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1. Real Analysis

Exercise 1.1. Suppose that f : [0, 1]→ (0, 1) is a non-decreasing function. Prove or disprove that there
exists x ∈ (0, 1) such that f(x) = x.

Proof: First notice note that 0 < f(0) ≤ f(1) < 1 and so fn : (0, 1) → (0, 1) for all n ∈ N. Let
x ∈ (0, 1), now if f(x) ≤ x, then (f ◦ f)(x) ≤ f(x). Otherwise if x ≤ f(x) then f(x) ≤ (f ◦ f)(x) since
f is a non-decreasing function. (WLOG) for a given x suppose x ≤ f(x), then f(x) ≤ fn(x) < 1 for all
n ∈ N. So {fn(x)} is a bounded monotonic sequnce. Therefore by the monotone convergence theorem
for real numbers, there exists a y ∈ (0, 1) such that fn(x)→ y as n→∞. Now

lim
n→∞

fn(x) = y ⇒ f( lim
n→∞

fn(x)) = f(y) = y

since f( lim
n→∞

fn(x)) = lim
n→∞

fn+1(x) = y

Exercise 1.2. Suppose that X is a compact metric space and that f : X → X is an isometry. Prove
that f(X ) = X .

Proof: If f(x) is an isometry and if d is the metric on X we have d(x, y) = d(f(x), f(y)). Now suppose
that f(x) is not surjective, then the set X\f(X ) is non empty, so let x ∈ X\f(X ). We have then
0 < 2ε = dist(x, f(X )) for some ε > 0. Since X is compact, there exists a finite open covering O such
that

O =

N⋃
i=1

B(xi, ε),

for some xi and some N , choose N to be as small as possible. Since x ∈ B(xα, ε) for some xα and
2ε = dist(x, f(X )) we have B(xα, ε) ⊂ X\f(X ). This contradicts the minimality of this N , therefore f
is surjective.

Exercise 1.3. Let f be a real-valued function defined on [1,∞), satisfying f(1) = 1 and f ′(x) =
1

x2 + f(x)2
. Prove that lim

x→∞
f(x) exists and is less thatn 1 +

π

4
.

Proof: First notice that f ′(x) → 0 as x → ∞ and that f ′(x) > 0 and so f(x) is always increasing.
Since f(1) = 1 and f(x) is always increasing we have f(x) ≥ 1 for all x ∈ [1,∞). Now

f ′(x) =
1

x2 + f(x)2
≤ 1

x2 + 1
,

and so ∫ x

1

f ′(t) dt ≤
∫ x

1

1

t2 + 1
dt ≤

∫ ∞
1

1

t2 + 1
dt = tan−1(t)

∣∣∞
1

=
π

4
.

The second inequality is justified since we integrate a positive function over a larger set. So we have∫ x

1

f ′(t) dt ≤ π

4
⇒ f(x)− f(1) ≤ π

4
⇒ f(x) ≤ 1 +

π

4

and the result is shown.

Exercise 1.4. Let f : R→ R be a function with the property:

lim inf
y→x

f(x)− f(y)

x− y
> 0, ∀x ∈ R

Prove that f is strictly increasing.
1
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Proof: For all ε > 0, there is a δ > 0 such that if |x− y| < δ, then we have

(1.1)
f(x)− f(y)

x− y
≥ ε.

Now for a given ε consider the covering R by B(xα, ηα), for xα ∈ R and where 0 < ηα is chosen such
that 1.1 is satified. By Lindelöf’s covering theres there is a countable subcover of this. Enumerate this
subcover as B(xi, ηi). Choose yi, zi ∈ B(xi, η) such that yi < xi < zi. Now for each xi and zi we have

f(xi)− f(yi) ≥ ε(xi − yi) > 0 and f(zi)− f(xi) ≥ ε(zi − xi) > 0

Hence we have if, by transitivity,

x > y → f(x) > f(y).

In other words f strictly increasing.

Exercise 1.5. If the function f has a continuous derivative on [0, 1], prove that∫ 1

0

f ′(x) dx = f(1)− f(0).

