f(z) must have at least three zeros in D.

Solution: Let 1 > r >

∣∣∣∣1a
∣∣∣∣ and consider D(0, r). Denote n(r) as the number of roots inside D(0, r).

Now

ln(f(0)) +
n(r)∑
k=1

ln
∣∣∣∣ rak

∣∣∣∣ =
1

2π

∫ 2π

0

ln
∣∣f (reıθ)∣∣ dθ

where {ak} are the roots of f(z) inside D(0, r). So we have

ln(a) +
n(r)∑
k=1

ln
∣∣∣∣ rak

∣∣∣∣ > 1
2π

∫ 2π

0

dθ = ln(a3)

which implies that
n(r)∑
k=1

ln
∣∣∣∣ 1
ak

∣∣∣∣ > 2 ln(a) as r → 1−

Hence n(r) > 2, therefore f(z) must have at least 3 zeros inside D(0, 1) �.

Problem: Suppose that both series

f(z) =
∞∑
n=1

anz
n and g(z) =

∞∑
n=1

bnz
n

converge in some neighborhoos of the origin. Assume that for each n ∈ N either bn = an or bn = 0. In
other words, the series for g(z) is obtained by ”removing” some terms from the series for f(z).

a) Is it possible that the radius of convergence for g(z) is strictly larger than the radius of convergence
for f(z)? Strictly smaller?

Solution: The raduis of convergence can be larger. Suppose there exists N ∈ N such that bn = 0 for
all n > N , then the radius of convergence for g(z) is infinite since g(z) is a polynomial. Otherwise if
there does not exist such an N . Consider the seqence bnj = bn if bn = an then we have

lim
n→∞

sup |an|−1/n = lim
n→∞

sup |bnj |−1/n = lim
n→∞

sup |bn|−1/n
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Hence the radii of convergence are the same.

b) Is it possilbe that the domain of holomorphy for g(z) (the largest open connect set where the function
g(z) can be extended) is strictly larger that the domain of holomorphy for f(z)? Strictly smaller?

Solution: The domain of holomorphy can be larger or smaller. For both cases consider the following
function f(z)

f(z) =
∞∑
n=1

zn =
1

1− z
The domain of holomorphy for f(z) is C− {1}. Now fix N and let bn = 0 for all n > N , then g(z) is a
polynomial of degree N , and hence is entire. For a smaller domain consider the following g(z)

g(z) =
∞∑
n=1

z2n

where bn = 0 for the non 2n terms in f(z). Then the domain of holomorphy for g(z) is exactly D(0, 1),
which is much smaller then C− {1} �

Problem: Let f be analytic in the unit disk D(0, 1) and continuous on D(0, 1). Assume that

|f(z)| = |ez| ∀z ∈ ∂D(0, 1)

Find all such f .

Solution: Let αi be the zeros of f(z) inside D(0, 1). Then there exists only a finite number of
αi ∈ D(0, 1), Otherwise {αi} would have an accumulation point, hence f(z) ≡ 0. Consider the Blaschke
factors, and the Blaschke product defined by:

φj(z) =
z − αj
1− ᾱjz

φ(z) =
n∏
j=1

φj(z)

where n is the number of roots includeing multiplicites. Note that |φ(z) = 1| when |z| = 1, now consider
the following:

g(z) =
f(z)
φ(z)ez

→ |g(z)| = 1 for z ∈ ∂D(0, 1)

Now all sigularities of g(z) are removable, so by Riemanns removeable singularity theorem, there is a
holomorphic function ĝ(z) with the same properties as g(z). Now by the maximum modulus principle
we have |g(z)| ≤ 1, for all z ∈ D(0, 1). Also, by the minimum modulus principle we have |g(z)| ≥ 1 for
all z ∈ D(0, 1). therefore we have g(z) = ω, where ω ∈ ∂D(0, 1).

∴ f(z) = ωφ(z)ez z ∈ D(0, 1) �


