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Abstract. The idea of a rational tangle has aided with the classification

of knots. This paper reviews the general definitions of knots and tangles,

combinatorial proofs of the classifications for rational tangles and poses an
operation to transform knots into tangles.

1. Introduction

In the natural world knot theory has many applications, from high energy physics
to jumbled sequences of DNA. Many invariants have been associated with properties
of knots. From these invariants it is possible to distinguish some knots from one
another, while others knots still remain unclassified. In order to determine if 2 knots
are identical the crossings, for a fixed projection, are studied. Certain attributes
arise from this projection, one of which is tangles. A minimal amount of knot
theory knowledge is needed for understanding the material of this paper

2. Notation

For the purpose of this paper all general notation and definitions used will be defined
here.

Definition 1. A knot is a closed curve embedded in a Euclidean 3-space that does
not intersect itself.

Definition 2. An ambient isotopy for a knot is a continuous deformation of the
knot through space. 1

It is good to note that any knot can be embedded into a 2-sphere, which will be
denoted B3. Also, two knots are equivalent if and only if we can obtain one from
the other via an ambient isotopy. From the projection representation of a knot,

Definition 3. A tangle is a proper embedding of two unoriented arcs into B3

such that the endpoints lie on ∂B3. Furthermore, there exist a homotopy to reduce
the tangle to the trivial tangle.2

A 2-tangle is a planar projection of a tangle. Distinguishing between a 2-tangle and
a tangle will have no effect on any computations, so in the context of this paper a
tangle will refer to a 2-tangle.

1From the planer projection of a knot, this isotopy is formally known as a set of Reidemeister

moves, see [4].
2For more information regarding a precise definition of tangles refer to [1]

1



2 JAMES C HATELEY

a b c

Figure 1. Examples of Tangles

In order to define rational tangles, the trivial forms of tangles need to be defined.
The trivial forms of tangles are two horizontal arcs or two vertical arcs. Two
horizontal arcs will be denoted by [0] and two vertical arcs will denoted by 1

[0] or
[∞]. Then [n] will denote the number of horizontal half twists and 1

[n] denotes the
number of vertical twists, where n ∈ Z. A crossing is positive if the crossing is
right-hand orientedfor horizontal half-twists, and left-hand oriented for vertical half
twists, otherwise the crossing is negative.

[0] [∞]

Figure 2. Trivial forms of Tangles

As an example, 1
[−3] describes the tangle in Figure 1a, additionally the tangle

is rational. This fact will be made clear shortly. In order to start constructing
and classifying tangles an algebraic structure needs to be defined. If T1 and T2

are rational tangles then two binary operations, what we will call, addition and
multiplication are to be defined as follows.

+ : (T1, T2) → T1+2

∗ : (T1, T2) → T1∗2

Example 1. With the addition and multiplication defined the following hold.

+([1], [1]) = [2]

∗
(

1
[1]
,

1
[1]

)
=

1
[2]

Or in a more informal notation, which will be used for the purpose of this paper.

[1] + [1] = [2]
1

[1]
∗ 1

[1]
=

1
[2]

This notation looks odd and might be unconventional, but it will be useful later.

Definition 4. A tangle is called simple if the tangle is either [n] or 1
[n] , n ∈ Z.
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Figure 3. Simple Tangles

Definition 5. A tangle is called rational if the tangle can be written in the
following form.

k1∑
i=1

[1] ∗
k2∏

i=1

1
[1]

+
k3∑

i=1

[1] ∗ · · ·+
kn∑
i=1

[1]

If T is a tangle in standard form a tangle T
′

is rational if the following occur.
T
′

= T + [n] or T
′

= T ∗ 1
[n] The last set of operations can be defined as follows.

Let T and [n] be tangles, then the following operations are also defined. For visual
purposes, the tangle from Figure 1b will be used. Switching all crossings of T or
[n] is called a reflection.

T Ref(T)

Ref(T ) = −T,Ref([n]) = −[n] = [−n]

Rotating T or [n] by 90◦ counterclockwise.

T Rot(T)

Rot(T ) = T r, Rot([n]) = [n]r

The inverse of T or [n]

Inv(T ) = −T r, Inv([n]) = −[n]r = [−n]r

A horizontal flip is a rotation by 180◦ degrees about the horizontal axis and denoted
by hflip(T). A vertical flip is a rotation by 180◦ degrees about the vertical axis and
is denoted by vflip(T).
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T Inv(T)

Definition 6. A flype for a tangle T is a move described by T + [±1] or T ∗ [±1].