Proof: By definition of the Reimann integrable integral for the interval [0, 1] we have∫ 1

0

f ′(x) dx = lim
n→∞

1

n

n∑
i=1

f ′(xi)

Where xi ∈ [ti−1, ti] and {ti}ni=0 is a a partition of [0, 1]. Now by the mean value theorem for derivatives,
for each subinterval [ti−1, ti] of the partition [0, 1], there exists an ci such that

f ′(ci) =
f ′(ti)− f(ti−1)

ti − ti−1

Let xi = ci for each subinterval in the partition. So we have∫ 1

0

f ′(x) dx = lim
n→∞

1

n

n∑
i=1

f ′(ci) = lim
n→∞

1

n

n∑
i=1

f(ti)− f(ti−1)

ti − ti−1

Now |ti − ti−1| = 1/n, hence we have∫ 1

0

f ′(x) dx = lim
n→∞

n∑
i=1

f(ti)− f(ti−1) = lim
n→∞

(f(1)− f(0)) = f(1)− f(0).

Exercise 1.6. If the function f : [0,∞) → R is continuous and lim
x→∞

f(x) exists, prove that f(x) is

uniformly continuous on [0,∞).

Proof: Want to show that:

(1.2) ∀ε > 0, ∃δ > 0 s.t. if |x− y| < δε ⇒ |f(x)− f(y)| < ε.

Now since lim
x→∞

f(x) this means that first the limit is finite, and then for all η > 0 there exists N ∈ N
such that |f(x) − L| < η for all x > N , where L is the limit. Now consider the interval [0, N ], since
[0, N ] is closed and bounded so continuity implies uniform continuity, so given an ε > 0 there is a δ1 > 0
such that 1.2 is satified. Let x, y ∈ [N,∞) since |f(x) − L| < η and |f(y) − L| < η we have by the
triangle inequality

|f(x)− f(y)| ≤ |f(x)− L|+ |L− f(y)| < 2η = ε

This implies that for any ε > 0, and N large enoughth if x, y > N , then |f(x) − f(y)| < ε, denote
δ2 = η. So if |x− y| < δ2, then we have |f(x)− f(y)| < ε. In otherwords f(x) is uniformly continuous
on (N,∞). Let δε = min{δ1, δ2}. This δε either depends on ε or N , in the later case N depends on ε.
This implies 1.2 is will be satified, so the result is shown.
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Exercise 1.7. If A ⊂ Rn is nonempty, define the distance dA of x ∈ Rn to A by

dA(x) = inf{‖x− z‖ : z ∈ A}
(a) Show that if x, y ∈ mRn then |dA(x)− dA(y)| ≤ ‖x− y‖.
(b) If n = 2 and A = {(x1, x2) ∈ R2 : x2

1 + x2
2 > 1}, find a point in R2 at which dA is not differentiable.

Justify your claim.

Proof: For part (a) we can think of z as defined in the function dA like an orthogonal projection to A,
then dA returns the length of this projection. Let x, y ∈ Rn and z ∈ A

dA(x) ≤ ‖x− z‖ ≤ ‖x− y‖+ ‖y − z‖ ⇒ dA(x)− ‖y − z‖ ≤ ‖x− y‖
dA(y) ≤ ‖y − z‖ ≤ ‖y − x‖+ ‖x− z‖ ⇒ dA(y)− ‖x− z‖ ≤ ‖x− y‖

Now subtracting we can obtain the following:

dA(x)− dA(y) ≤ ‖y − z‖ − ‖z − x‖ ≤ ‖y − x‖
dA(y)− dA(x) ≤ ‖x− z‖ − ‖z − y‖ ≤ ‖y − x‖

which implies |dA(x)− dA(y)| ≤ ‖x− y‖.

(b) Consider the point (0, 1). Then we have dA(0, 1) = 0. Now

lim
h→0

dA(0, 1 + h)− 0

h
= lim
h→0

h

h
= 1

and

lim
h→0+

dA(h, 1)− 0

h
= lim
h→0+

√
1 + h2

h
=∞

The one-sided partial ∂x+ is unbounded at (0, 1) hence the derivative cannot exist.

Exercise 1.8. Let {fn} be a sequence of functions on [0, 1] such that

sup
x∈[0,1]

|fn(x)| = Mn <∞, n ∈ N.

Suppose {fn} converges uniformly on [0, 1]. Prove that there exists M , 0 ≤ M < ∞, such that for all
x ∈ [0, 1] and n ∈ N the inequality |fn(x)| ≤M holds.

