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1. Linear Algebra

Exercise 1.1. It is known that real symmetric matrices are always diagonalizable. You may assume
this fact.

(a) What special properties do the eigenspaces of a real symmetric matrix have? State it clearly.
(b) Now use the property stated in (a) to prove that any real symmetric matrix S can be diagonal-

ized by an orthogonal matrix U , that is, there exists an orthongal matrix U so that U−1SU is
diagonal.

Proof: For part (a), there are several things to say. First if A is an n×n real symmetric matrix then A
has n real eigenvalues counting multiplicities. For each eigenvalue the dimension of the corresponding
eigenspace is equal to the algebraic multiplicity of that eigenvalue. Any two eigenvalues from different
eigenspaces are orthogonal and there exists an invertible, orthogonal matrix P such that the matrix
PAP−1. Furthermore the vectors in the columns of P form the eigenspace for the matrix A and the
diagonal matrix PAP−1 is comprised of the corresponding eigenvalues of A.

For part (b), let A be a real symmetric matrix, {λi} be the set of eigenvalues, {vi} be the set of
eigenvectors and 〈·, ·〉 be the standard inner product. Now if λi and λj are distinct eigenvalues we have

〈λivi, vj〉 = 〈Avi, vj〉 = 〈vi, AT vj〉 = 〈vi, Avj〉 = 〈vi, λjvj〉

and so we have 〈λivi, vj〉 = 〈vi, λjvj〉, which implies (λi − λj)〈vi, vj〉 = 0 since the eigenvalues are real.
This implies that 〈vi, vj〉 = 0 since λi 6= λj .

For an a matrix that has eigenvalues with a multiplicity greater than one, the result can be shown by
induction on the size of the matrix. Let A be a symmetric k× k matrix. If k = 1, a basis for A consists
of only one eigenvector, hence the basis is orthogonal. Now suppose this is true for an arbitrary k × k,
that is there is an orthogonal basis of eigenvectors. Take a k + 1× k + 1 matrix. Choose an arbitrary
eigenvector for the matrix. It spans a one dimensional subspace that is A-invariant. Call this subspace
W . Then W⊥ is a k-dimensional space that is also A-invariant, and the arbitrary eigenvector previously
chosen is perpendicular to this subspace. By the induction hypothesis W⊥ is an orthogonal basis of
eigenvectors for k dimensional space and W⊥⊥W by construction. Let U be the matrix with columns
from the basis of W and W⊥. Then all the columns of p are orthogonal and since the columns are
comprised of eigenvectors we have U−1SU is a diagonal matrix.

Exercise 1.2. Find a matrix P such that PCP−1 is in rational form if

C =

 −1 −2 6
−1 0 3
−1 −1 4


To save you computation we tell you that the minimal polynomial of C is (x− 1)2

Proof: Computing the characteristic equation we have cA(x) = (1−x)3, and the minimum polynomial
mA(x) = (x − 1)2. The elementary divisors are (x − 1), (x − 1). So the invariant factors are (x − 1)2

and (x− 1). The rational canonical form is then

PCP−1 =

 0 −1 0
1 2 0
0 0 1


Now we need to find a basis for the kernal of (A − I)2, multipling this out we see that this is the
zero matrix, so a basis is the standard basis. Choose e1 = (1, 0, 0)T . We need to find a 2 dimensional
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C-invariant space.

Ce1 =

 −1
−1
−1

 C2e1 =

 −3
−2
−2

 = −e1 + 2Ce1

So {e1, Ce1} form a basis for this space. Now solving for the kernal of the last invariant factor (C−I) we
have the vectors v1 = (−1, 1, 0)T , v2 = (3, 0, 1)T . We need to find a one dimensional C-invariant space,
which is easy enough since Cv1 = v1. So the columns of Q are comprised of the vectors {e1, Ae1, v1}.
Now we have Q−1CQ. Let P = Q−1, then we have

P =

 1 1 −2
0 0 −1
0 1 −1

 and PCP−1 =

 0 −1 0
1 2 0
0 0 1


Definition: The companion matrix for a polynomial p(x) = xn +

n−1∑
k=0

akx
k is the matrix formed from

the vectors {1, x, x2, . . . , xn−1, xn}, where xn = −
n−1∑
k=0

akx
k. i.e


0 0 · · · 0 −a1

1 0 · · · 0 −a2

0 1 · · · 0 −a2

...
. . .

. . .
. . .

...
0 · · · 0 1 −an−1


Theorem: Rational Canonical Form (RCF) Let A be a matrix with entries from a field F. Let
cA(x) be the characteristic polynomial and mA(x) be the minimum polynomial. Let Φi(x) be the set
of invariant factors such that Φi−1|Φi(x). Each Φi(x) will divide mA(x) and ΠΦi(x) = cA(x). Let Ci
be the corresponding companion matrix to Φi(x). Then the Rational Canonical Form is a direct sum
of Ci, i.e,

⊕
Ci.

Let KΦi = ker(Φi(A)) and bi1 ∈ KΦi , then βi = {bi1 , Abi1 , A2bi1 , . . .}, where |βi| = deg(Φi(x)). Each
βi will be an A-invariant subspace that will form the columns of the change of basis matrix P , such
that P−1AP = RCF .