Before we move on the algebraic structure, it is important to note how a rational
tangle is defined here. Addition and multiplication are not commutative in a normal
sense. For consistency, addition will be done from the right and multiplication will
be done from the bottom.

Definition 7. A tangle is in standard form if it is created by consecutive addi-
tions of simple tangles from the right and multiplications by simple tangles from
the bottom.

Notice rational tangles are tangles that are ambient isotopic to a tangle in standard
form. With addition, multiplication, tangle operations and some basic definitions in
place an algebraic structure for rational tangles can be observed. The last definition
given is numerator and denominator closure.

Definition 8. The numerator closure, denoted N(T ), is a connecting of the
poles in a horizontal manner. The denominator closure, denoted D(T ), is a
connecting of the poles in a vertical manner.

N(T) D(T)

Figure 4. Closure of a Tangle

For the rest of this paper T will be an arbitrary rational tangle in standard form,
while T1, and T2 will be arbitrary rational tangles.

3. Algebraic Structure

It is good to understand when a addition and/or multiplication simplify a ra-
tional tangle. Intuitively T + (−T ) should be either [0] or [∞]. Also Inv(T ) ∗ T
should be either [0] or [∞]; both of these intuitions turn out to be true. For a
simple rational tangle [n], it is easy to observe

1
[±n]

+ [∓n] = [0]

[±n] ∗ 1
[∓n]

= [∞]

Naively following this idea tells us Inv(T )+T = [0] and T ∗Inv(T ) = [∞]. In order
to give a more rigorous answer to this question, observations of when and under
what operations are two tangles isotopic commutative.
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Lemma 1. hflip/vflip induces a rational tangle if and only T is rational.

Proof: If hflip(T ) is rational then hflip(hflip(T )) is rational and hflip(hflip(T )) =
T . Therefore T is rational. Conversely if T is rational then

T =
k1∑

i=1

[1] ∗
k2∏

i=1

1
[1]

+ · · ·+
kn∑
i=1

[1]

hflip(T ) =
kn∑
i=1

[−1] ∗
k2∏

i=1

1
[−1]

+ · · · ∗
kn−1∏
i=1

1
[−1]

+
k1∑

i=1

[−1]

therefore hflip induces a rational tangle.

Lemma 2. T is rational if and only if Rot(T ) is rational.

Proof: If T is rational in standard form, then

T =
k1∑

i=1

[1] ∗
k2∏

i=1

1
[1]

+ · · ·+
kn∑
i=1

[1]

T r =
k1∏

i=1

1
[−1]

+
k2∑

i=1

[−1] ∗ · · ·+
kn∏
i=1

1
[−1]

=
1∑

i=1

[0] ∗
k1∏

i=1

1
[−1]

+
k2∑

i=1

[−1] ∗ · · ·+
kn∏
i=1

1
[−1]

+
0∑

i=0

[0]

so T r is in standard form and therefore rational. A similar proof is done if T r is
rational.

Lemma 3. T is rational if and only if Inv(T ) is rational.

Proof: If T is rational in standard form, then

T =
k1∑

i=1

[1] ∗
k2∏

i=1

1
[1]

+ · · ·+
kn∑
i=1

[1]

Inv(T ) = −T r =
k1∏

i=1

1
[1]

+
k2∑

i=1

[1] ∗ · · ·+
kn∏
i=1

1
[1]

=
1∑

i=1

[0] ∗
k1∏

i=1

1
[1]

+
k2∑

i=1

[1] ∗ · · ·+
kn∏
i=1

1
[1]

+
1∑

i=1

[0]

so Inv(T ) is in standard form and therefore rational, and again, a similar proof
is done if Inv(T ) is rational. Something of importance should be noted here, and
that is Inv(T ) = −T r = 1

−T . Immediate consequences from these lemmas are

T ∼ hflip(T )
T ∼ vflip(T )
T ∼ Inv(T )

Inv(Inv(T )) = (T r)r

Lemma 4. Flypes are isotopic commutative, or

[±1] + T ∼ T + [±1], [±1] ∗ T ∼ T ∗ [±1]
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Proof: For [±1] + T ∼ T + [±1] , Let T
′

= [T ] + [±1]

T
′

=
k1∑

i=1

[1] ∗
k2∏

i=1

1
[1]

+ · · ·+
kn∑
i=1

[1] + [±1]

=
k1∑

i=1

[1] ∗
k2∏

i=1

1
[1]

+ · · ·+
kn±1∑
i=1

[1]

vflip
(
hflip(T

′
)
)
→

kn±1∑
i=1

[1] ∗
kn−1∏
i=1

1
[1]

+ · · ·+
k1∑

i=1

[1]

= [±1] + T 2r

Rot
(
Rot

(
[±1] + T 2r

))
= [±1] + T

The proof for [±1] ∗ T ∼ T ∗ [±1] is done in a similar manner.