Proof: If {fn(x)} converges uniformly, then there exists a function f such that for each x ∈ [0, 1] and
for all 1 > ε > 0 there is an N such that |fn(x)− f(x)| < ε for all n > N . So

|f(x)| = |f(x)− fN+1(x) + fN+1(x)| ≤ |f(x)− fN+1(x)|+ |fN+1(x)| < ε+ |fN+1(x)| < ε+MN+1

For this x, let M = maxi=1..N{Mi, 1 + MN+1}, then we have fn(x) ≤ M for all n ∈ N . Now if
n > N then we have for all x ∈ [0, 1], |fn(x)| < ε + MN+1, since |fn(x) − f(x)| < ε. If n ≤ N then
fn(x) < Mn < M . So the result holds for all x ∈ [0, 1]andn ∈ N.

Exercise 1.9. Let
∑
an,
∑
bn be two series with positive terms. Assume that

∑
bn converges and that

an+1

an
≤ bn+1

bn
, ∀n ∈ N

Prove that
∑
an converges.

Proof: Consider the two power series

A =

∞∑
n=1

anx
n, B =

∞∑
n=1

bnx
n

Series B will converge if
bn+1

bn
|x| < 1 ⇒ |x| < bn

bn+1

Now we know for x = 1 power series B converges, so

1 <
bn
bn+1

or
bn+1

bn
< 1.
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This implies that
an+1

an
|x| ≤ bn+1

bn
|x| < 1 ⇒ an+1

an
≤ bn+1

bn
< 1

Or power series A will converge for |x| = 1 and the result is shown.

Exercise 1.10. Suppose f : R2 → R is differentiable at every point (x, y) 6= (0, 0), and there exists
α ∈ R so that

f(tx, ty) = tαf(x, y), ∀t > 0, (x, y) ∈ R2

Show that for any (x, y) 6= (0, 0)

xfx(x, y) + yfy(x, y) = αf(x, y)

Proof: Taking derivative with respect to t we have

xfx(tx, ty) + yfy(tx, ty) = αtα−1f(x, y)

This equation holds for t > 0 and (x, y) ∈ R2. In particular, let t = 1 and the result is shown.

Exercise 1.11. Suppose that a function f ≥ 0 and that∫ ∞
4

f(x) dx = 5.

Show that ∫ ∞
2

f(x2) dx ≤ 5

4

Proof: First consider the change of variable u = x2, then the differentials are given by du = 2xdx since
x > 0, we have x =

√
u and so dx = du

2
√
u

. With this change of variable the integral∫ ∞
2

f(x2) dx =
1

2

∫ ∞
4

f(u)√
u
du ≤ 1

4

∫ ∞
4

f(u) du =
5

4

Since
1√
u
≤ 1

2
for u ∈ [4,∞)

Exercise 1.12. For positive numbers a, b, show that lim
n→∞

(an + bn)1/n = max{a, b}.

Proof: Suppose that 0 < a < b. Let y = (an + bn)1/n , taking log and the limit as n goes to infinity
we have

lim
n→∞

ln(y) = lim
n→∞

ln(an + bn)

n

H
= lim

n→∞

an ln(a) + bn ln(b)

an + bn

= lim
n→∞

(
a
b

)n
ln(a) + ln(b)(
a
b

)n
+ 1

= ln(b)

since a
b → 0. The function ln(y) is continuous for y > 0 and so limn→∞ ln(y) = ln(b) implies that

ln (limn→∞ y) = ln(b), which implies limn→∞ y = b.

Exercise 1.13. Let f : [−1, 1]→ R
(a) Give a clear definition of f is Reimann integrable on [−1, 1].
(b) Using your definition show that the function

g(x) =


0 −1 ≤ x < 0

5 x = 0

x 0 < x ≤ 1

is Riemann integrable and find
∫ 1

−1
g(x) dx.
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Proof: For part (a), a function is said to be Riemann integrable over an interval [a, b] if for every ε > 0
there is a δ > 0 such that if P is a partition of [a, b] with mesh(P ) < δ, then

(1.3)

n∑
i=1

(
sup

x∈[ti−1,ti]

{f(x)} − inf
x∈[ti−1,ti]

{f(x)}

)
(ti − ti−1) < ε

where t0 = a and tn = b.

