

Fast Computation for CVTs

Introduction

Preliminaries

Graph Laplacian

Optimization Methods

Numerical Results

Fast Computation for Centroidal Voronoi Tessellations

James Hateley, Huayi Wei, Long Chen

Department of Mathematics University of California, Irvine

Outline

2

Fast Computation for CVTs

Introduction

Preliminaries

Graph Laplacian

Optimization Methods

Numerical Results

Preliminaries

Introduction

Fast Computation for CVTs

Introduction

Preliminaries

Graph Laplacian

Optimization Methods

Numerical Results A Voronoi Tesselation (Voronoi Diagram) $\mathcal{V} = \{V_i\}_{i=1}^N$ is a special type of partitioning of an open subset Ω of \mathbb{R}^n . This partitioning of Ω is determined by distances to a specified set of generators $\mathbf{z} = \{z_i\}_{i=1}^N$. Each Voronoi region V_i will satisfy;

$$V_i = \{x \in \Omega : |x - z_i| < |x - z_j| \text{ for } j \neq i\}.$$

Introduction

Fast Computation for CVTs

Introduction

Preliminaries

Graph Laplacian

Optimization Methods

Numerical Results A *Centroidal Voronoi Tessellation* (CVT) is a Voronoi Tessellation in where the generators correspond to the centroids of each region.

Introduction

Fast Computation for CVTs

Introduction

Preliminaries

Graph Laplacian

Optimization Methods

Numerical Results A *Centroidal Voronoi Tessellation* (CVT) is a Voronoi Tessellation in where the generators correspond to the centroids of each region.

Left: (Squares) Voronoi Tessellation on a square, (dots) CVT. Right: Stable CVT on the same region.

Energy Minimization

Fast Computation for CVTs

Introduction

Preliminaries

Graph Laplacian

Optimization Methods

Numerical Results A CVT is also defined to be a critical point of the mean square distortion measure (variance),

$$\mathcal{E}(\mathbf{z},\mathcal{V}) = \sum_{i=1}^{N} \int_{V_i} \|\mathbf{x} - \mathbf{z}_i\|^2 \rho(\mathbf{x}) \, d\mathbf{x}. \tag{1}$$

Where $\rho(x)$ is a given density function.

- A stable CVT corresponds to a local minimizer of $\mathcal{E}(\mathbf{z}, \mathcal{V})$.
- An optimal CVT corresponds to the global minimizer.
- An unstable CVT corresponds to a saddle point.

Fast Computation for CVTs

Introduction

Preliminaries

Graph Laplacian

Optimization Methods

Numerical Results

There is a wide range of applications for CVTs:

Fast Computation for CVTs

Introduction

Preliminaries

Graph Laplacian

Optimization Methods

Numerical Results There is a wide range of applications for $\ensuremath{\mathsf{CVTs}}\xspace$:

• Computer graphics

Fast Computation for CVTs

- Introduction
- Preliminaries
- Graph Laplacian
- Optimization Methods
- Numerical Results

- There is a wide range of applications for $\ensuremath{\mathsf{CVTs}}\xspace$:
 - Computer graphics
 - Data compression

Fast Computation for CVTs

Preliminaries

Graph Laplacian

Optimization Methods

Numerical Results

There is a wide range of applications for CVTs:

- Computer graphics
- Data compression ٠
- Mesh generation

Fast Computation for CVTs

Introduction

Preliminaries

Graph Laplacian

Optimization Methods

Numerical Results There is a wide range of applications for CVTs:

- Computer graphics
- Data compression
- Mesh generation
- Optimal quantization

Fast Computation for CVTs

Introduction

Preliminaries

Graph Laplacian

Optimization Methods

Numerical Results There is a wide range of applications for CVTs:

- Computer graphics
- Data compression
- Mesh generation
- Optimal quantization

Du, Qiang and Faber, Vance and Gunzburger, Max. Centroidal Voronoi Tessellations: Applications and Algorithms. SIAM Rev.. 41(4):637-676, 1999.

