# Analysis qual study guide <br> James C. Hateley 

## 1. Real Analysis

Exercise 1.1. Suppose that $f:[0,1] \rightarrow(0,1)$ is a non-decreasing function. Prove or disprove that there exists $x \in(0,1)$ such that $f(x)=x$.

Proof: First notice note that $0<f(0) \leq f(1)<1$ and so $f^{n}:(0,1) \rightarrow(0,1)$ for all $n \in \mathbb{N}$. Let $x \in(0,1)$, now if $f(x) \leq x$, then $(f \circ f)(x) \leq f(x)$. Otherwise if $x \leq f(x)$ then $f(x) \leq(f \circ f)(x)$ since $f$ is a non-decreasing function. (WLOG) for a given $x$ suppose $x \leq f(x)$, then $f(x) \leq f^{n}(x)<1$ for all $n \in \mathbb{N}$. So $\left\{f^{n}(x)\right\}$ is a bounded monotonic sequnce. Therefore by the monotone convergence theorem for real numbers, there exists a $y \in(0,1)$ such that $f^{n}(x) \rightarrow y$ as $n \rightarrow \infty$. Now

$$
\lim _{n \rightarrow \infty} f^{n}(x)=y \quad \Rightarrow \quad f\left(\lim _{n \rightarrow \infty} f^{n}(x)\right)=f(y)=y
$$

since $f\left(\lim _{n \rightarrow \infty} f^{n}(x)\right)=\lim _{n \rightarrow \infty} f^{n+1}(x)=y$
Exercise 1.2. Suppose that $\mathcal{X}$ is a compact metric space and that $f: \mathcal{X} \rightarrow \mathcal{X}$ is an isometry. Prove that $f(\mathcal{X})=\mathcal{X}$.

Proof: If $f(x)$ is an isometry and if $d$ is the metric on $\mathcal{X}$ we have $d(x, y)=d(f(x), f(y))$. Now suppose that $f(x)$ is not surjective, then the set $\mathcal{X} \backslash f(\mathcal{X})$ is non empty, so let $x \in \mathcal{X} \backslash f(\mathcal{X})$. We have then $0<2 \epsilon=\operatorname{dist}(x, f(\mathcal{X}))$ for some $\epsilon>0$. Since $\mathcal{X}$ is compact, there exists a finite open covering $\mathcal{O}$ such that

$$
\mathcal{O}=\bigcup_{i=1}^{N} B\left(x_{i}, \epsilon\right)
$$

for some $x_{i}$ and some $N$, choose $N$ to be as small as possible. Since $x \in B\left(x_{\alpha}, \epsilon\right)$ for some $x_{\alpha}$ and $2 \epsilon=\operatorname{dist}(x, f(\mathcal{X}))$ we have $B\left(x_{\alpha}, \epsilon\right) \subset \mathcal{X} \backslash f(\mathcal{X})$. This contradicts the minimality of this $N$, therefore $f$ is surjective.

Exercise 1.3. Let $f$ be a real-valued function defined on $[1, \infty)$, satisfying $f(1)=1$ and $f^{\prime}(x)=$ $\frac{1}{x^{2}+f(x)^{2}}$. Prove that $\lim _{x \rightarrow \infty} f(x)$ exists and is less thatn $1+\frac{\pi}{4}$.

Proof: First notice that $f^{\prime}(x) \rightarrow 0$ as $x \rightarrow \infty$ and that $f^{\prime}(x)>0$ and so $f(x)$ is always increasing. Since $f(1)=1$ and $f(x)$ is always increasing we have $f(x) \geq 1$ for all $x \in[1, \infty)$. Now

$$
f^{\prime}(x)=\frac{1}{x^{2}+f(x)^{2}} \leq \frac{1}{x^{2}+1}
$$

and so

$$
\int_{1}^{x} f^{\prime}(t) d t \leq \int_{1}^{x} \frac{1}{t^{2}+1} d t \leq \int_{1}^{\infty} \frac{1}{t^{2}+1} d t=\left.\tan ^{-1}(t)\right|_{1} ^{\infty}=\frac{\pi}{4}
$$

The second inequality is justified since we integrate a positive function over a larger set. So we have

$$
\int_{1}^{x} f^{\prime}(t) d t \leq \frac{\pi}{4} \quad \Rightarrow \quad f(x)-f(1) \leq \frac{\pi}{4} \quad \Rightarrow \quad f(x) \leq 1+\frac{\pi}{4}
$$

and the result is shown.
Exercise 1.4. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function with the property:

$$
\liminf _{y \rightarrow x} \frac{f(x)-f(y)}{x-y}>0, \quad \forall x \in \mathbb{R}
$$

Prove that $f$ is strictly increasing.

Proof: For all $\epsilon>0$, there is a $\delta>0$ such that if $|x-y|<\delta$, then we have

$$
\begin{equation*}
\frac{f(x)-f(y)}{x-y} \geq \epsilon \tag{1.1}
\end{equation*}
$$

Now for a given $\epsilon$ consider the covering $\mathbb{R}$ by $B\left(x_{\alpha}, \eta_{\alpha}\right)$, for $x_{\alpha} \in \mathbb{R}$ and where $0<\eta_{\alpha}$ is chosen such that 1.1 is satified. By Lindelöf's covering theres there is a countable subcover of this. Enumerate this subcover as $B\left(x_{i}, \eta_{i}\right)$. Choose $y_{i}, z_{i} \in B\left(x_{i}, \eta\right)$ such that $y_{i}<x_{i}<z_{i}$. Now for each $x_{i}$ and $z_{i}$ we have

$$
f\left(x_{i}\right)-f\left(y_{i}\right) \geq \epsilon\left(x_{i}-y_{i}\right)>0 \text { and } f\left(z_{i}\right)-f\left(x_{i}\right) \geq \epsilon\left(z_{i}-x_{i}\right)>0
$$

Hence we have if, by transitivity,

$$
x>y \quad \rightarrow \quad f(x)>f(y)
$$

In other words $f$ strictly increasing.
Exercise 1.5. If the function $f$ has a continuous derivative on $[0,1]$, prove that

$$
\int_{0}^{1} f^{\prime}(x) d x=f(1)-f(0)
$$

Proof: By definition of the Reimann integrable integral for the interval $[0,1]$ we have

$$
\int_{0}^{1} f^{\prime}(x) d x=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} f^{\prime}\left(x_{i}\right)
$$