T + [-1] → T
′

hflip → vflip →

→ [-1] + [T] hflip →

Figure 5. Proof of Lemma 4

Lemma 5. Every rational tangle can be written in standard form; furthermore the
standard form for a rational tangle is unique.

Proof: By definition, a tangle is rational if it can be written in standard form. For
uniqueness consider T1 and T2 as arbitrary rational tangles, if T1 ∼ T2 then let T

′

1

and T
′

2 be the standard form representation of T1 and T2 respectively, so T1 ∼ T
′

1

and T2 ∼ T
′

2. Since T1 ∼ T2 it is not that hard to see that T
′

1 ∼ T
′

2

T
′

1 ∼ T
′

2 ⇒
k1∑

i=1

[1] ∗ · · ·+
kn∑
i=1

[1] ∼
j1∑

i=1

[1] ∗ · · ·+
jm∑
i=1

[1]

Without loss of generality suppose n > m and kn > jm. Counting the number of
twists from the right until T

′

2 is untwisted implies

T
′

1 =
k1∑

i=1

[1] ∗
k2∏

i=0

1
[1]

+ · · ·+
kl∑

i=1

[1] ∼ 0

So either the left over from T
′

1 is isotopic to the trivial tangle, which is a contradic-
tion to T

′

1 being in standard form. Or k1, ..., kl = 0 for each ki remaining. Which
then implies that

T
′

1 =
kl+1∑
i=1

[1] ∗ · · ·+
kn∑
i=1

[1] =
j1∑

i=1

[1] ∗ · · ·+
jm∑
i=1

[1] = T
′

2

or kl+1 = j1, ..., kn = jm. Therefore, the standard form is unique.
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Lemma 6. Addition and multiplication of rational tangles are isotopic commuta-
tive.

Proof: If T1 and T2 are rational tangles, let T
′

1 and T
′

2 be their respective standard
form representations. So T1 ∼ T

′

1 and T2 ∼ T
′

2. First thing that needs to be shown
is that T1 + T2 ∼ T

′

1 + T
′

2, this is almost inherit from the definition.

T1 + T2 = T1+2 ∼ T
′

1+2 = T
′

1 + T
′

2

So it now suffices to show T
′

1 + T
′

2 ∼ T
′

2 + T
′

1 since T
′

1 + T
′

2 ∼ T1 + T2.

T
′

1 + T
′

2 =
k1∑

i=1

[1] ∗
k2∏

i=0

1
[1]

+ · · ·+
kn∑
i=1

[1] +
j1∑

i=1

[1] ∗
j2∏

i=0

1
[1]

+ · · ·+
jm∑
i=1

[1]

=
k1∑

i=1

[1] ∗ · · ·+
kn+j1∑

i=1

[1] ∗ · · ·+
jm∑
i=1

[1]

Rot
(
Rot(T

′

1+2)
)
→

jm∑
i=1

[1] ∗ · · ·+
j1+kn∑

i=1

[1] ∗ · · ·+
k1∑

i=1

[1]

=
jm∑
i=1

[1] ∗ · · ·+
j1∑

i=1

[1] +
kn∑
i=1

[1] ∗ · · ·+
k1∑

i=1

[1]

= (T
′

2)2r + (T
′

1)2r ∼ T
′

2 + T
′

1

Thus T1 + T2 ∼ T2 + T1, so addition is isotopic commutative. A similar proof is
done for multiplication.

Corollary 1. Simple tangles are isotopic commutative, or

[n] + [m] ∼ [m] + [n], [n] ∗ [m] ∼ [m] ∗ [n]

Proof: This directly follows from lemma 6 .