For part (b), let P be a partition {ti}, and mesh(P ) < 1/n, also let 0 ∈ (tk, tk+1, that is zero is not an
endpoint of this partition. Now by definition we have

n∑
i=1

(
sup

x∈[ti−1,ti]

{f(x)} − inf
x∈[ti−1,ti]

{f(x)}

)
(ti − ti−1)

=

n∑
i=k+1

(
sup

x∈[ti−1,ti]

{f(x)} − inf
x∈[ti−1,ti]

{f(x)}

)
(ti − ti−1)

≤ 5

n
+

n∑
i=k+2

(ti − ti−1)
2

=
5

n
+

n∑
i=k+1

1

n

2

<
6

n
→ 0 as n→∞

Hence the function is Riemann integrable. Note that for i < k the functional value is zero, so this will

not contribute towards the sum and
(

supx∈[tk,tk+1]{f(x)} − infx∈[tk,tk+1]{f(x)}
)

(ti− ti−1) < 5/n since

mesh(P ) < 1/n, supx∈[tk,tk+1]{f(x)} = 5 and infx∈[tk,tk+1]{f(x)} = 0. Now to find the value of this
integral we have ∫ 1

−1

g(x) dx =

∫ 1

0

x dx =
x2

2

∣∣1
0

=
1

2

since x = 5 is a set of measure zero and sets of measure will not contribute towards the value of the
integral.

Exercise 1.14. If the terms of a series

A =

∞∑
n=1

an

are nonnegative and decrease monotonically to zero, then show that the series converges if and only if
the following related series converges

B =

∞∑
j=1

2ja2j

Proof: This is Cauchy condensation test. (⇒) Suppose the series A converges. Then for n large enough
we must have an < 1/n, so let n be large enough, since A converges we know by the root test we have

n
√
|an| < 1 ⇒ j

√
|2ja2j | = 2 j

√
|a2j | < 2

1
j
√

2j
= 1

hence the series B converges by the root test.

(⇐) Now suppose the series B converges, grouping the series A we have in terms of powers of 2
∞∑
n=1

an = a1 + {a2 + a3}+ {a4 + a5 + a6 + a7}+ · · ·

≤ a1 + {a2 + a2}+ {a4 + a4 + a4 + a4}+ · · ·

= a1 +

∞∑
j=1

2ja2j <∞
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Hence series A converges.

Exercise 1.15. Let f : R2 → R satisfy

0 ≤ f(x, y) ≤ |(x, y)|1.02

for all (x, y). Find f ′(x, y) or show by example that it need not exist.

Proof: f ′(x, y) need not exist. Consider the function

f(x, y) =

{
|(x, y)|1.02 ‖(x, y)‖ ≥ 1

0 ‖(x, y)‖ < 1

It is clear the inequality in the problem holds for all (x, y) ∈ R2. The function f(x, y) is not continuous
on ‖(x, y)‖ = 1, hence the derivative does not exist on R.

Exercise 1.16. Let f be a differentiable real function defined on (0, 1). Show that f ′ maps (0, 1) onto
an interval.

Proof: I shall show a slightly more generalized version of this question. That is, if f(x) is a differentiable
function defined on an open interval I then f ′(I) can be written as an interval. First if f(x) is a linear
function or a constant, then f ′(x) is constant so the result holds. Now suppose f(x) is neither of these.
Let x1, x2 ∈ f(I) with x1 < x2 and let y ∈ (x1, x2), we need to show that y ∈ f ′(I). Let a, b ∈ I such
that f ′(a) = x1 and f ′(b) = x2. Consider the function g(x) = f(x)− yx, then g′(x) = f ′(x)− y. Now
the function g(x) is a continuous function, hence the restriction of g to the interval [a, b] is continuous.
Now recall that the continuous image of a compace space is compact. Hence g attains a minimum on
the interval [a, b]. By construction we have g′(a) < 0 and g′(b) > 0. It is clear that the minimum cannot
occur at a or b since g′(a), g′(b) 6= 0, hence there is a c ∈ (a, b) such that g′(c) = 0 this implies that
f ′(x) = y. In other words f ′(I) is an interval.

2. Complex Analysis

Exercise 2.1. Prove or disprove that ∫ 2π

0

e(eiθ) dθ = 0.

Proof: This is not true, to see why let us compute the integral. Writing the power series for ez with
z = eıθ and integrating we have∫ 2π

0

e(eiθ) dθ =

∫ 2π

0

∞∑
k=0

ekıθ

k!
dθ

=

∞∑
k=0

∫ 2π

0

ekıθ

k!
dθ

=

∫ 2π

0

dθ +

∞∑
k=1

∫ 2π

0

ekıθ

k!
dθ

= 2π − ı
∞∑
k=1

ekıθ

(k − 1)!