Where $x_{i} \in\left[t_{i-1}, t_{i}\right]$ and $\left\{t_{i}\right\}_{i=0}^{n}$ is a a partition of $[0,1]$. Now by the mean value theorem for derivatives, for each subinterval $\left[t_{i-1}, t_{i}\right]$ of the partition $[0,1]$, there exists an $c_{i}$ such that

$$
f^{\prime}\left(c_{i}\right)=\frac{f^{\prime}\left(t_{i}\right)-f\left(t_{i-1}\right)}{t_{i}-t_{i-1}}
$$

Let $x_{i}=c_{i}$ for each subinterval in the partition. So we have

$$
\int_{0}^{1} f^{\prime}(x) d x=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} f^{\prime}\left(c_{i}\right)=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \frac{f\left(t_{i}\right)-f\left(t_{i-1}\right)}{t_{i}-t_{i-1}}
$$

Now $\left|t_{i}-t_{i-1}\right|=1 / n$, hence we have

$$
\int_{0}^{1} f^{\prime}(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(t_{i}\right)-f\left(t_{i-1}\right)=\lim _{n \rightarrow \infty}(f(1)-f(0))=f(1)-f(0)
$$

Exercise 1.6. If the function $f:[0, \infty) \rightarrow \mathbb{R}$ is continuous and $\lim _{x \rightarrow \infty} f(x)$ exists, prove that $f(x)$ is uniformly continuous on $[0, \infty)$.

Proof: Want to show that:

$$
\begin{equation*}
\forall \epsilon>0, \exists \delta>0 \text { s.t. if }|x-y|<\delta_{\epsilon} \Rightarrow|f(x)-f(y)|<\epsilon \tag{1.2}
\end{equation*}
$$

Now since $\lim _{x \rightarrow \infty} f(x)$ this means that first the limit is finite, and then for all $\eta>0$ there exists $N \in \mathbb{N}$ such that $|f(x)-L|<\eta$ for all $x>N$, where $L$ is the limit. Now consider the interval $[0, N]$, since $[0, N]$ is closed and bounded so continuity implies uniform continuity, so given an $\epsilon>0$ there is a $\delta_{1}>0$ such that 1.2 is satified. Let $x, y \in[N, \infty)$ since $|f(x)-L|<\eta$ and $|f(y)-L|<\eta$ we have by the triangle inequality

$$
|f(x)-f(y)| \leq|f(x)-L|+|L-f(y)|<2 \eta=\epsilon
$$

This implies that for any $\epsilon>0$, and $N$ large enoughth if $x, y>N$, then $|f(x)-f(y)|<\epsilon$, denote $\delta_{2}=\eta$. So if $|x-y|<\delta_{2}$, then we have $|f(x)-f(y)|<\epsilon$. In otherwords $f(x)$ is uniformly continuous on $(N, \infty)$. Let $\delta_{\epsilon}=\min \left\{\delta_{1}, \delta_{2}\right\}$. This $\delta_{\epsilon}$ either depends on $\epsilon$ or $N$, in the later case $N$ depends on $\epsilon$. This implies 1.2 is will be satified, so the result is shown.

Exercise 1.7. If $A \subset \mathbb{R}^{n}$ is nonempty, define the distance $d_{A}$ of $x \in \mathbb{R}^{n}$ to $A$ by

$$
d_{A}(x)=\inf \{\|x-z\|: z \in A\}
$$

(a) Show that if $x, y \in m R^{n}$ then $\left|d_{A}(x)-d_{A}(y)\right| \leq\|x-y\|$.
(b) If $n=2$ and $A=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1}^{2}+x_{2}^{2}>1\right\}$, find a point in $\mathbb{R}^{2}$ at which $d_{A}$ is not differentiable.

Justify your claim.
Proof: For part (a) we can think of $z$ as defined in the function $d_{A}$ like an orthogonal projection to $A$, then $d_{A}$ returns the length of this projection. Let $x, y \in \mathbb{R}^{n}$ and $z \in A$

$$
\begin{aligned}
d_{A}(x) \leq\|x-z\| & \leq\|x-y\|+\|y-z\|
\end{aligned} \quad \Rightarrow \quad d_{A}(x)-\|y-z\| \leq\|x-y\|
$$

Now subtracting we can obtain the following:

$$
\begin{aligned}
d_{A}(x)-d_{A}(y) & \leq\|y-z\|-\|z-x\| \leq\|y-x\| \\
d_{A}(y)-d_{A}(x) & \leq\|x-z\|-\|z-y\| \leq\|y-x\|
\end{aligned}
$$

which implies $\left|d_{A}(x)-d_{A}(y)\right| \leq\|x-y\|$.
(b) Consider the point $(0,1)$. Then we have $d_{A}(0,1)=0$. Now

$$
\lim _{h \rightarrow 0} \frac{d_{A}(0,1+h)-0}{h}=\lim _{h \rightarrow 0} \frac{h}{h}=1
$$

and

$$
\lim _{h \rightarrow 0^{+}} \frac{d_{A}(h, 1)-0}{h}=\lim _{h \rightarrow 0^{+}} \frac{\sqrt{1+h^{2}}}{h}=\infty
$$

The one-sided partial $\partial_{x^{+}}$is unbounded at $(0,1)$ hence the derivative cannot exist.
Exercise 1.8. Let $\left\{f_{n}\right\}$ be a sequence of functions on $[0,1]$ such that

$$
\sup _{x \in[0,1]}\left|f_{n}(x)\right|=M_{n}<\infty, \quad n \in \mathbb{N} .
$$

Suppose $\left\{f_{n}\right\}$ converges uniformly on $[0,1]$. Prove that there exists $M, 0 \leq M<\infty$, such that for all $x \in[0,1]$ and $n \in \mathbb{N}$ the inequality $\left|f_{n}(x)\right| \leq M$ holds.

Proof: If $\left\{f_{n}(x)\right\}$ converges uniformly, then there exists a function $f$ such that for each $x \in[0,1]$ and for all $1>\epsilon>0$ there is an $N$ such that $\left|f_{n}(x)-f(x)\right|<\epsilon$ for all $n>N$. So

$$
|f(x)|=\left|f(x)-f_{N+1}(x)+f_{N+1}(x)\right| \leq\left|f(x)-f_{N+1}(x)\right|+\left|f_{N+1}(x)\right|<\epsilon+\left|f_{N+1}(x)\right|<\epsilon+M_{N+1}
$$

For this $x$, let $M=\max _{i=1 . . N}\left\{M_{i}, 1+M_{N+1}\right\}$, then we have $f_{n}(x) \leq M$ for all $n \in N$. Now if $n>N$ then we have for all $x \in[0,1],\left|f_{n}(x)\right|<\epsilon+M_{N+1}$, since $\left|f_{n}(x)-f(x)\right|<\epsilon$. If $n \leq N$ then $f_{n}(x)<M_{n}<M$. So the result holds for all $x \in[0,1]$ and $n \in \mathbb{N}$.