Lemma 7. Every rational tangle satisfies the following isotopic equations

T ∗ 1
[n]

=
1

[n] + 1
T

,
1

[n]
∗ T =

1
1
T + [n]

Proof: Since multiplication is isotopic commutative T ∗ 1
[n] ∼

1
[n] ∗ T . So it suffices

to prove T ∗ 1
[n] = 1

[n]+ 1
T

. Let T
′

= 1
[n]+(−T )r

T
′

=
n∏

i=1

1
[1]

+

[
k1∑

i=1

[1] ∗
k2∏

i=1

1
[1]

+ ...+
kn∑
i=1

[1]

]

Ref(T
′
) →

n∏
i=1

1
[−1]

+

[
k1∑

i=1

[−1] ∗
k2∏

i=1

1
[−1]

+ ...+
kn∑
i=1

[−1]

]

Rot(Ref(T
′
)) →

[
k1∑

i=1

[1] ∗
k2∏

i=1

1
[1]

+ ...+
kn∑
i=1

[1]

]
∗

n∏
i=1

1
[1]

= T ∗ 1
[n]
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T
′

Ref(T
′
) Rot(Ref(T

′
))

Figure 6. Proof of Lemma 7

4. Fractional Representations of Rational Tangles

The symetry in lemma 7 gives an elegant way to express rational tangles. If T
is in standard form then

T =
k1∑

i=1

[1] ∗
k2∏

i=1

1
[1]

+ ...+
kn∑
i=1

[1]

where T has k1 horizontal twists then k2 vertical twists and so forth. For short-
hand T will be represented by [[k1], [k2], ..., [kn]]. From this we have the following
proposition.

Proposition 1. Every rational tangle can be written in a continued fraction form.
If T = [[k1], [k2], ..., [kn]], then if F (T ) is the fractional representation of T .

F (T ) = k1 +
1

k2 + · · ·+ 1

kn−1 +
1
kn

Proof: If T1 is a rational tangle, then T1 ∼ T by definition of rational tangles.
Since T is in standard form, applying lemma 7 n− 1 times, the result is obtained.
The fractional representation of T will be denoted [k1, k2, ..., kn]. The following
observations about the fractional representation of T are immediately made

F (T ) + [±1] = F (T ± 1) = [k1 ± 1, k2, ..., kn]

F

(
1
T

)
= [0, k1, k2, ..., kn]

−F (T ) = F (−T ) = [−k1,−k2, ...,−kn]

Proposition 2. Two rational tangles T1, T2 are equal if and only if there fractional
representations are equal.

Proof: Suppose T1 and T2 are in standard form, then T1 = [k1, k2, ..., kn] and
T2 = [j1, j2, ..., jm]. If T1 = T2 then standard representation forms are the same,
which means that n = m and ki = ji for i = 1 to n. Thus their fractional repre-
sentations are the same. On the other hand if T1 and T2 have the same fractional
representations then T1 = [k1, k2, ..., kn] = T2, thus T1 = T2.

The next few proofs rely on some knowledge between and continued fractions and
matrix theory.

Proposition 3. Let N(T ) denote the numerator closure of a rational tangle T .
Then if N(p

q ) is a knot, N(p
q ) is p-colorable.
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Proof: Let F (T ) = [k1, ..., kn], then let the matrix representation of F(T) be denoted
by

M(T ) =
(
k1 1
1 0

)(
k2 1
1 0

)
· · ·
(
kn 1
1 0

)
→ M(T )

(
1
0

)
=
(
p
q

)
→ p

q
=
Det([∇N(T )(−1)])
Det([∇D(T )(−1)])

Where Det([∇N(T )(χ)]) is a representation for the Alexander-Conway polynomial
for N(T ). Which directly implies that Det([∇N(T )(−1)]) = p.3

Corollary 2. If F (T1) = p
q and F (T2) = r

s , p = r and qs± ≡ 1 mod p, then there
exist a finite number of flypes such that T1 ∼ T2 ± [n], where n ∈ N.

Proof: Let q = np ± s, all that needs to be shown is q = p ± s, then q = np ± s
follows by induction. If q = p± s then r = q ∓ s so

p

q
=
q ∓ s
s

=
q

s
∓ 1

Let F (T3) = q
s , then F (T3) = [j1, ..., jm] so T3 = [[j1], ..., [jm]]. This implies that

T2 = T3 ∓ [1] = 1∓ [[j1], ..., [jm]]
= [[j1 ∓ 1], ..., [jm]]
= [[k1], ..., [kn]] = T1

Where [[k1], ..., [kn]] = p
q . Thus T1 ∼ T2 ± [1], then by induction the result follows.