Fast Computation for CVTs

Introduction

Preliminaries

Graph Laplacian

Optimization Methods

Numerical Results There is a wide range of applications for CVTs:

- Computer graphics
- Data compression
- Mesh generation
- Optimal quantization

Du, Qiang and Faber, Vance and Gunzburger, Max. Centroidal Voronoi Tessellations: Applications and Algorithms. SIAM Rev.. 41(4):637-676, 1999.

Fast Computation for CVTs

Introduction

Preliminaries

Graph Laplacian

Optimization Methods

Numerical Results We propose using a weighted graph Laplacian as a preconditioner in a quasi-Newton scheme for finding a stable CVT. There are several benefits for choosing the graph Laplacian instead of the Hessian.

Fast Computation for CVTs

Introduction

Preliminaries

Graph Laplacian

Optimization Methods

Numerical Results We propose using a weighted graph Laplacian as a preconditioner in a quasi-Newton scheme for finding a stable CVT. There are several benefits for choosing the graph Laplacian instead of the Hessian.

• The graph Laplacian is easy to assemble.

Fast Computation for CVTs

Introduction

Preliminaries

Graph Laplacian

Optimization Methods

Numerical Results We propose using a weighted graph Laplacian as a preconditioner in a quasi-Newton scheme for finding a stable CVT. There are several benefits for choosing the graph Laplacian instead of the Hessian.

- The graph Laplacian is easy to assemble.
- Captures the essential features of the Hessian.

Fast Computation for CVTs

Introduction

Preliminaries

Graph Laplacian

Optimization Methods

Numerical Results We propose using a weighted graph Laplacian as a preconditioner in a quasi-Newton scheme for finding a stable CVT. There are several benefits for choosing the graph Laplacian instead of the Hessian.

- The graph Laplacian is easy to assemble.
- Captures the essential features of the Hessian.
- The inverse of the graph Laplacian can be computed efficiently (i.e. AMG)

Fast Computation for CVTs

Introduction

Preliminaries

Graph Laplacian

Optimization Methods

Numerical Results

Introduction

2 Preliminaries

Graph Laplacian

Optimization Methods

5 Numerical Results

Fast Computation for CVTs

Introduction

Preliminaries

Graph Laplacian

Optimization Methods

Numerical Results Two step gradient method:

• Fix z, optimize partition

Fast Computation for CVTs

Introduction

Preliminaries

Graph Laplacian

Optimization Methods

Numerical Results Two step gradient method:

- Fix z, optimize partition
- Fix \mathcal{V} , optimize z

Fast Computation for CVTs

Introduction

Preliminaries

Graph Laplacian

Optimization Methods

Numerical Results Two step gradient method:

- Fix **z**, optimize partition
- Fix \mathcal{V} , optimize \mathbf{z}

Lloyd Iteration

• Construct Voronoi diagram $\mathcal{V}(\mathbf{z}_k)$

O Update
$$z_{i,k+1} = \left(\int_{V_i} \rho(x) dx\right)^{-1} \int_{V_i} x \rho(x) dx$$

Fast Computation for CVTs

Introduction

Preliminaries

Graph Laplacian

Optimization Methods

Numerical Results Two step gradient method:

- Fix z, optimize partition
- Fix \mathcal{V} , optimize z

Lloyd Iteration

• Construct Voronoi diagram $\mathcal{V}(\mathbf{z}_k)$

O Update
$$z_{i,k+1} = \left(\int_{V_i} \rho(x) dx\right)^{-1} \int_{V_i} x \rho(x) dx$$

Lloyd's method is robust with a convergence rate of $1 - O(h^2)$, where $h = \min_i \operatorname{diam}(V_i)$. Hence the larger the size of the problem, the slower the rate of convergence.