Exercise 1.9. Let $\sum a_{n}, \sum b_{n}$ be two series with positive terms. Assume that $\sum b_{n}$ converges and that

$$
\frac{a_{n+1}}{a_{n}} \leq \frac{b_{n+1}}{b_{n}}, \quad \forall n \in \mathbb{N}
$$

Prove that $\sum a_{n}$ converges.
Proof: Consider the two power series

$$
A=\sum_{n=1}^{\infty} a_{n} x^{n}, \quad B=\sum_{n=1}^{\infty} b_{n} x^{n}
$$

Series $B$ will converge if

$$
\frac{b_{n+1}}{b_{n}}|x|<1 \quad \Rightarrow \quad|x|<\frac{b_{n}}{b_{n+1}}
$$

Now we know for $x=1$ power series $B$ converges, so

$$
1<\frac{b_{n}}{b_{n+1}} \text { or } \frac{b_{n+1}}{b_{n}}<1
$$

This implies that

$$
\frac{a_{n+1}}{a_{n}}|x| \leq \frac{b_{n+1}}{b_{n}}|x|<1 \quad \Rightarrow \quad \frac{a_{n+1}}{a_{n}} \leq \frac{b_{n+1}}{b_{n}}<1
$$

Or power series $A$ will converge for $|x|=1$ and the result is shown.
Exercise 1.10. Suppose $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is differentiable at every point $(x, y) \neq(0,0)$, and there exists $\alpha \in \mathbb{R}$ so that

$$
f(t x, t y)=t^{\alpha} f(x, y), \quad \forall t>0,(x, y) \in \mathbb{R}^{2}
$$

Show that for any $(x, y) \neq(0,0)$

$$
x f_{x}(x, y)+y f_{y}(x, y)=\alpha f(x, y)
$$

Proof: Taking derivative with respect to $t$ we have

$$
x f_{x}(t x, t y)+y f_{y}(t x, t y)=\alpha t^{\alpha-1} f(x, y)
$$

This equation holds for $t>0$ and $(x, y) \in \mathbb{R}^{2}$. In particular, let $t=1$ and the result is shown.
Exercise 1.11. Suppose that a function $f \geq 0$ and that

$$
\int_{4}^{\infty} f(x) d x=5
$$

Show that

$$
\int_{2}^{\infty} f\left(x^{2}\right) d x \leq \frac{5}{4}
$$

Proof: First consider the change of variable $u=x^{2}$, then the differentials are given by $d u=2 x d x$ since $x>0$, we have $x=\sqrt{u}$ and so $d x=\frac{d u}{2 \sqrt{u}}$. With this change of variable the integral

$$
\int_{2}^{\infty} f\left(x^{2}\right) d x=\frac{1}{2} \int_{4}^{\infty} \frac{f(u)}{\sqrt{u}} d u \leq \frac{1}{4} \int_{4}^{\infty} f(u) d u=\frac{5}{4}
$$

Since $\frac{1}{\sqrt{u}} \leq \frac{1}{2}$ for $u \in[4, \infty)$
Exercise 1.12. For positive numbers $a, b$, show that $\lim _{n \rightarrow \infty}\left(a^{n}+b^{n}\right)^{1 / n}=\max \{a, b\}$.
Proof: Suppose that $0<a<b$. Let $y=\left(a^{n}+b^{n}\right)^{1 / n}$, taking $\log$ and the limit as $n$ goes to infinity we have

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \ln (y) & =\lim _{n \rightarrow \infty} \frac{\ln \left(a^{n}+b^{n}\right)}{n} \\
& \stackrel{H}{=} \lim _{n \rightarrow \infty} \frac{a^{n} \ln (a)+b^{n} \ln (b)}{a^{n}+b^{n}} \\
& =\lim _{n \rightarrow \infty} \frac{\left(\frac{a}{b}\right)^{n} \ln (a)+\ln (b)}{\left(\frac{a}{b}\right)^{n}+1} \\
& =\ln (b)
\end{aligned}
$$

since $\frac{a}{b} \rightarrow 0$. The function $\ln (y)$ is continuous for $y>0$ and so $\lim _{n \rightarrow \infty} \ln (y)=\ln (b)$ implies that $\ln \left(\lim _{n \rightarrow \infty} y\right)=\ln (b)$, which implies $\lim _{n \rightarrow \infty} y=b$.

Exercise 1.13. Let $f:[-1,1] \rightarrow \mathbb{R}$
(a) Give a clear definition of $f$ is Reimann integrable on $[-1,1]$.
(b) Using your definition show that the function

$$
g(x)= \begin{cases}0 & -1 \leq x<0 \\ 5 & x=0 \\ x & 0<x \leq 1\end{cases}
$$

is Riemann integrable and find $\int_{-1}^{1} g(x) d x$.

Proof: For part ( $a$ ), a function is said to be Riemann integrable over an interval $[a, b]$ if for every $\epsilon>0$ there is a $\delta>0$ such that if $P$ is a partition of $[a, b]$ with $\operatorname{mesh}(P)<\delta$, then

$$
\begin{equation*}
\sum_{i=1}^{n}\left(\sup _{x \in\left[t_{i-1}, t_{i}\right]}\{f(x)\}-\inf _{x \in\left[t_{i-1}, t_{i}\right]}\{f(x)\}\right)\left(t_{i}-t_{i-1}\right)<\epsilon \tag{1.3}
\end{equation*}
$$

where $t_{0}=a$ and $t_{n}=b$.
For part $(b)$, let $P$ be a partition $\left\{t_{i}\right\}$, and $\operatorname{mesh}(P)<1 / n$, also let $0 \in\left(t_{k}, t_{k+1}\right.$, that is zero is not an endpoint of this partition. Now by definition we have

$$
\begin{aligned}
& \sum_{i=1}^{n}\left(\sup _{x \in\left[t_{i-1}, t_{i}\right]}\{f(x)\}-\inf _{x \in\left[t_{i-1}, t_{i}\right]}\{f(x)\}\right)\left(t_{i}-t_{i-1}\right) \\
= & \sum_{i=k+1}^{n}\left(\sup _{x \in\left[t_{i-1}, t_{i}\right]}\{f(x)\}-\inf _{x \in\left[t_{i-1}, t_{i}\right]}\{f(x)\}\right)\left(t_{i}-t_{i-1}\right) \\
\leq & \frac{5}{n}+\sum_{i=k+2}^{n}\left(t_{i}-t_{i-1}\right)^{2} \\
= & \frac{5}{n}+\sum_{i=k+1}^{n} \frac{1}{n}<\frac{6}{n} \rightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