The following steps outline how to find the RCF

(a) Determine the characteristic polynomial of A.
(b) Determine the minimal polynomial of A.
(c) From the minimal polynomial and characteristic equation, determine the invariant factors.
(d) Find A-invariant bases associated to each invariant factor.
(e) Form a rational canonical basis from KΦi as a disjoint union of these A-invariant subspaces.

Remark: This is given interms of matricies, in terms of a linear operator T , T -cyclic is the same as
A-invariant, then everything is the same.

Exercise 1.3.

(a) Let T : V → W be a surjective linear transformation of finite dimensional vector spaces over a
field F. Show that there is a linear transformation S : W → V such that T ◦ S is the identity
map on W .

(b) Use (a) to show that every n×m matrix of rank n with coefficients in a field has a right inverse.

Proof: For part (a), if T is surjective then for all w ∈ W , there is a v ∈ V such that T (v) = w. In
particular, if {fi} is a basis for W then there exists {ei} such that T (ei) = fi, this can be done by
the axiom of choice. Define a linear map S : W → V that takes T (fi) = ei. Now by construction
(T ◦ S)(fi) = T (ei) = fi. We can write any w ∈ W as a linear combination of {fi} and since both
S and T are linear we have for all w ∈ W , (T ◦ S)(w) = T (v) = w, for some v ∈ V . In otherwords
T ◦ S = IW , the identity map on W .
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For part (b), let A be an n×m matrix over a field F with rank n. This first implies that n ≥ m since the
matrix has rank n it has n linearly independent rows. Let aj represent the columns of A and {ei} be the
standard basis for Fm. Consider the linear transformation T : Fm → Fn, such that T (ei) = aj , for i from
1 to n ≤ m. The matrix representation of this transformation is A. Furthermore the transformation T
is surjective. From part (a), and the same construction as part (a), we know that there exists an S such
that S : Fn → Fm and (T ◦ S) = InF . Let B be the matrix representation of the linear transformation
S. Then for all x ∈ Fn, there is a y ∈ Fm such that we have ABx = (T ◦ S)x = T (y) = Ay = x.

Exercise 1.4. Let T : V → W be a nontrivial linear transformation between two finite dimensional
vector spaces. Prove that there exists basis for V and W so that the matrix representation of T with
respect to these bases has an identity matrix in the top left corner and all other entries equal to zero.

Proof: Let dim(V ) = n, dim(W ) = m, the base field be F and fix a basis B = {bi} for V . Consider
the isomorphisms τ : V → Fn and σ : W → Fm. Now consider ci = T (bi), if bi ∈ ker(T ) then
ci = 0 ∈ W . Denote the set of vectors {ci} /∈ ker(T ) by {cj} and extend this set {cj} to a basis for
W and call this basis C. Denote A as the matrix representation of T and rank(A) = k. Now denote
A = [[T (e1)]σ · · · [T (en)]σ]. Now we have

T (ci) =

m∑
j=1

ajcj = ci

Hence the matrix representation of this transformation with respect to the basis B and C is:

A = [T ]CB =

(
Ik 0k,n−k

0m−k,k 0m−k,n−k

)
Exercise 1.5. Let A ∈MnC be the matrix where every diagonal entry is 0 and every off-diagonal entry
is 1.

(a) Find the eigenvalues of A.
(b) Find the eigenspaces of A.
(c) Compute det(A)

Proof: For part (a) the eigenvalues will be the roots of det(A − λIn). Now applying the column
operations ci = −cn + ci for columns 1 to n− 1 to the matrix A− λIn will not change the determinant
of the matrix. After applying these operations we have:

det(A− λIn) =

∣∣∣∣∣∣∣∣∣∣∣

−λ− 1 0 · · · 0 1
0 −λ− 1 · · · 0 1
...

. . .
. . .

. . .
...

0 0 · · · −λ− 1 1
1 + λ · · · 1 + λ 1 + λ −λ

∣∣∣∣∣∣∣∣∣∣∣
= (λ+ 1)n−1

∣∣∣∣∣∣∣∣∣∣∣

−1 0 · · · 0 1
0 −1 · · · 0 1
...

. . .
. . .

. . .
...

0 0 · · · −1 1
1 · · · 1 1 −λ

∣∣∣∣∣∣∣∣∣∣∣
Now doing the row operations rn = ri + rn starting at row 1 and going to row n − 1 will not change
the determinant. Applying this we have

det(A− λIn) = (λ+ 1)n−1

∣∣∣∣∣∣∣∣∣∣∣

−1 0 · · · 0 1
0 −1 · · · 0 1
...

. . .
. . .

. . .
...

0 0 · · · −1 1
0 · · · 0 0 −λ+ n− 1

∣∣∣∣∣∣∣∣∣∣∣
Since we now have a diagonal matrix the determinant be the product of the diagonal times the factors
we took out. So det(A − λIn) = (λ + 1)n−1(−λ + n − 1)(−1)n−1. So the eigenvalues are -1 with a
multiplicity of n− 1 and n− 1.

For part (b) we need to solve the ker(A− λIn) using the eigenvalues from part (a). For the eigenvalue
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n− 1 and using the same idea execpt replacing ri = ri + rn for i = 1..n we have

ker(A− λIn) = ker


−n 0 · · · 0 n
0 −n · · · 0 n
...

. . .
. . .

. . .
...