Two Geometrical Multilevel Methods

Fast Computation for CVTs

Introduction

Preliminaries

Graph Laplacian

Optimization Methods

Numerical Results There are two approaches to optimizing this energy:

- FAS: Brandt, Yavneh.
- Subspace Optimization Method: Tai and Xu, Du and Emelianenko.

Two Geometrical Multilevel Methods

Fast Computation for CVTs

Introduction

Preliminaries

Graph Laplacian

Optimization Methods

Numerical Results There are two approaches to optimizing this energy:

- FAS: Brandt, Yavneh.
- Subspace Optimization Method: Tai and Xu, Du and Emelianenko.

Difficult to implement in high dimensions.

Two Geometrical Multilevel Methods

Fast Computation for CVTs

Introduction

Preliminaries

Graph Laplacian

Optimization Methods

Numerical Results There are two approaches to optimizing this energy:

- FAS: Brandt, Yavneh.
- Subspace Optimization Method: Tai and Xu, Du and Emelianenko.

Difficult to implement in high dimensions.

Our approach: classic optimization methods with a good preconditioned.

Liu, Y. and Wang, W. and Lévy, B. and Sun, F. and Yan, D.M. and Lu, L. and Yang, C.. On centroidal voronoi tessellation – energy smoothness and fast computation. ACM Transactions on Graphics (TOG). 28(4):101, 2009.

Classic optimization methods using LU decomposition of Hessian matrix.

Fast Computation for CVTs

Introduction

Preliminaries

Graph Laplacian

Optimization Methods

Numerical Results

Introduction

. . . *11*3

Graph Laplacian

Optimization Methods

5 Numerical Results

Hessian Matrix

A formula for \mathcal{H} :

Fast Computation for CVTs

Introduction

Preliminaries

Graph Laplacian

Optimization Methods

Numerical Results

$$\begin{aligned} \frac{\partial^2 F}{\partial x_{ik}^2} &= 2m_i - \sum_{j \in \mathbf{J}_i} \int_{\Omega_i \cap \Omega_j} \frac{2}{\|\mathbf{x}_j - \mathbf{x}_i\|} (x_{ik} - x_k)^2 \rho(\mathbf{x}) \, \mathrm{d}\sigma, \\ \frac{\partial^2 F}{\partial x_{ik} \partial x_{i\ell}} &= -\sum_{j \in \mathbf{J}_i} \int_{\Omega_i \cap \Omega_j} \frac{2}{\|\mathbf{x}_j - \mathbf{x}_i\|} (x_{ik} - x_k) (x_{i\ell} - x_\ell) \rho(\mathbf{x}) \, \mathrm{d}\sigma, \quad k \neq \ell, \\ \frac{\partial^2 F}{\partial x_{ik} \partial x_{j\ell}} &= \int_{\Omega_i \cap \Omega_j} \frac{2}{\|\mathbf{x}_j - \mathbf{x}_i\|} (x_{ik} - x_k) (x_{j\ell} - x_\ell) \rho(\mathbf{x}) \, \mathrm{d}\sigma, \qquad j \in \mathbf{J}_i, \\ \frac{\partial^2 F}{\partial x_{ik} \partial x_{j\ell}} &= 0, \qquad \qquad j \neq i, \ j \notin \mathbf{J}_i. \end{aligned}$$

Fast Computation for CVTs

Introduction

Preliminaries

Graph Laplacian

Optimization Methods

Numerical Results A Voronoi tessellation ${\mathcal V}$ is a CVT if

$$z_i = \left(\int_{V_i} \rho(x) \, dx\right)^{-1} \int_{V_i} x \rho(x) \, dx, x \in \mathbb{R}^n$$
(2)

Fast Computation for CVTs

Introduction

Preliminaries

Graph Laplacian

Optimization Methods

Numerical Results A Voronoi tessellation ${\mathcal V}$ is a CVT if

$$z_i = \left(\int_{V_i} \rho(x) \ dx\right)^{-1} \int_{V_i} x \rho(x) \ dx, x \in \mathbb{R}^n$$
(2)

We can view z_i as a nonlinear average of its neighbors.

$$z_i = \sum_{j \in \mathcal{J}_i} w_j z_j$$

(3)

Where \mathcal{J}_i are the neighboring Voronoi regions of \mathcal{V}_i .