Hence the function is Riemann integrable. Note that for $i<k$ the functional value is zero, so this will not contribute towards the sum and $\left(\sup _{x \in\left[t_{k}, t_{k+1}\right]}\{f(x)\}-\inf _{x \in\left[t_{k}, t_{k+1}\right]}\{f(x)\}\right)\left(t_{i}-t_{i-1}\right)<5 / n$ since $\operatorname{mesh}(P)<1 / n, \sup _{x \in\left[t_{k}, t_{k+1}\right]}\{f(x)\}=5$ and $\inf _{x \in\left[t_{k}, t_{k+1}\right]}\{f(x)\}=0$. Now to find the value of this integral we have

$$
\int_{-1}^{1} g(x) d x=\int_{0}^{1} x d x=\left.\frac{x^{2}}{2}\right|_{0} ^{1}=\frac{1}{2}
$$

since $x=5$ is a set of measure zero and sets of measure will not contribute towards the value of the integral.

Exercise 1.14. If the terms of a series

$$
A=\sum_{n=1}^{\infty} a_{n}
$$

are nonnegative and decrease monotonically to zero, then show that the series converges if and only if the following related series converges

$$
B=\sum_{j=1}^{\infty} 2^{j} a_{2^{j}}
$$

Proof: This is Cauchy condensation test. $(\Rightarrow)$ Suppose the series $A$ converges. Then for $n$ large enough we must have $a_{n}<1 / n$, so let $n$ be large enough, since $A$ converges we know by the root test we have

$$
\sqrt[n]{\left|a_{n}\right|}<1 \quad \Rightarrow \quad \sqrt[j]{\left|2^{j} a_{2^{j}}\right|}=2 \sqrt[j]{\left|a_{2^{j}}\right|}<2 \frac{1}{\sqrt[j]{2^{j}}}=1
$$

hence the series $B$ converges by the root test.
$(\Leftarrow)$ Now suppose the series $B$ converges, grouping the series $A$ we have in terms of powers of 2

$$
\begin{aligned}
\sum_{n=1}^{\infty} a_{n} & =a_{1}+\left\{a_{2}+a_{3}\right\}+\left\{a_{4}+a_{5}+a_{6}+a_{7}\right\}+\cdots \\
& \leq a_{1}+\left\{a_{2}+a_{2}\right\}+\left\{a_{4}+a_{4}+a_{4}+a_{4}\right\}+\cdots \\
& =a_{1}+\sum_{j=1}^{\infty} 2^{j} a_{2^{j}}<\infty
\end{aligned}
$$

Hence series $A$ converges.

Exercise 1.15. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ satisfy

$$
0 \leq f(x, y) \leq|(x, y)|^{1.02}
$$

for all $(x, y)$. Find $f^{\prime}(x, y)$ or show by example that it need not exist.
Proof: $f^{\prime}(x, y)$ need not exist. Consider the function

$$
f(x, y)= \begin{cases}|(x, y)|^{1.02} & \|(x, y)\| \geq 1 \\ 0 & \|(x, y)\|<1\end{cases}
$$

It is clear the inequality in the problem holds for all $(x, y) \in \mathbb{R}^{2}$. The function $f(x, y)$ is not continuous on $\|(x, y)\|=1$, hence the derivative does not exist on $\mathbb{R}$.

Exercise 1.16. Let $f$ be a differentiable real function defined on $(0,1)$. Show that $f^{\prime}$ maps $(0,1)$ onto an interval.

Proof: I shall show a slightly more generalized version of this question. That is, if $f(x)$ is a differentiable function defined on an open interval $I$ then $f^{\prime}(I)$ can be written as an interval. First if $f(x)$ is a linear function or a constant, then $f^{\prime}(x)$ is constant so the result holds. Now suppose $f(x)$ is neither of these. Let $x_{1}, x_{2} \in f(I)$ with $x_{1}<x_{2}$ and let $y \in\left(x_{1}, x_{2}\right)$, we need to show that $y \in f^{\prime}(I)$. Let $a, b \in I$ such that $f^{\prime}(a)=x_{1}$ and $f^{\prime}(b)=x_{2}$. Consider the function $g(x)=f(x)-y x$, then $g^{\prime}(x)=f^{\prime}(x)-y$. Now the function $g(x)$ is a continuous function, hence the restriction of $g$ to the interval $[a, b]$ is continuous. Now recall that the continuous image of a compace space is compact. Hence $g$ attains a minimum on the interval $[a, b]$. By construction we have $g^{\prime}(a)<0$ and $g^{\prime}(b)>0$. It is clear that the minimum cannot occur at $a$ or $b$ since $g^{\prime}(a), g^{\prime}(b) \neq 0$, hence there is a $c \in(a, b)$ such that $g^{\prime}(c)=0$ this implies that $f^{\prime}(x)=y$. In other words $f^{\prime}(I)$ is an interval.

## 2. Complex Analysis

Exercise 2.1. Prove or disprove that

$$
\int_{0}^{2 \pi} e^{\left(e^{i \theta}\right)} d \theta=0
$$

Proof: This is not true, to see why let us compute the integral. Writing the power series for $e^{z}$ with $z=e^{\imath \theta}$ and integrating we have

$$
\begin{aligned}
\int_{0}^{2 \pi} e^{\left(e^{i \theta}\right)} d \theta & =\int_{0}^{2 \pi} \sum_{k=0}^{\infty} \frac{e^{k \imath \theta}}{k!} d \theta \\
& =\sum_{k=0}^{\infty} \int_{0}^{2 \pi} \frac{e^{k \imath \theta}}{k!} d \theta \\
& =\int_{0}^{2 \pi} d \theta+\sum_{k=1}^{\infty} \int_{0}^{2 \pi} \frac{e^{k \imath \theta}}{k!} d \theta \\
& =2 \pi-\left.\imath \sum_{k=1}^{\infty} \frac{e^{k \imath \theta}}{(k-1)!}\right|_{0} ^{\pi} \\
& =2 \pi
\end{aligned}
$$

We can switch the integral and sum since the sum converges uniformly. Also the value of $\left.\frac{e^{2 \theta}}{(k-1)!}\right|_{0} ^{\pi}$ is computed to be zero using Euler's formula.