Another consequence that can be applied to N(T ) is the following. For those
familiar with knot theory, this is a simplified statement of Conway’s theorem.

Proposition 4. N(p
q ) = N( r

s ) if and only if p = r and qs±1 ≡ 1 mod p

Proof: Let F (T1) = p
q and F (T2) = r

s , if p = r and qs± ≡ 1 mod p, then by the
corollary of Proposition 3, T1 ∼ T2. So then N(T1) ∼ N(T2), but if N(T1) ∼ N(T2),
then both knots are isotopic, which implies there exist a finite set of Reidemeister
moves to transform N(T1) to N(T2), therefore N(T1) = N(T2). On the other hand,
if N(p

q ) = N( r
a ) this imples that T1 ∼ T2. Since

p

q
=
Det([∇N(T )(−1)])
Det([∇D(T )(−1)])

=
r

s

p = Det([∇N(T )(−1)]) = r which means that T is r and p colorable, which implies
p|r and r|p hence p = r. Also, by the corollary of Proposition 3, if N(T1) = N(T1),
then T1 ∼ T2± [n]. So if q = np± s then T1 ∼ T2± [n] by the same proof. The last
case is when q = np± s± a, where a ∈ [1, p− 1]. A simple example shows this to
be false. Let F (T1) = 5

7 , F (T2) = 5
3 , a = 1, so 21 ≡ 1 mod 5

5
7

=
7+3
2

7
6=

7+3+1
2

7
=

11
14

So N(T1) and N(T2) are 5-colorable but N( 11
14 ) is 11-colorable. Thus q = np± s.

3The matrix product M(T ) is a representation of the Euclidean algorithm of p
q

.
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5. Knot Actions

This section is solely for future research purpose. A crossing on a planar projec-
tion of a knot can be given a polarity. Depending on orientation, a crossing can be
either +1 or −1. For a planar projection of a knot, breaking an arbitrary crossing
is the same as breaking the knot in two locations in 3-space. The next definition is
for a fixed projection.

Definition 9. A knot action κ, for a projection of a knot with n crossings, is a
breaking of a crossing where the two ends of the overcrossing are give a positive
polarity, while the two ends of the undercrossing are given a negative polarity.
Furthermore, the knot can be represented by a tangle with n− 1 crossings.

A couple simple examples can show that N(T ) and D(T ) might not necessarily
represent a knot/(link) action. Below is an example of a knot action on the knot
810 from Rolfsens knot table.4

810 κ(810) Tangle κ(810)

Figure 7. Example of a Knot Action on 810

To reiterate, in 3-space a knot action breaks a closed curve into 2 unoriented arcs.
The above definition also applies to a link. For every finite knot, there exist a finite
number of knot actions up to isotopy. This leads to the following claim.

Claim 1. Every tangle represents a knot or link action

Proof: Given a tangle, assign the two top poles a positive and negative polarity,
and the bottom poles a positive and negative polarity such that N(T ) and D(T )
connect opposite polarities.

Figure 8. A tangle representing a knot action

Claim 2. Knot/(link) action are invariant under the Reidemeister moves.

4Rolfsens knot table can be found in many books and online. This paper references[5], for the
table
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Proof: If K is a knot with n crossings then κ(K) = T with n − 1 crossings.
Tangles are invariant under the Reidemeister moves, thus κ(K) is invariant under
Reidemeister moves. Since κ(K) inherits the algebraic structure for tangles, then
it follows that addition of rows and multiplication of columns are invariant under
the Reidemeister moves.

Figure 9. A more complicated structure of a Knot Action

Switching the polarity of a knot action changes the original knot, for now this will
be referred to as a polarity shift. It should be clear that a set of knot actions and
polarity shifts are the operations that produce the unknotting number for a knot.
In order to start analyzing this idea, knowledge of homology theory and manifolds
is needed, which is beyond the purpose and scope of this paper.

Figure 10. Polarity Shift of a Knot Action

6. Conclusion

Tangles form a minor section of knot theory. From basic observations of a projec-
tion, simple ideas of reflecting, rotating and twisting turn into a rather sophisticated
algebraic structure. This structure turns out to be a way of distinguishing two pro-
jections, not only of tangles but knots as well. From this structure and projections
some knots can be distinguished from one another in 3-space as well. All of these
ideas build up to much more complicated and complete invariants for knots. Most
of which appear in topological concepts relating much of our physical world. In
summary, rudimentary ideas can lead to the most complex of things.
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