0 0 · · · −n n
1 · · · 1 1 −n+ 1


We can ignore the last row since it is linearly dependand, so we nxi = nxn, for i = 1..n − 1. Letting
each xn = 1 we have the vector (1, 1, . . . 1, 1)T . For the eigenvalue of −1 we have a matrix full of ones.
The corresponding eigenspace is e1 + ei for i = 2..n, where ei is a standard basis vector for Rn. Written
out the eigen vectors are: 


1
1
...
1
1

 ,


1
1
...
0
0

 , · · · ,


1
0
...
1
0

 ,


1
0
...
0
1




For part (c) the operation ri = ri − rn will not change the value of det(A). Doing this and the row
operation rn = ri + rn, we have:

det(A) =

∣∣∣∣∣∣∣∣∣∣∣

−1 0 · · · 0 1
0 −1 · · · 0 1
...

. . .
. . .

. . .
...

0 0 · · · −1 1
1 · · · 1 1 0

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣

−1 0 · · · 0 1
0 −1 · · · 0 1
...

. . .
. . .

. . .
...

0 0 · · · −1 1
0 · · · 0 0 n− 1

∣∣∣∣∣∣∣∣∣∣∣
= (−1)−1(n− 1)

Exercise 1.6. Let V be a finite dimensional vector space, let T : V → W be a linear operator and let
λ be an eigenvalue of T .

(a) Carefully define the geometric multiplicity of λ.
(b) Carefully define the algebraic multiplicity of λ.
(c) Prove that the geometric multiplicity of λ is less than or equal to its algebraic multiplicity.

Proof: For part (a), if λ is an eigenvalue for a linear operator, then and {βi}λ is a basis for the
eigenspace corresponding to λ, then the geometric multiplicity is the dimension of the eigenspace asso-
ciated to λ, or the size of |{βi}λ|

For part (b), if λ is an eigenvalue and cT (x) is the characteristic equation of the linear operator T , then
the algebraic multiplicity is the largest exponent of the factor (x− λ) that divides cT (x).

For part (c), let dim(V ) = n and let {vi}ki=1 be a basis for the eigenspace corresponding to the eigenvalue
λ. Using the standard basis for V , E , let A be the matrix representation of T , denote bi = {[vi]E}ki=1.
Now since bi are eigenvectors we have an P n × n matrix such that the first k columns are bi and in
the product PAP−1 we have the first k columns as λ down the diagonal and zeros elsewhere. Now

det(PAP−1 − λIn) = det(P (A− λIn)P−1) = det(P ) det(A− λIn) det(P−1) = det(A− λIn)

and cT (x) = det(PAP−1 − λIn) contains the factor (x − λ)k. So the algebraic multiplicity is at least
as large as the geometric multiplicity. Now if {λj} is the set of eigenvalues and {vi}j are corresponding
basis for the eigenspaces, doing the similar steps we see that

cT (x) =
∏
j=1

(x− λj)kjg(x)

where kj is the dimension of the eigenspace corresponding to the eigenvalue λj . So we have
∑
j=1 kj ≤ n

since deg(cT (x)) = n. Now since each algebraic multiplicity is at least as large as the geometric
multiplicity we can conclude that the geometric multiplicity for each eigenvalue λj is less than or equal
to its algebraic multiplicity.
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Exercise 1.7. Consider a real vector space V = Rn with the Euclidean inner product, and let U be a
subspace of V .

(a) Prove that U has an orthonormal basis.
(b) Find an orthonormal basis for the space of (1, 2, 0)T and (1, 1, 3)T inside R3.

Proof: For part (a), let {ui} be a basis for U . Define w1 = u1 and

wi = ui −
i−1∑
k

〈ui, uk〉
‖uk‖2

uk, ŵi =
wi
‖wi‖

The claim is that the set ŵi is an orthonormal basis for U . By construction, ‖ŵi‖ = 1 so all that needs
to be shown is that the set {wi} is mutually orthongonal. To prove this proceed by induction on the
size of U with a minor change to wi. Let dim(U) = n, if n = 1, then ŵ1 spans U and ‖ŵ1‖ = 1 hence it
is an orthonormal basis. Suppose this is true for n = m, that is the set {wi} is mutually orthongonal.
Let n = m+ 1, now since 〈wi〉 = 〈ui〉 for i = 1..m define wm+1 as:

wm+1 = um+1 −
m∑
k

〈um+1, wk〉
‖wk‖2

wk

Now

〈wm+1, wi〉 = 〈um+1 −
m∑
k=1

〈um+1, wk〉
‖wk‖2

wk, wi〉 = 〈um+1, wi〉 −
m∑
k=1

〈um+1, wk〉
‖wk‖2

〈wk, wi〉

but 〈wk, wi〉 = δik so we have

〈wm+1, wi〉 = 〈um+1, wi〉 −
〈um+1, wi〉
‖wi‖2

〈wi, wi〉 = 0

hence wm+1⊥wi for i = 1..m. So we have wi⊥wj for i 6= j and therefore, by induction {ŵi} is an
orthonormal basis for U . For part (b), let u1 = (1, 2, 0)T and u2 = (1, 1, 3)T applying the Gram-
Schmidt process we have w1 = u1 and

w2 = u2 −
〈u2, u1〉
‖u1‖2

u1 =
1

5
(2,−1, 15)T

Let ŵ1 = 1√
5
(1, 2, 0)T , ŵ2 = 5√

230
(2,−1, 3)T . Then we have 〈ŵ1, ŵ2〉 = 0 and each ‖ŵi‖ = 1. Further-

more since ŵ2 is a linear combination of the original two vectors we have 〈{ŵi}〉 = 〈{ui}〉.