Exercise 2.2. Let $a$ and $b$ be distinct complex numbers that lie in the interior of the left half-plane. Prove that $\left|e^{a}-e^{b}\right|<|a-b|$

Proof: First notice that if $a=x+\imath y$, then we have

$$
\left|e^{a}\right|=\left|e^{x+\imath y}\right|=\left|e^{x}\right|<1
$$

Now let $a, b \in \mathbb{C}$ such that $\Re(a), \Re(b)<0$. By the mean value theorem, there exists a $c$ such that $c$ lies on the line $r(t)=a(1-t)+t b, t \in[0,1]$ and

$$
e^{c}=\frac{e^{a}-e^{b}}{a-b}
$$

now the line $r(t)$ connecting $a$ and $b$ is contained in the left half-plane hence for all $t \in[0,1], \Re(r(t))<0$ and hence we have

$$
\left|\frac{e^{a}-e^{b}}{a-b}\right|=\left|e^{c}\right|<1 \quad \Rightarrow \quad\left|e^{a}-e^{b}\right|<|a-b|
$$

Exercise 2.3.
(a) Find the radius of convergence of the Taylor series for $f(z)$ at $z=1$.

$$
f(z)=\frac{1}{z^{4}+z^{2}+1}
$$

(b) Explicity find the constant term and the linear term of the series.

Proof: The Taylor series about $z=1$ is given by

$$
f(z)=\sum_{k=1}^{\infty} a_{k}(z-1)^{k}, \quad a_{k}=\frac{f^{(k)}(1)}{k!} .
$$

Instead of computing the coeffients $a_{k}$, the series must avoid the sigularities the radius will be the distance from the center to the closest singularity, i.e. $r=\inf \left\{\left|z_{k}-1\right|\right\}$, where $z_{k}$ are the roots of $f(z)$. To compute the roots let $w=z^{2}$,

$$
w^{2}+w+1 \quad \Rightarrow \quad w=\frac{-1 \pm \sqrt{3} \imath}{2}=e^{2 \pi \imath / 3}, e^{4 \pi \imath / 3}
$$

Hence we have

$$
z=\left\{ \pm e^{\pi \imath / 3}, \pm e^{2 \pi \imath / 3}\right\}, \quad z_{k}=\left\{e^{k \pi \imath / 3}: k=1,2,4,5\right\}
$$

Considering the complex plane we have

$$
r=\inf \left\{\left|z_{k}-1\right|\right\}=\left\|1-e^{k \pi \imath / 3}\right\|=\sqrt{\frac{1}{4}+\frac{3}{4}}=1
$$

Now using the definition of the Taylor series we have that

$$
a_{0}=f(1)=\frac{1}{3}, \quad a_{1}=f^{\prime}(1)=\left.\frac{-4 z^{3}-2 z}{\left(z^{4}+z^{2}+1\right)^{2}}\right|_{z=1}=-\frac{2}{3}
$$

Exercise 2.4. Compute the following integral using residues. You may leave your solution as a sum of explicity complex numbers.

$$
\int_{\mathbb{R}} \frac{x^{4}+1}{x^{6}+1} d x
$$

Proof: This is an application of the Residue Theorem. The roots of $z^{4}+1$ are computed to be $\left\{e^{k \pi \imath / 4}: k=1,3,5,7\right\}$ and the roots of $z^{6}+1$ are computed to be $\left\{e^{k \pi \imath / 6}: k=1,3,5,7,9,11\right\}$. Now consider the following contour:

$$
\Gamma= \begin{cases}t & t \in[-R, R] \\ R e^{\imath t} & t \in[0, \pi]\end{cases}
$$

By the Residue Theorem we have

$$
\int_{\Gamma} \frac{z^{4}+1}{z^{6}+1} d z=2 \pi \sum_{k} \operatorname{Res}\left(f\left(z_{k}\right)\right), \quad z_{k} \in \Omega, \text { where } \partial \Omega=\Gamma
$$

Now first let's compute the integral by evalutating on the contour.

$$
\int_{\Gamma} \frac{z^{4}+1}{z^{6}+1} d z=\int_{-R}^{R} \frac{t^{4}+1}{t^{6}+1} d t+\int_{0}^{\pi} \imath R \frac{R^{4} e^{4 i t}+1}{R^{6} e^{6 \imath t}+1} d t
$$

For the first integral, if $\lim _{R \rightarrow \infty}$ this converges to the original integral in question. For the second integral we have

$$
\begin{aligned}
\left|\int_{0}^{\pi}{ }_{\imath R} \frac{R^{4} e^{4 i t}+1}{R^{6} e^{6 \imath t}+1} d t\right| & \leq \int_{0}^{\pi}\left|\imath R \frac{R^{4} e^{4 i t}+1}{R^{6} e^{6 \imath t}+1}\right| d t \\
& \leq R \frac{\left|R^{4} e^{4 i t}+1\right|}{R^{6}-1} d t \\
& \leq \frac{2 R^{5}}{R^{6}-1} d t \rightarrow 0 \text { as } R \rightarrow \infty
\end{aligned}
$$

Hence we have

$$
\int_{\mathbb{R}} \frac{t^{4}+1}{t^{6}+1} d t=2 \pi \imath \sum_{k} \operatorname{Res}\left(f\left(z_{k}\right)\right)
$$

Now the roots that lie inside $\Gamma$ are $\left\{e^{k \pi \imath / 6}: k=1,3,5\right\}$ and so we have

$$
\int_{\mathbb{R}} \frac{t^{4}+1}{t^{6}+1} d t=2 \pi \imath \sum_{j=1}^{3}\left(e^{2(2 j-1) \pi \imath / 3}-1\right)\left[\prod_{k=1, j \neq k}^{6}\left(e^{(2 j-1) \pi \imath / 6}-e^{(2 k-1) \pi \imath / 6}\right)^{-1}\right]
$$

Exercise 2.5. Suppose that $f$ is a non-constant entire function. Prove or disprove each of the following statements.
(a) The range of $f$ is dense in $\mathbb{C}$.
(b) The range of $f$ is all of $\mathbb{C}$.

Proof: For statement $(a)$, suppose $f(z)$ is a non-constant entire function that is not dence in all of $\mathbb{C}$, then there exists a $w \in \mathbb{C}$ and an $r>0$ such that the $B(w, r) \not \subset f(\mathbb{C})$. Define the function

$$
g(z)=\frac{1}{f(z)-w}
$$

Since $f(z)$ is entire, it is clear that $g(z)$ is entire and we have the bound

$$
\left\lvert\, g(z)=\frac{1}{|f(z)-w|}<\frac{1}{r}\right.
$$

By Liouville's theorem $g(z)$ is a bounded entire function thus must be constant, hence $f(z)$ is constant. This is a contradiction, hence the range of $f(z)$ must be dense in $\mathbb{C}$.