∣∣π
0

= 2π

We can switch the integral and sum since the sum converges uniformly. Also the value of eıθ

(k−1)!

∣∣π
0

is

computed to be zero using Euler’s formula.
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Exercise 2.2. Let a and b be distinct complex numbers that lie in the interior of the left half-plane.
Prove that |ea − eb| < |a− b|

Proof: First notice that if a = x+ ıy, then we have

|ea| = |ex+ıy| = |ex| < 1

Now let a, b ∈ C such that <(a),<(b) < 0. By the mean value theorem, there exists a c such that c lies
on the line r(t) = a(1− t) + tb, t ∈ [0, 1] and

ec =
ea − eb

a− b
now the line r(t) connecting a and b is contained in the left half-plane hence for all t ∈ [0, 1],<(r(t)) < 0
and hence we have ∣∣∣∣ea − eba− b

∣∣∣∣ = |ec| < 1 ⇒ |ea − eb| < |a− b|

Exercise 2.3.

(a) Find the radius of convergence of the Taylor series for f(z) at z = 1.

f(z) =
1

z4 + z2 + 1

(b) Explicity find the constant term and the linear term of the series.

Proof: The Taylor series about z = 1 is given by

f(z) =

∞∑
k=1

ak(z − 1)k, ak =
f (k)(1)

k!
.

Instead of computing the coeffients ak, the series must avoid the sigularities the radius will be the
distance from the center to the closest singularity, i.e. r = inf{|zk − 1|}, where zk are the roots of f(z).
To compute the roots let w = z2,

w2 + w + 1 ⇒ w =
−1±

√
3ı

2
= e2πı/3, e4πı/3

Hence we have

z = {±eπı/3,±e2πı/3}, zk = {ekπı/3 : k = 1, 2, 4, 5}
Considering the complex plane we have

r = inf{|zk − 1|} = ‖1− ekπı/3‖ =

√
1

4
+

3

4
= 1.

Now using the definition of the Taylor series we have that

a0 = f(1) =
1

3
, a1 = f ′(1) =

−4z3 − 2z

(z4 + z2 + 1)2

∣∣
z=1

= −2

3
.

Exercise 2.4. Compute the following integral using residues. You may leave your solution as a sum
of explicity complex numbers. ∫

R

x4 + 1

x6 + 1
dx

Proof: This is an application of the Residue Theorem. The roots of z4 + 1 are computed to be
{ekπı/4 : k = 1, 3, 5, 7} and the roots of z6 + 1 are computed to be {ekπı/6 : k = 1, 3, 5, 7, 9, 11}. Now
consider the following contour:

Γ =

{
t t ∈ [−R,R]

Reıt t ∈ [0, π]

By the Residue Theorem we have∫
Γ

z4 + 1

z6 + 1
dz = 2π

∑
k

Res(f(zk)), zk ∈ Ω, where ∂Ω = Γ.
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Now first let’s compute the integral by evalutating on the contour.∫
Γ

z4 + 1

z6 + 1
dz =

∫ R

−R

t4 + 1

t6 + 1
dt+

∫ π

0

ıR
R4e4it + 1

R6e6ıt + 1
dt

For the first integral, if limR→∞ this converges to the original integral in question. For the second
integral we have ∣∣∣∣∫ π

0

ıR
R4e4it + 1

R6e6ıt + 1
dt

∣∣∣∣ ≤ ∫ π

0

∣∣∣∣ıRR4e4it + 1

R6e6ıt + 1

∣∣∣∣ dt
≤ R

|R4e4it + 1|
R6 − 1

dt

≤ 2R5

R6 − 1
dt→ 0 as R→∞

Hence we have ∫
R

t4 + 1

t6 + 1
dt = 2πı

∑
k

Res(f(zk)).

Now the roots that lie inside Γ are {ekπı/6 : k = 1, 3, 5} and so we have∫
R

t4 + 1

t6 + 1
dt = 2πı

3∑
j=1

(
e2(2j−1)πı/3 − 1

) 6∏
k=1,j 6=k

(
e(2j−1)πı/6 − e(2k−1)πı/6

)−1


Exercise 2.5. Suppose that f is a non-constant entire function. Prove or disprove each of the following
statements.

(a) The range of f is dense in C.
(b) The range of f is all of C.

Proof: For statement (a), suppose f(z) is a non-constant entire function that is not dence in all of C,
then there exists a w ∈ C and an r > 0 such that the B(w, r) 6⊂ f(C). Define the function

g(z) =
1

f(z)− w
.