Exercise 1.8. Let V be a finite dimensional vector space. Prove that there exists a basis for V such that
projection transformation with repsect to this basis is a diagonal matrix all of whose diagonal entries
are zeros and ones.

Proof: Let T be a projection operator from V to V . If v ∈ V then we have T (v) = w ∈ V ,
also T 2(v) = T (w) = w since V is a projection operator. This implies that for any v ∈ V we have
T 2(v) = T (v). In otherwords, (T 2−T ) = 0. Hence we have the minimal polynomial as mT (x) = x(x−1).
This means that the characteristic equation cT = xm(x− 1)n for some n,m > 0. Now recall a theorem
about diagonalization, a matrix or linear map is diagonalizable over the field F if and only if its minimal
polynomial is a product of distinct linear factors over F. Hence this operator is diagonal. So there is a
matrix P , whose columns are the eigenvectors of the eigenvalues 1 and 0 such that if A is the matrix
representation with repect to the standard basis of T , we have

PAP−1 =

(
In 0n,m

0m,n 0m,m

)
In otherwords, the matrix repesentation of T with repsect to the basis of eigenvectors is a diagonal
matrix all of whose diagonal entries are zeros and ones.

Exercise 1.9. Let V be a finite fimensional vector space over C.

(a) Carefully define the characteristic polynomial of a linear transformation of V and the minimal
polynomial of a linear transformation of V .
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(b) Give an example of two linear operators S : V → V , T : V → V such that S and T have the
same characteristic polynomial but are not similar.

(c) Given an example of two linear operators such that the operators have the same minimal poly-
nomial but are not similar.

Proof: For part (a), the characteristic polynomial of an operator cT (x) is the monic polynomial whose
roots are the eigenvalues of the operator. If A is the matrix representation of T with repect to the
standard basis then the characteristic polynomial can be given by cT (x) = det(xIn −A). The minimal
polynomial mT (x) is the monic polynomial of least degree such that mT (T ) = 0. Furthermore for any
other polynomial p(x) such that p(T ) = 0 we have the mT |p(x).

For part (b), two linear operators can have the same characteristic polynomial and not be similar if
their minimal polynomials are different. Consider the matricies;

A =

(
1 0
0 1

)
B =

(
1 1
0 1

)
and let these two matricies be the matrix representations of two linear operators. It is easy enough to see
that cA(x) = cB(x) = (x−1)2. Computing ker(xI2−A) and ker(xI2−B) we have the mA(x) = (x−1)
and mB(x) = (x− 1)2. Hence matricies A and B are not similar. For part (c), consider the matricies;

A =

(
1 0
0 1

)
B =

 1 0 0
0 1 0
0 0 1


The minimal polynomial for A and B is easily computed to be mA(x) = mB(x) = x − 1, but the
dimensions of A and B are not equal, therefore they cannot be similar.

2. Group Theory

Exercise 2.1.

(a) If G is a finite group of even order, show that G has an element of order 2.
(b) Show that if G is a group of order 2k where k is odd, then G has a subgroup of index 2.

Proof: For part (a), suppose G is a finite group with even order and no elements of order 2. Then
for all x 6= 1 in G we have x 6= x−1 since there are no elements or order 2. Each non identity element
must have an inverse that is not itself. Pick an non identity element and call it x1, then x1 6= x−1

1 ,
pick another non identity element x2 ∈ G/{x1, x

−1
1 }, then x2 will have an inverse that is not itself.

Enumerating G in this fashion we have

G = {1, x1, x
−1
1 , x2, x

−1
2 , . . . , xk, x

−1
k }

Counting the elements G has 2k + 1, which is odd for any k ∈ N . Thus one element in G must be its
own inverse, i.e. G must have an element of order 2.

For part (b), let π : G→ S|G| be permutation representation of the group action such that πx(g) = x · g
for x, g ∈ G. Since 2 is prime, by Cauchy’s Theorem, G has an element of order 2. Now if x is an element
of order 2 and |G|/2 = k is odd then πx is an odd permutation. To see this notice that πx is a product
of k 2-cycles, hence sgn(πx) = −1. Now consider the sign mapping ε : Im(π) → {±1}. This mapping
is surjective since πx ∈ Im(π) and π is odd. Now, by the Fundamental Theorem of Homomorphisms
Im(π)/ ker(ε) ∼= {±1} ∼= Z2. Hence that [Im(π) : ker(ε)] = [G : ker(ε)] = 2. Therefore G has a subgroup
of index 2.

Theorem: (Lagrange’s Theorem) If G is a finite group and H is a subgroup of G, then the order
of H divides the order of G.

Theorem: (Cauchy’s Theorem) If G is a finite group and p is a prime dividing |G|, then G has an
element of order p.
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Theorem: (Sylow) If G is a finite group of order pαm, where p is prime and does not divide m.

(a) Sylow p−subgroups of G exist, i.e. Sylp(G) 6= ∅.
(b) Any two Sylow p-subgroups of G are conjugate in G.
(c) the number of Sylow p-subgroups of G is of the form 1 + kp, i.e np ≡ 1 mod p. Furthermore

np is the index in G of the normalizer NG(P ) for any Sylow p-subgroup P , hence np divides m.