For part (b) this statment need not be true, consider the function $f(z)=e^{z}$. This is an entire function, but this function never attains the value zero, hence the image of $f(z)$ is not all of $\mathbb{C}$.

Theorem: (Little Picard) If a function $f: \mathbb{C} \rightarrow \mathbb{C}$ is entire and non-constant, then the set of values that $f(z)$ assumes is either the whole complex plane or the plane minus a single point.

Theorem: (Big Picard) If an analytic function $f(z)$ has an essential singularity at a point $w$, then on any punctured neighborhood of $w, f(z)$ takes on all possible complex values, with at most a single exception, infinitely often.

Exercise 2.6. Let $f(z)$ be an analytic function on $B_{r}\left(z_{0}\right) \backslash\left\{z_{0}\right\}$, the punctured disk of radius $r$. Show that if $f$ is bounded, then $f$ can be analytically extended to the whole disk. That is, there is an analytic function $F(z)$ on $B_{r}\left(z_{0}\right)$ whose restriction on $B_{r}\left(z_{0}\right) \backslash\left\{z_{0}\right\}$ is $f(z)$.

Proof: Suppose $f(z)$ is bounded on the $B_{r}\left(z_{0}\right) \backslash\left\{z_{0}\right\}$ punctured disk. Let

$$
M=\sup _{z \in B_{r}\left(z_{0}\right) \backslash\left\{z_{0}\right\}}\{f(z)\},
$$

this is finite by hypothesis. Let $z \neq z_{0}$ be in $B_{r}\left(z_{0}\right)$, and let $0<\epsilon<\left|r-\left|z_{0}\right|\right|$. Now

$$
\begin{aligned}
\left|\int_{\left|w-z_{0}\right|=r} \frac{u(w)}{w-z} d w\right| & =\left|\int_{\left|w-z_{0}\right|=\epsilon} \frac{u(w)}{w-z} d w\right| \\
& \leq \int_{\left|w-z_{0}\right|=\epsilon}\left|\frac{u(w)}{w-z}\right| d w \\
& \leq 2 \pi \frac{M}{r} \epsilon \rightarrow 0 \text { as } \epsilon \rightarrow 0
\end{aligned}
$$

So fix $0<R<\left|r-\left|z_{0}\right|\right|$, then define

$$
\tilde{u}(z)=\frac{1}{2 \pi \imath} \int_{\left|w-z_{0}\right|=R} \frac{u(w)}{w-z} d w
$$

for $\left|z-z_{0}\right|<R$. By the Residue theorem we have $\tilde{u}(z)=u(z)$ and furthermore $\tilde{u}(z)$ is analytic for $\left|z-z_{0}\right|<R$, so the result is shown.

Exercise 2.7. Prove that if $u(x, y)$ is harmonic in a simply connected domain $\Omega$ then the line integral

$$
\int_{z_{0}}^{z}\left(-u_{y} d x+u_{x} d y\right)
$$

is independent of the path in $\Omega$ from $z_{0}$ to $z$.
Proof: Using Green's Theorem we have

$$
\int_{\partial \Omega}\left(-u_{y} d x+u_{x} d y\right)=\int_{\Omega} u_{x x}+u_{y y} d A=\int_{\Omega} \delta u d A=0
$$

since $u(x, y)$ is harmonic. Now let $\gamma_{1}: z_{0} \rightarrow z$ be any path and choose $\gamma_{2}: z \rightarrow z_{0}$ such that the region enclosed is contained inside $\Omega$ and forms a simply connected domain. We then have

$$
0=\int_{\gamma_{1} \cup \gamma_{2}}\left(-u_{y} d x+u_{x} d y\right)=\int_{\gamma_{1}}\left(-u_{y} d x+u_{x} d y\right)+\int_{\gamma_{2}}\left(-u_{y} d x+u_{x} d y\right)
$$

This means we have

$$
\int_{\gamma_{1}}\left(-u_{y} d x+u_{x} d y\right)=-\int_{\gamma_{2}}\left(-u_{y} d x+u_{x} d y\right)=\int_{-\gamma_{2}}\left(-u_{y} d x+u_{x} d y\right)
$$

This holds for all such paths, hence the integral is independant of path from $z_{0}$ to $z$.
Exercise 2.8. The Bessel function $J_{0}(z)$ is defined by

$$
J_{0}(z)=\frac{1}{2 \pi \imath} \int_{\Gamma} \exp \left(z\left(w-w^{-1}\right) / 2\right) \frac{d w}{w}
$$

where $\Gamma$ is any simple closed curve around the origin counterclockwise. Compute the Taylor series expansion for $J_{0}(z)$ by carrying out the following steps:
(a) Expand $\exp (z w / 2)$ and $\exp (-z /(2 w))$ as a power series.
(b) Multiply them formally to get a Laurent expansion, in the variable $w$, for $\exp \left(z\left(w-w^{-1}\right) / 2\right)$.
(c) Switch the sums and integral.
(d) Apply the Residue Theorem. Don't forget the extra $1 / w$ in the integral

Proof: First the Talor expanions for $\exp (z w / 2)$ and $\exp (-z /(2 w))$ are given as:

$$
\exp (z w / 2)=\sum_{k=0}^{\infty} \frac{(z w)^{k}}{2^{k} k!} \quad \exp (-z /(2 w))=\sum_{k=0}^{\infty} \frac{(-z)^{k}}{(2 w)^{k} k!}
$$

applying the Cauchy product of these two we have

$$
\begin{aligned}
\exp (z w / 2) \exp (-z /(2 w)) & =\left(\sum_{k=0}^{\infty} \frac{z w^{k}}{2^{k} k!}\right)\left(\sum_{k=0}^{\infty} \frac{(-z)^{k}}{(2 w)^{k} k!}\right) \\
& =\sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{(-z)^{k}}{(2 w)^{k} k!} \frac{(z w)^{n-k}}{2^{n-k}(n-k)!} \\
& =\sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{(-1)^{k} z^{k} z^{n-k}}{2^{k} 2^{n-k} n!(n-k)!} \frac{w^{n}}{w^{2 k}}
\end{aligned}
$$

Hence we have

$$
J_{0}(z)=\frac{1}{2 \pi \imath} \int_{\Gamma} \sum_{k=0}^{\infty} \sum_{n=0}^{k} \frac{(-1)^{k} z^{k} z^{n-k}}{2^{k} 2^{n-k} n!(n-k)!} \frac{w^{n}}{w^{2 k+1}} d w
$$