Since f(z) is entire, it is clear that g(z) is entire and we have the bound

|g(z) =
1

|f(z)− w|
<

1

r
.

By Liouville’s theorem g(z) is a bounded entire function thus must be constant, hence f(z) is constant.
This is a contradiction, hence the range of f(z) must be dense in C.

For part (b) this statment need not be true, consider the function f(z) = ez. This is an entire function,
but this function never attains the value zero, hence the image of f(z) is not all of C.

Theorem: (Little Picard) If a function f : C→ C is entire and non-constant, then the set of values
that f(z) assumes is either the whole complex plane or the plane minus a single point.

Theorem: (Big Picard) If an analytic function f(z) has an essential singularity at a point w, then
on any punctured neighborhood of w, f(z) takes on all possible complex values, with at most a single
exception, infinitely often.

Exercise 2.6. Let f(z) be an analytic function on Br(z0)\{z0}, the punctured disk of radius r. Show
that if f is bounded, then f can be analytically extended to the whole disk. That is, there is an analytic
function F (z) on Br(z0) whose restriction on Br(z0)\{z0} is f(z).

Proof: Suppose f(z) is bounded on the Br(z0)\{z0} punctured disk. Let

M = sup
z∈Br(z0)\{z0}

{f(z)},
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this is finite by hypothesis. Let z 6= z0 be in Br(z0), and let 0 < ε < |r − |z0||. Now∣∣∣∣∣
∫
|w−z0|=r

u(w)

w − z
dw

∣∣∣∣∣ =

∣∣∣∣∣
∫
|w−z0|=ε

u(w)

w − z
dw

∣∣∣∣∣
≤

∫
|w−z0|=ε

∣∣∣∣ u(w)

w − z

∣∣∣∣ dw
≤ 2π

M

r
ε→ 0 as ε→ 0.

So fix 0 < R < |r − |z0||, then define

ũ(z) =
1

2πı

∫
|w−z0|=R

u(w)

w − z
dw

for |z − z0| < R. By the Residue theorem we have ũ(z) = u(z) and furthermore ũ(z) is analytic for
|z − z0| < R, so the result is shown.

Exercise 2.7. Prove that if u(x, y) is harmonic in a simply connected domain Ω then the line integral∫ z

z0

(−uy dx+ ux dy)

is independent of the path in Ω from z0 to z.

Proof: Using Green’s Theorem we have∫
∂Ω

(−uy dx+ ux dy) =

∫
Ω

uxx + uyy dA =

∫
Ω

δu dA = 0

since u(x, y) is harmonic. Now let γ1 : z0 → z be any path and choose γ2 : z → z0 such that the region
enclosed is contained inside Ω and forms a simply connected domain. We then have

0 =

∫
γ1∪γ2

(−uy dx+ ux dy) =

∫
γ1

(−uy dx+ ux dy) +

∫
γ2

(−uy dx+ ux dy)

This means we have∫
γ1

(−uy dx+ ux dy) = −
∫
γ2

(−uy dx+ ux dy) =

∫
−γ2

(−uy dx+ ux dy)

This holds for all such paths, hence the integral is independant of path from z0 to z.

Exercise 2.8. The Bessel function J0(z) is defined by

J0(z) =
1

2πı

∫
Γ

exp(z(w − w−1)/2)
dw

w
,

where Γ is any simple closed curve around the origin counterclockwise. Compute the Taylor series
expansion for J0(z) by carrying out the following steps:

(a) Expand exp(zw/2) and exp(−z/(2w)) as a power series.
(b) Multiply them formally to get a Laurent expansion, in the variable w, for exp(z(w − w−1)/2).
(c) Switch the sums and integral.
(d) Apply the Residue Theorem. Don’t forget the extra 1/w in the integral

Proof: First the Talor expanions for exp(zw/2) and exp(−z/(2w)) are given as:

exp(zw/2) =

∞∑
k=0

(zw)k

2kk!
exp(−z/(2w)) =

∞∑
k=0

(−z)k

(2w)kk!
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applying the Cauchy product of these two we have

exp(zw/2) exp(−z/(2w)) =

( ∞∑
k=0

zwk

2kk!

)( ∞∑
k=0

(−z)k

(2w)kk!

)

=

∞∑
n=0

n∑
k=0

(−z)k

(2w)kk!

(zw)n−k

2n−k(n− k)!