Exercise 2.2. Recall that a transitive subgroup G of Sn is a subgroup with the property that for every
i, j with 1 ≤ i, j ≤ n there exists σ ∈ G with σ(i) = j.

(a) show that for any i, j with 1 ≤ i, j ≤ n that the stabilizers stab(i) and stab(j) are conjugate in
G.

(b) Show that the index of stab(i) in G is n.
(c) Show that neither stab(i) nor any proper subgroup of stab(i) is normal in G.

Proof: For part (a) we will show double inclustion stab(i) and stab(j) are conjugates. to show that
let σ ∈ stab(j). Since G is transitive there exists a τ ∈ G such that τ(i) = j.
(⊆) Now consider τ−1στ · i;

τ−1στ · i = τ−1σ · j = τ−1 · j = i

So we have τ−1στ ∈ stab(i), hence σ ∈ τ stab(i)τ−1.

(⊇) Now if σ ∈ τ stab(i)τ−1, then we have

τστ−1 · j = τσ · i = τσ · i = τ · i = j

So τστ−1 ∈ stab(j), hence σ ∈ τ−1 stab(i)τ . In otherwords stab(i) = τ−1 stab(j)τ or stab(i) and
stab(j) are conjugates.

For part (b) first recall the orbit-stabilizer theorem. If G is a group which acts on a finite set S and
s ∈ S, then

| orb(s)| = [G : stab(s)] =
|G|

| stab(s)|
Since G is transtive, for an element i, and every number 1 ≤ j ≤ n, there is a τ ∈ G such that τ · i = j.
This means that G only has one orbit. Since Sn is a permuation on n numbers, the size of | orb(i)| = n.
Hence we have as a direct consequence of the orbit-stabilizer theorem; | orb(i)| = [G : stab(i)] = n or
the index of stab(i) in G is n.

For part (c), since the group action is transitive in part (a) we have shown all stabilizers are conjugate
to one another. If a stabilizer or any subgroup of a stabilizer is normal, then all elements of {1, . . . , n}
have the same stabilizer. In other words if g fixes i, then it fixes all integers from 1 to n. This implies
that the action is regular; which means for every i, j, there is a unique τ ∈ G such that gi = j. In
particular, we have |G| = |S| which cannot be true unless n = 1 or 2, if which is the case the result is
trivial.

Definition: Let A is a nonempty set in G and S be a set, the set of elements CG(A) = {g ∈ G :
gag−1 = a,∀a ∈ A} is called the centralizer of A in G. The set NG(A) = gAg−1 = {gag−1 : a ∈ A} is
the normalizer of A in G and the set Z(G) = {g ∈ G : gxg−1 = x, ∀x ∈ G} is called the center of G. If
s is a fixed element of a set S, the set Gs = {g ∈ G : g · s = s} is the stabilizer of s in G.

Exercise 2.3.

(a) Give two examples of non abelian and non-isomorphic groups of order 48.
(b) Show that a group of order 48 cannot be simple.

Proof: For part (a), 48 = 24 ∗ 3 if a group is to be non abelian and of order 48, then it cannot be a
direct product of cyclic groups. Consider each of the following:

A4 × Z4, S4 × Z2, Z4 o Z4 × Z3 Q8 × Z6
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There are more buy permuting the direct products of Zp. Each group listed above is of order 48,
(|A4| = 12, |S4| = 24, |Z4 o Z4| = 16, |Q8| = 8) and each are can be shown to be non-isomoprhic.

For part (b), let Pi ∈ Syl2 and E = {Pi} be the set of Sylow 3 subgroups. By Sylows theorem
n2 = |E| = 1, 3. If n3 = 1, we’re done because there is a unique Sylow 2 subgroup that is normal in G.
Otherwise n2 = 3, first we have

K =
⋃

Pi∈Syl3

N(Pi) / G.

To see this, let τ : E → Sn3 , where n3 = 4, 16. Now

ker(τ) = {g ∈ G : P gi = Pi, forallPi ∈ E} = K

It is clear that τ is a homomorphism from G to S3 and the kernels of homomorphism are normal
subgroups, hence K / G. We need to show that 1 < |K| < |G| for any group of order 48. First
G/K ∼= Im(τ) and hence

|G|/|K| ≤ |S2| = 2 ⇒ 24 · 3
2!

= 24 ≤ |K|.

So we have shown 1 < |K| < |G|, i.e. K is a nontrivial normal subgroup of G, so G is not simple.

Exercise 2.4. Prove that every finite group of order > 2 has a nontrivial automorphism.

Proof: First consider Z(G), the center of G and G/Z(G), the latter is isomorphic to the inner auto-
morphisms of G, hence if G is not abelian we are done. Now if Z(G) = G then G is abelian, so consider
the map τ : g → g−1. τ is an automorphism and will be non-trivial unless every element of G equals its
inverse. If every element of G is of exponent 2. If this is the case, G a vector space over the field of 2
elements and so G ∼= ⊕Z2. Since |G| > 2, then there are atleast two copies, so the map that permutes
the coordinates is a nontrivial automorphism.

Exercise 2.5.

(a) Carefully state the Fundamental Theorem of finite abelian groups.
(b) Use your fundamental theorem to list the distinct isomorphism classes of abelian groups with

p4q elements, where p and q are distinct primes.
(c) Explain which group in your list is isomorphic to the group Zpq ⊕ Zp3 .