Since the sum converges uniformly to the function $\exp \left(z\left(w-w^{-1}\right) / 2\right)$ we can interchange integration and summation. Using the Residue Theorem we have:

$$
\begin{aligned}
J_{0}(z)=\frac{1}{2 \pi \imath} \sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{(-1)^{k} z^{k} z^{n-k}}{2^{k} 2^{n-k} n!(n-k)!} \int_{\Gamma} \frac{w^{n}}{w^{2 k+1}} d w & =\frac{1}{2 \pi \imath} \sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{(-1)^{k} z^{k} z^{n-k}}{2^{k} 2^{n-k} n!(n-k)!}(2 \pi \imath)_{n=2 k} \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{k} z^{2 k}}{2^{2 k}(n!)^{2}}
\end{aligned}
$$

Since the integral

$$
\int_{\Gamma} \frac{w^{n}}{w^{2 k+1}} d w=0, \quad n \neq 2 k
$$

Exercise 2.9. Suppose $w=f(z)$ is entire and not constant. Show that the image set $f(\mathbb{C})$ intersects every open set in the w-plane.

Proof: Let $f(z)$ be an entire and not-constant function ans suppose that there is an open set such that $f(z)$ does not intersect all open sets in the $w$-plane. Then there is a $z_{0} \in \mathbb{C}$ and an $r>0$ such that $f(\mathbb{C})$ intersect $B_{r}\left(z_{0}\right)$ is empty. Consider the function $g(z)=\left(f(z)-z_{0}\right)^{-1}$. The function $g(z)$ is entire and we have

$$
|g(z)|=\frac{1}{\left|f(z)-z_{0}\right|}<\frac{1}{r}, \quad \forall z \in \mathbb{C}
$$

The function $g(z)$ is an entire bounded function hence by Lioville's Theomre is it constant, hence $f(z)$ is is consant. Therefore the the image set of $f(\mathbb{C})$ intersects every open set in $\mathbb{C}$.

Theorem: (Residue:) Let $\Gamma$ be a simple closed curve with and let $a$ point inside gamma. Suppose $f(z)$ is a function with no singularities inside $\Gamma$ and let $n$ be a positive integer, then we have

$$
\int_{\Gamma} \frac{f(z)}{(z-a)^{n}}=2 \pi \imath \frac{1}{(n-1)!} \frac{d^{n-1}}{d z^{n-1}} f(a)
$$

Exercise 2.10. Evaluate the integral

$$
\frac{1}{2 \pi \imath} \int_{C} \frac{z \exp (z)}{(z-a)^{3}} d z
$$

Assuming the point a lies inside the simple closed curve $C$.
Proof: This is an application of the Residue Theorem. Applying the Residue theorem we have

$$
\frac{1}{2 \pi \imath} \int_{C} \frac{z \exp (z)}{(z-a)^{3}} d z=\frac{1}{2} e^{a}(2+a)
$$

Exercise 2.11. Compute the definite integral

$$
\int_{0}^{\infty} \frac{1-\cos (x)}{x^{2}} d x
$$

Proof: Consider the following identity and change of variables

$$
\frac{1-\cos (2 x / 2)}{x^{2}}=\frac{2 \sin ^{2}(x / 2)}{x^{2}} \quad y=x / 2
$$

Then we have

$$
\begin{aligned}
\int_{0}^{\infty} \frac{1-\cos (x)}{x^{2}} d x & =2 \int_{0}^{\infty} \frac{\sin (x / 2)}{x^{2}} d x \\
& =2 \int_{0}^{\infty} \frac{\sin ^{2}(y)}{(2 y)^{2}} 2 d y \\
& =\int_{0}^{\infty} \frac{\sin ^{2}(y)}{y^{2}} d y=\frac{\pi}{2}
\end{aligned}
$$

This is integrated by considering the following contour:

$$
\Gamma= \begin{cases}\gamma_{1}:=t & t \in[-R,-1 / R] \\ \gamma_{2}:=e^{\imath t} / R & t \in[\pi, 2 \pi] \\ \gamma_{3}:=t & t \in[1 / R, R] \\ \gamma_{4}:=R e^{\imath t} & t \in[0, \pi]\end{cases}
$$

Now our function has a removable singularity at $x=0$, so consider the following

$$
f(x)=\frac{1-e^{2 x x}}{2 x^{2}} \Rightarrow \Re(f(x))=\frac{1-\cos (2 x)}{2 x^{2}}=\frac{\sin ^{2}(x)}{x^{2}}
$$

Now for the integral around $\Gamma$ we have

$$
\int_{\Gamma} f(z) d z=2 \pi \imath \operatorname{Res}(f(z))=2 \pi \imath \lim _{z \rightarrow 0} \frac{d}{d z} z^{2} f(z)=2 \pi \imath \lim _{z \rightarrow 0}-\imath e^{2 \imath z}=2 \pi \imath(-\imath)=2 \pi
$$

Now for the integral on $\gamma_{1}$ we have

$$
\int_{\gamma_{1}} f(z) d z=\frac{1}{2} \int_{-R}^{-1 / R} \frac{1-e^{2 \imath t}}{t^{2}} d t \Rightarrow \frac{1}{2} \int_{-\infty}^{0} \frac{1-e^{2 \imath t}}{t^{2}} d t \text { as } R \rightarrow \infty
$$

For the integral on $\gamma_{2}$ we have

$$
\begin{aligned}
\int_{\gamma_{2}} f(z) d z & =\frac{1}{2} \int_{\pi}^{2 \pi} \frac{\left(1-e^{2 \imath e^{\imath t} / R}\right) \imath e^{\imath t} / R}{e^{2 \imath t} / R^{2}} \\
& =\frac{\imath}{2} \int_{\pi}^{2 \pi} \frac{1-e^{2 \imath e^{2 t} / R}}{e^{2 \imath t} / R}
\end{aligned}
$$

Now letting $R \rightarrow \infty$ and using L'Hospitals rule we have

$$
\frac{\imath}{2} \int_{\pi}^{2 \pi} \frac{-e^{2 \imath e^{\imath t} / R}\left(2 \imath e^{\imath t} / R\right)(\imath)}{\imath e^{\imath t} / R}=\int_{\pi}^{2 \pi} d t=\pi
$$

For the integral on $\gamma_{3}$ we have

$$
\int_{\gamma_{3}} f(z) d z=\frac{1}{2} \int_{1 / R}^{R} \frac{1-e^{2 \imath t}}{t^{2}} d t \Rightarrow \frac{1}{2} \int_{0}^{\infty} \frac{1-e^{2 \imath t}}{t^{2}} d t \text { as } R \rightarrow \infty
$$