=

∞∑
n=0

n∑
k=0

(−1)kzkzn−k

2k2n−kn!(n− k)!

wn

w2k

Hence we have

J0(z) =
1

2πı

∫
Γ

∞∑
k=0

k∑
n=0

(−1)kzkzn−k

2k2n−kn!(n− k)!

wn

w2k+1
dw.

Since the sum converges uniformly to the function exp(z(w − w−1)/2) we can interchange integration
and summation. Using the Residue Theorem we have:

J0(z) =
1

2πı

∞∑
n=0

n∑
k=0

(−1)kzkzn−k

2k2n−kn!(n− k)!

∫
Γ

wn

w2k+1
dw =

1

2πı

∞∑
n=0

n∑
k=0

(−1)kzkzn−k

2k2n−kn!(n− k)!
(2πı)n=2k

=

∞∑
n=0

(−1)kz2k

22k(n!)2
.

Since the integral ∫
Γ

wn

w2k+1
dw = 0, n 6= 2k

Exercise 2.9. Suppose w = f(z) is entire and not constant. Show that the image set f(C) intersects
every open set in the w-plane.

Proof: Let f(z) be an entire and not-constant function ans suppose that there is an open set such that
f(z) does not intersect all open sets in the w-plane. Then there is a z0 ∈ C and an r > 0 such that
f(C) intersect Br(z0) is empty. Consider the function g(z) = (f(z)− z0)−1. The function g(z) is entire
and we have

|g(z)| = 1

|f(z)− z0|
<

1

r
, ∀z ∈ C.

The function g(z) is an entire bounded function hence by Lioville’s Theomre is it constant, hence f(z)
is is consant. Therefore the the image set of f(C) intersects every open set in C.

Theorem: (Residue:) Let Γ be a simple closed curve with and let a point inside gamma. Suppose
f(z) is a function with no singularities inside Γ and let n be a positive integer, then we have∫

Γ

f(z)

(z − a)n
= 2πı

1

(n− 1)!

dn−1

dzn−1
f(a)

Exercise 2.10. Evaluate the integral

1

2πı

∫
C

z exp(z)

(z − a)3
dz

Assuming the point a lies inside the simple closed curve C.

Proof: This is an application of the Residue Theorem. Applying the Residue theorem we have

1

2πı

∫
C

z exp(z)

(z − a)3
dz =

1

2
ea(2 + a)

Exercise 2.11. Compute the definite integral∫ ∞
0

1− cos(x)

x2
dx
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Proof: Consider the following identity and change of variables

1− cos(2x/2)

x2
=

2 sin2(x/2)

x2
y = x/2.

Then we have ∫ ∞
0

1− cos(x)

x2
dx = 2

∫ ∞
0

sin(x/2)

x2
dx

= 2

∫ ∞
0

sin2(y)

(2y)2
2dy

=

∫ ∞
0

sin2(y)

y2
dy =

π

2

This is integrated by considering the following contour:

Γ =


γ1 := t t ∈ [−R,−1/R]

γ2 := eıt/R t ∈ [π, 2π]

γ3 := t t ∈ [1/R,R]

γ4 := Reıt t ∈ [0, π]

Now our function has a removable singularity at x = 0, so consider the following

f(x) =
1− e2ıx

2x2
⇒ <(f(x)) =

1− cos(2x)

2x2
=

sin2(x)

x2

Now for the integral around Γ we have∫
Γ

f(z) dz = 2πıRes(f(z)) = 2πı lim
z→0

d

dz
z2f(z) = 2πı lim

z→0
−ıe2ız = 2πı(−ı) = 2π

Now for the integral on γ1 we have∫
γ1

f(z) dz =
1

2

∫ −1/R

−R

1− e2ıt

t2
dt ⇒ 1

2

∫ 0

−∞

1− e2ıt

t2
dt as R→∞

For the integral on γ2 we have∫
γ2

f(z) dz =
1

2

∫ 2π

π

(
1− e2ıeıt/R

)
ıeıt/R

e2ıt/R2

=
ı

2

∫ 2π

π

1− e2ıeıt/R

e2ıt/R

Now letting R→∞ and using L’Hospitals rule we have

ı

2

∫ 2π

π

−e2ıeıt/R (2ıeıt/R) (ı)