Proof: For part (a) the Fundamental Theorem of finite Abelian groups states that every finite abelian
group is an internal group direct product of cyclic groups of prime-power order. As a consequence of
this, the number of, terms in the product and the orders of the cyclic groups, are uniquely determined
by the group.

For part (b) we have the following:

Zp4q, Zp3q ⊕ Zp, Zp2q ⊕ Zp2 , Zp2q ⊕ Zp ⊕ Zp, Zqp ⊕ Zp ⊕ Zp ⊕ Zp
For part (c), let us describe two decompositions using the Fundamental Theorem of finite Abelian
groups. First we have a the elementary divisor decomposition, which is states that every finitely
generated abelian group G is isomorphic to a direct sum of cyclic groups, i.e.;

(Zn⊕)

t⊕
j=1

n⊕
i=1

Zpjαi

where the rank of an abelian group n ≥ 0 and the numbers pj are prime numbers and for each prime
pj , αi−1|αi.

The invariant factor decomposition is where a finitely generated abelian group G can is written as a
direct sum of the form

Zn ⊕ Zk1 ⊕ · · · ⊕ Zkr
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where ki−1|ki and ki are uniquely determined by G. Note that these are equivalent statements because
of the Chinese remainder theorem, which here states that Zm ∼= Zp ⊕ Zq if and only if p and q are
coprime and m = pq. The list from part (b) are written in the invariant factor decomposition, and so
Zpq ⊕ Zp3 ∼= Zp3q ⊕ Zp.

Exercise 2.6.

(a) Let G be a finite group acting on a finite set S. Prove that the size of the orbit of a point s equal
to the index of its stablizer. More precisely, let xG be the orbit of x under the action of G and
let Gx be the subgroup of elements in G that fix x. Prove that |xG| = [G : Gx].

(b) Use part (a) to prove the class equation:

|G| = Z(G) +
∑
g∈I

[G : C(g)]

Where Z(G) is the center of G, C(g) is the centralizer of g ∈ G and I is a set with of distinct
representatives from each nontrivial conjugacy class of G.

(c) Use the class equation to prove that every finite p-group has a nontrivial center.

Proof: For part (a), first let x ∈ S then by definition Gx = {g ∈ G : gxg−1 = x} and xG{y ∈ S :
y = gxg−1, g ∈ G}. Now let y ∈ xG, then there is a g ∈ G such that y = gxg−1. Hence the map
y : gxg−1 → gGx is a map from xG to the set of left cosets of Gx in G. This map is surjective since for
any g ∈ G, xg is an element of xG. Also xg1 = xg2 if an only if g−1

2 g1 ∈ Gx if and only if g1Gx = g2Gx,
hence the map is also injection. Therefore there is a bijection between the index of the stabilizer of x
and the size of the orbit of a point x, i.e, |xG| = [G : Gx].

For part (b), if x ∈ Z(G), then x = xg for all g ∈ G. If |Z(G)| = n and {Ki}mi=1 are the conjugacy
classes of G not contained in the center and let gi be a representative of each Ki. We have

|G| =
n∑
i=1

1 +

m∑
i=1

|Ki| = |Z(G)|+
m∑
i=1

[G : gGi ]

where the last equality is from part (a).

Exercise 2.7. Prove that there are at least two non-isomorphic non-abelian groups of order 24. You
should carefully describe your groups and explain how you know that they are not isomorphic.

Proof: Consider the two groups S4 and D12, both groups have order 24 and both are non-abelian. To
be a little more precise

D12 = 〈r, s : r12 = s2 = 1, rsr = s〉, S4 = 〈(i, i+ 1) : i ∈ [1, 3]〉

Now D12 has an element of order 12, however S4 does not have an element of order 12. To see the later
fact S4 is a permutation of 4 numbers. the order of the any element in S4 is the size of each disjoint cy-
cle. Hence the largest order for an element in S4 is 4. Therefore these two groups cannot be isomorphic.
Also by construction for D12, the condition rsr = s makes this group non-abelian and any symmetric
groups Sn for n > 3 is non-abelian, consider the products (12)(123) = (13) and (123)(12) = (23).

Exercise 2.8.

(a) Use the Fundamental theorem of finite abelian groups to list the distinct isomorphism classes of
abelian groups with 144 elements.

(b) Explain which group in your list is isomorphic to the group Z4 ⊕ Z36.
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Proof: For part (a), writing the prime decomposition to 144 we have 2432. The invariant factor
decompositions are:

Z2432 , Z2332 ⊕ Z2, Z2232 ⊕ Z22 , Z243 ⊕ Z3 Z233 ⊕ Z2·3, Z223 ⊕ Z22·3

Z2232 ⊕ Z2 ⊕ Z2, Z2·3 ⊕ Z2·3 ⊕ Z2, Z2·32 ⊕ Z2 ⊕ Z2 ⊕ Z2, Z2·3 ⊕ Z2·3 ⊕ Z2 ⊕ Z2

For part (b), the group that is isomorphic to Z4 ⊕ Z36
∼= Z2232 ⊕ Z4

Exercise 2.9.

(a) Carefully state the Sylow Theorems.
(b) Prove that every group of order 126 has a normal subgroup of order 7.
(c) Prove that every group of order 1000 is not simple.