Now for $\gamma_{4}$ we have

$$
\begin{aligned}
\int_{\gamma_{4}} f(z) d z & =\frac{1}{2} \int_{0}^{\pi} \frac{1-R e^{2 \imath t}}{R^{2} e^{2 \imath t}} R \imath e^{\imath t} d t \\
& =\frac{\imath}{2} \int_{0}^{\pi} \frac{1-R e^{2 \imath t}}{R e^{\imath t}}
\end{aligned}
$$

Putting this all together we have

$$
2 \pi=\pi+\frac{1}{2} \int_{-\infty}^{0} \frac{1-e^{2 \imath t}}{t^{2}} d t+\frac{1}{2} \int_{0}^{\infty} \frac{1-e^{2 \imath t}}{t^{2}} d t
$$

Taking real parts we have

$$
\pi=\int_{-\infty}^{0} \frac{\sin ^{2}(t)}{t^{2}} d t+\int_{0}^{\infty} \frac{\sin ^{2}(t)}{t^{2}} d t=2 \int_{0}^{\infty} \frac{\sin ^{2}(t)}{t^{2}} d t
$$

Hence we have $\int_{0}^{\infty} \frac{\sin ^{2}(t)}{t^{2}} d t=\frac{\pi}{2} \square$

Exercise 2.12. Let $f$ and $g$ be two entire functions such that for all $z \in \mathbb{C}, \Re(f(z)) \leq \Re(g(z))$. Prove or disprove that there is a complex number $z_{1}$ such that for all $z \in \mathbb{C}, f(z)=g(z)=z_{1}$.

Proof: text

Exercise 2.13. Define a one-to-one conformal map from the semidisc

$$
D=\left\{z \in \mathbb{C}: \Re(z)>0,\left|z-\frac{\imath}{2}\right|<\frac{1}{4}\right\}
$$

onto the upper-half plane $H=\{z \in \mathbb{C}: \Im(z)>0\}$. Explain, by citing theorems or giving details, why your map is conformal and why it is 1-1 from $D$ onto $H$.

Proof: First consider sequence of transformations

$$
\phi_{1}: z \rightarrow z-\frac{\imath}{2}, \quad \phi_{2}: z \rightarrow 4 z, \quad \phi_{3}: z \rightarrow z^{2}, \quad \phi_{4}: z \rightarrow \imath\left(\frac{1+z}{1-z}\right)
$$

The first transformation $\phi_{1}(z)$ is a translation down by $1 / 2$ so that the center of the semidisk is at the origin. The second $\phi_{2}(z)$ is a dilation to the right unit semidisk. The third transformation $\phi_{3}(z)$ is maps the semidisk to the unit disk. The last transformation $\phi_{4}(z)$ is the inverse Cayley transform that maps the unit disk into the upper-half plane. The composition that will take $D$ to $H$ is as follows

$$
\phi(z)=\left(\phi_{4} \circ \phi_{3} \circ \phi_{2} \circ \phi_{1}\right)(z)
$$

Exercise 2.14. Let $u$ and $v$ be real-valued functions defined in a connected open set $D$ of $\mathbb{C}$ such that $f=u+\imath v$ is holomorphic in $D$. Suppose there are real constants $\alpha, \beta$ and $\gamma$ such that $\alpha^{2}+\beta^{2} \neq 0$ and $\alpha u+\beta v=\gamma$ in $D$. Prove that $f$ is constant in $D$.

Proof: Consider the Cauchy Riemann equations with the condition that $\alpha u+\beta v=\gamma$.

$$
C . R .=\left\{\begin{array}{l}
u_{x} \\
u_{y}=-v_{x}
\end{array}\right.
$$

Taking partial with respect to $x$ and $y$ and using the we have

$$
\left\{\begin{array} { l } 
{ \alpha u _ { x } + \beta v _ { x } = 0 } \\
{ \alpha u _ { y } + \beta v _ { y } = 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
\alpha u_{x}-\beta u_{y}=0 \\
\alpha u_{y}+\beta u_{x}=0
\end{array} \Rightarrow u_{x}=\frac{\beta}{\alpha} u_{y}\right.\right.
$$

$\alpha \neq 0$ since $\alpha^{2}+\beta^{2} \neq 0$. This implies that

$$
\left.\alpha u_{y}+\beta\left(\frac{\beta}{\alpha}\right)\right) u_{y} \quad \Rightarrow \quad\left(\alpha^{2}+\beta^{2}\right) u_{y}=0
$$

which implies that $u_{y}=v_{x}=0$, hence $u$ and $v$ are constant, hence $f(z)=u+\imath v$ is constant in $D$.

Exercise 2.15. Let $E$ be the union of two coordinate axes, i.e. $E=\{z=x+\imath y, x y=0\}$. Describe all entire functions $f$ satisfying $f(E) \subset E$.

Proof: It is clear that functions of the form $f(z)=\alpha z^{n} e^{k \imath \pi / 2}$ for $k \in \mathbb{Z}, \alpha \in \mathbb{R}$. If $z \in E$, in polar form we can write all such functions as

$$
f(r, \theta)=r^{n} e^{n \imath \pi / 2}
$$

If $z \in E$, this is rotation by a multiple of $\pi / 2$ or a dialation, hence $f(z) \in E$ if $z \in E$. Now linear combinations will work if and only if the each exponent in the linear combintation is equal $\bmod 2$, i.e each term in the polynomial produces either a real or imaginary number. (e.g. the function $f(z)=z^{4}+z^{2}+1 \in E$ if $z \in E$.

Exercise 2.16. Let $p(x)$ be a polynomial with real coefficients. Prove that Laplace's transform

$$
\tilde{p}(z)=\int_{0}^{\infty} e^{-x z} p(x) d x
$$

is an analytic function in the right half-plane $\Re(z)>0$.
Proof: First suppose that $p(x)=a x^{n}$, forn $\in \mathbb{N}$, then we have

$$
\tilde{p}(z)=a \frac{n!}{z^{n+1}}
$$

Now this function has a pole at 0 , and hence is analytic for $\Re(z)>0$. Integration is linear hence given a general polynomial

$$
p(x)=\sum_{k=0}^{n} a_{k} x^{k} \quad \Rightarrow \quad \tilde{p}(z)=a_{n} \sum_{k=0}^{n} \frac{k!}{z^{k+1}}
$$

which is a sum of analytic functions for $\Re(z)>0$ and hence is analytic.