ıeıt/R
=

∫ 2π

π

dt = π

For the integral on γ3 we have∫
γ3

f(z) dz =
1

2

∫ R

1/R

1− e2ıt

t2
dt ⇒ 1

2

∫ ∞
0

1− e2ıt

t2
dt as R→∞

Now for γ4 we have ∫
γ4

f(z) dz =
1

2

∫ π

0

1−Re2ıt

R2e2ıt
Rıeıt dt

=
ı

2

∫ π

0

1−Re2ıt

Reıt

Putting this all together we have

2π = π +
1

2

∫ 0

−∞

1− e2ıt

t2
dt+

1

2

∫ ∞
0

1− e2ıt

t2
dt
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Taking real parts we have

π =

∫ 0

−∞

sin2(t)

t2
dt+

∫ ∞
0

sin2(t)

t2
dt = 2

∫ ∞
0

sin2(t)

t2
dt

Hence we have

∫ ∞
0

sin2(t)

t2
dt =

π

2
�

Exercise 2.12. Let f and g be two entire functions such that for all z ∈ C, <(f(z)) ≤ <(g(z)). Prove
or disprove that there is a complex number z1 such that for all z ∈ C, f(z) = g(z) = z1.

Proof: text

Exercise 2.13. Define a one-to-one conformal map from the semidisc

D =

{
z ∈ C : <(z) > 0,

∣∣∣z − ı

2

∣∣∣ < 1

4

}
onto the upper-half plane H = {z ∈ C : =(z) > 0}. Explain, by citing theorems or giving details, why
your map is conformal and why it is 1-1 from D onto H.

Proof: First consider sequence of transformations

φ1 : z → z − ı

2
, φ2 : z → 4z, φ3 : z → z2, φ4 : z → ı

(
1 + z

1− z

)
The first transformation φ1(z) is a translation down by 1/2 so that the center of the semidisk is at the
origin. The second φ2(z) is a dilation to the right unit semidisk. The third transformation φ3(z) is
maps the semidisk to the unit disk. The last transformation φ4(z) is the inverse Cayley transform that
maps the unit disk into the upper-half plane. The composition that will take D to H is as follows

φ(z) = (φ4 ◦ φ3 ◦ φ2 ◦ φ1)(z)

Exercise 2.14. Let u and v be real-valued functions defined in a connected open set D of C such that
f = u+ ıv is holomorphic in D. Suppose there are real constants α, β and γ such that α2 +β2 6= 0 and
αu+ βv = γ in D. Prove that f is constant in D.

Proof: Consider the Cauchy Riemann equations with the condition that αu+ βv = γ.

C.R. =

{
ux = vy

uy = −vx

Taking partial with respect to x and y and using the we have{
αux + βvx = 0

αuy + βvy = 0
⇒

{
αux − βuy = 0

αuy + βux = 0
⇒ ux =

β

α
uy

α 6= 0 since α2 + β2 6= 0. This implies that

αuy + β

(
β

α

)
)uy ⇒

(
α2 + β2

)
uy = 0

which implies that uy = vx = 0, hence u and v are constant, hence f(z) = u+ ıv is constant in D.
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Exercise 2.15. Let E be the union of two coordinate axes, i.e. E = {z = x+ ıy, xy = 0}. Describe all
entire functions f satisfying f(E) ⊂ E.

Proof: It is clear that functions of the form f(z) = αznekıπ/2 for k ∈ Z, α ∈ R. If z ∈ E, in polar
form we can write all such functions as

f(r, θ) = rnenıπ/2.

If z ∈ E, this is rotation by a multiple of π/2 or a dialation, hence f(z) ∈ E if z ∈ E. Now
linear combinations will work if and only if the each exponent in the linear combintation is equal
mod 2, i.e each term in the polynomial produces either a real or imaginary number. (e.g. the function
f(z) = z4 + z2 + 1 ∈ E if z ∈ E.

Exercise 2.16. Let p(x) be a polynomial with real coefficients. Prove that Laplace’s transform

p̃(z) =

∫ ∞
0

e−xzp(x) dx,

is an analytic function in the right half-plane <(z) > 0.

Proof: First suppose that p(x) = axn, forn ∈ N, then we have

p̃(z) = a
n!

zn+1

Now this function has a pole at 0, and hence is analytic for <(z) > 0. Integration is linear hence given
a general polynomial

p(x) =

n∑
k=0

akx
k ⇒ p̃(z) = an

n∑
k=0

k!

zk+1

which is a sum of analytic functions for <(z) > 0 and hence is analytic.
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