Proof: For part (a), there are three Sylow theorems, which are;

(a) For any prime factor p with multiplicity n of the order of a finite group G, there exists a Sylow
p−subgroup of G, of order pn, i.e. Sylp(G) 6= ∅.

(b) Any two Sylow p-subgroups of G are conjugate in G, i.e, if P1, P2 ∈ Sylp(G) then there is a

g ∈ G such that P1 = P g2 .
(c) The number of Sylow p-subgroups of G is of the form 1 + kp, i.e np ≡ 1 mod p. Furthermore

np is the index in G of the normalizer NG(P ) (i.e; np = [G : NG(P )]) for any Sylow p-subgroup
P , hence np divides m.

For part (b), 126 = 2 ·32 ·7. Consider the Sylow subgroups of order 7, by Sylow’s first theorem we know
there is at least one since Syl7(G) 6= ∅. Furthermore n7 ≡ 1 mod 7 and n7|18. These two conditions
imply that n7 = 1. Hence there exists a unique Sylow 7 subgroup, hence it is normal in G. To see this
let P be the Sylow 7 subgroup and consider np = [G : NG(P )] = 1 by definition we have

NG(P ) = {g ∈ G : gPg−1 = P}.
So G = NG(P ), in otherword P is normal in G.

For part (b), 1000 = 23 · 53. Consider P ∈ Syl5, n5 = 1 by Sylows theorems and hence there is a unique
Sylow 5−subgroup which is normal. Thus, there is no simple group of order 1000.

3. Rings and Fields

Exercise 3.1. Let F be a field of characteristic p > 0 and c an element of F. If xp − c has no roots in
F, prove that xp − c is irreducible in F[x]

Proof: First if F is a field of characteristic p, then F has pn elements for some n ∈ Z+. Let n,m > 0,
n+m = p, and suppose that xp − c factors into two factors

xp − c = (xn + an−1x
n−1 + · · ·+ a1x+ a0)(xm + bm−1x

m−1 + · · ·+ b1x+ b0) = a(x) · b(x)

where {ai}ni=1{bj}mj=1 ∈ F. Both n,m have to be larger than 2, otherwise we are done since if (WLOG)
n = 1 then x− a0 would be a factor of xp − c and hence a0 would be a root in F, which contradicts to
xp − c having no roots in F. Take a0, since p is prime and F× is cyclic we have there is an t such that
ap0 = ct. Now since p is prime we have positive integers r, s such that 1 = rp + st. Now consider the
following:

(cras0)p = crpasp0 = crpcst = c

but cras0 ∈ F this implies that xp−c has a root in F which is a contradiction. Hence xp−c is irreducible
in F[x].

Exercise 3.2. Suppose L is a separable extension of a field F with [L : F] = 2. Prove that if f(x) ∈ F[x]
is irreducible over F, then one of the following occurs:

(i) f(x) remains irreducible in L[x], or
(ii) f(x) is a product of two irreducible polynomials in L[x] of equal degree.
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Proof: First consider the factorization of f(x) = q1(x) · · · qm(x) in to irreducibles in L[x]. Let αi
be a root of qi(x) and α1 be a root of q1(x). Let K be the splitting field of f(x), so that L ⊂ K.
Now the degree of the extension is 2 the extension is normal. Also, since the extension is seperable
it is Galois. Let G be the Galois group of L/F. Since the action of G is transitive on the roots of
f(x) there exists σ ∈ G such that σ(α1) = αi. Since L is Galois, σ(L) = L, so σ(q1(x)) ∈ K[x] is a
polynomial that has σ(α1) = αi as a root. Therefore, qi(x)|σ(q1(x)). Since both are irreducible, we
have deg(qi) = deg(σ(q1)) = deg(q1). So all irreducible factors of f(x) in L have the same degree.

Now the degree is equal to the degree of the extension L(a1)/L, which is the degree of q1(x). Let
n = deg(f(x)), for the number of factors we have

n = [F(α1) : F] = [F(α1) : F(α1) ∩ L][F(α1) ∩ L : F].

Since L is Galois over F, then K(α1) is Galois over F(α1) . If σ ∈ Gal(L(α1)/F(α1)), then restricting
σ to K gives a homomorphism Gal(L(α1)/F(α1)) to Gal(L ∩ F(a)). If σ restricts to the identity on K,
then it must be the identity on K(α1), so the map Gal(L(α1)/F(α1)) to Gal(L ∩ F (a)) is one-to-one.
This implies that [L(α1) : F(α1)] = [L : L ∩ F(α1)]. Now,

[L(α1) : L∩F(α1)] = [L(α1) : L][L : L∩F(α1)], [L(α1) : L∩F(α1)] = [L(α1) : F(α1)][F(α1) : L∩F(α1)].

Hence we have [F(α1) : F(α1) ∩ L] = [L(α1) : L]. Now

n = [F(α1) : F] = [F(α1) : F(α1) ∩ L][F(α1) ∩ L : F] = [L(α1) : L][F(α1) ∩ L : F] = d[F(α1) ∩ L : F]

where d = deg(q1), also

[L : F] = [L : F(αi) ∩ L][F(αi) ∩ L : F] = 2

So either [F(αi) ∩ L : F] = 2 in which case there are two irreducible polynomials of equal degree or
[L : F(αi) ∩ L] = 2 in which case f(x) remains irreducible of L[x].

Definition: An extension E ⊃ F is called separable if for every α ∈ E the minimal polynomial of α
over F is a separable polynomial i.e., has distinct roots.

Exercise 3.3. (a) Let R be a UFD and d a nonzero element in R. Prove that there is only finitely
many principal ideals in R that contain the ideal (d).

(b) Give an example of a UFD R and a nonzero element d ∈ R such that there are infintely many
ideals in R containing (d).

Proof: For part (a), since R is a UFD we have

d = α

n∏
k=1

pekk

where pk are distinct and ek ∈ N and α is a unit. Relabel this factorization as a product of not
necessarily distinct elements, but there are no exponents ek.

d = α

n∏
k=1

pekk = α

m∏
k=1

qk

for m ≥ n and m = n if and only if each ek = 1. Now consider the following chain.

(d) =

(
α

m∏
k=1

qk

)
⊂

(
α

m−1∏
k=1

qk

)
⊂ · · · ⊂ (q1)

There are m ideals containing (d), hence there is only finitely many principal ideals in R containing
(d).

For part (b) consider the ring Z[x], this is a UFD with the usual polynomial division since Z is a UFD.
Now consider the following:

(2) ⊂ (2, xn), n ∈ N
This is true for all n, hence there are infinitely many ideals in Z[x] that contain (2).
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Exercise 3.4. Let R be a commutative ring with unity. Show that an ideal M is maximal if and only
if for all r ∈ R\M there exists an x ∈ R such that 1− rx ∈M .

Proof: (⇒) Let M be a maximial ideal then R\M is a field. Let r ∈ R\M and suppose that for all
x ∈ R, 1 − rx /∈ M . This implies that 1 − rx ∈ R\M , in particular 1 − rx = r(r−1 − x) ∈ R\M for
all x ∈ R. Let m ∈ M and choose x = r−1 −m, this can be done since R\M is a field. We now have
1− rx = r(r−1 − x) = rm ∈M by definition of an ideal. This is a contradiction to 1− rx /∈M , hence
there is an x ∈ R such that 1− rx ∈M .

(⇐) Suppose that M is not maximal, and that for all r ∈ R\M there exists an x ∈ R such that 1−rx ∈
M . There is a maximal ideal N containing M such that for an x /∈ N , we have M ⊂ N ⊂ N + (x) = R.
Hence 1 ∈ N + (x) and so 1 = n+ rx where n ∈ N , r ∈ R, so we have 1− rx ∈ N . Now if r ∈ R ∈M ,
by hypothesis, we have 1− rx ∈M and hence N ⊂M or M = N i.e M is maximal.

Exercise 3.5. Let p be a prime, and let Fp denote the finite field of p elements. Let x be an indeter-
minate, and set R1 = Fp[x]/(x2 − 2) and R2 = Fp[x]/(x2 − 3). Determine whether or not R1 and R2

are isomorphic rings in each case: (a) p = 5; (b) p = 11.

Proof: First recall that if an ideal is maximal in a ring, then the quotient is a field, i.e if f(x) ∈ Fp[x]
is maximal then Fp[x]/(f(x)) is a field. Also we recall that two finite fields with the same number of
elements are isomorphic. Now for p = 5 we have the following{

x2 − 2

x2 − 3
mod 5 ≡

{
x2 + 3

x2 + 2
mod 5

If these factor in F5 to (x+ a)(x+ b), we have the following{
a+ b = 0ab = 2, 3 mod 5

There is a short list to check, the pairs (1, 4), (2, 3) are the only 2 that will satisfy a + b = 0 mod 5,
but 1 · 4 = 4 mod 5 and 2 · 3 = 1 mod 5. Hence both x2 − 2 and x2 − 3 are irreducible in F5, hence
both R1 and R2 are finite fields with the same number of elements so they are isomorphic. For p = 11
we have to look at the pairs

(1, 11), (2, 9), (3, 8), (4, 7), (5, 6)

Now {
x2 − 2

x2 − 3
mod 11 ≡

{
x2 + 9

x2 + 8
mod 11

and we have using a similiar set of equations,

1·10 = 10 mod 11, 2·9 = 7 mod 11, 3·8 = 2 mod 11, 4·7 = 6 mod 11, 5·6 = 8 mod 11,

Hence we have x2 + 8 = (x + 5)(x + 6) in F11[x] and x2 + 9 is irreducible in F11[x]. This implies that
R1 is a field while R2 is not, hence they cannot be isomorphic.

Exercise 3.6. Let F be a splitting field of the polynomial f(x) = x4− 2 ∈ Q[x] over Q. Find the degree
[F : Q] and determine the Galois group of the extension Q ⊂ F up to isomorphism.

Proof: The zeros of x4− 2 are 21/4ωk, where ωk = eıkπ/2 for k = 0, 1, 2, 3. First consider E = Q(21/4),
it is clear that ı /∈ E and since x4 − 2 is irreducible over Q by Eisenstein’s Irreducibility Criterion with
p = 2 we have [E : Q] = 4. Let F = Q(21/4, i). Then we have

[Q(21/4, ı) : Q] = [Q(21/4, ı) : Q(21/4)] · [Q(21/4) : Q] = 2 · 4 = 8.

Because the multiplicitive group F× can be generated by two elements s = ı and r = 2(1/4), it is
isomorphic to the group Z2 × Z4, further more we have srs = r−1 hence the group is isomophic to D8

the permutations of a square.
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