Fast Computation for CVTs

Introduction

Preliminaries

Graph Laplacian

Optimization Methods

Numerical Results A Voronoi tessellation ${\mathcal V}$ is a CVT if

$$z_i = \left(\int_{V_i} \rho(x) \ dx\right)^{-1} \int_{V_i} x \rho(x) \ dx, x \in \mathbb{R}^n$$
(2)

We can view z_i as a nonlinear average of its neighbors.

$$z_i = \sum_{j \in \mathcal{J}_i} w_j z_j$$

(3)

Where \mathcal{J}_i are the neighboring Voronoi regions of \mathcal{V}_i . The idea is to approximate as a linear average.

Fast Computation for CVTs

Introduction

Preliminaries

Graph Laplacian

Optimization Methods

Numerical Results A Voronoi tessellation ${\mathcal V}$ is a CVT if

$$z_i = \left(\int_{V_i} \rho(x) \ dx\right)^{-1} \int_{V_i} x \rho(x) \ dx, x \in \mathbb{R}^n$$
(2)

We can view z_i as a nonlinear average of its neighbors.

$$z_i = \sum_{j \in \mathcal{J}_i} w_j z_j$$

(3)

Where \mathcal{J}_i are the neighboring Voronoi regions of \mathcal{V}_i . The idea is to approximate as a linear average.

$$a_{ii}z_i = \sum_{j \in \mathcal{J}_i} a_{ij}z_j \tag{4}$$

Graph Laplacian Construction

Introduction

Preliminaries

Graph Laplacian

Optimization Methods

Numerical Results

 $e_{ij} = \overline{V}_i \cap \overline{V}_j$, the edge of two neighboring Voronoi regions V_i , and V_j . p_{ij_1} and p_{ij_2} as the end points of e_{ij} . Keeping positive orientation denote the element $\tau_{ii} = [z_i, p_{ij_1}, p_{ij_2}]$, and $\tau_{ii} = [z_i, p_{ij_2}, p_{ij_1}]$.

Graph Laplacian Construction

Introduction

Preliminaries

Graph Laplacian

Optimization Methods

Numerical Results

Graph Laplacian comparison versus ${\cal H}$

Fast Computation for CVTs

Introduction

Preliminaries

Graph Laplacian

Optimization Methods

Numerical Results A direct comparison of \mathcal{H} and our graph-Laplacian A shows why it is such a convenient choice for a preconditioner.

Graph Laplacian comparison versus ${\cal H}$

Fast Computation for CVTs

Introduction

Preliminaries

Graph Laplacian

Optimization Methods

Numerical Results A direct comparison of \mathcal{H} and our graph-Laplacian A shows why it is such a convenient choice for a preconditioner.

graph-Laplacian	Hessian
Symmetric M-matrix	Symmetric but not necessarily definite
Efficient to compute	costly to construct
optimal solver	requres Modified Cholesky decomposition

Fast Computation for CVTs

Introduction

Preliminaries

Graph Laplacian

Optimization Methods

Numerical Results

Introduction

Graph Laplacian

Optimization Methods

Numerical Results

Fast Computation for CVTs

Introduction

Preliminaries

Graph Laplacian

Optimization Methods

Numerical Results Given an approximation of the Hessian ${\cal B}$

Newton-Type Iterations

• Solve $B\delta z = -\nabla \mathcal{E}(z_k)$

2 Update $\mathbf{z}_{k+1} = \mathbf{z}_k + \alpha \delta \mathbf{z}$

Where α satisfys the Wolfe conditions.

Fast Computation for CVTs

Introduction

Preliminaries

Graph Laplacian

Optimization Methods

Numerical Results Given an approximation of the Hessian ${\cal B}$

Newton-Type Iterations

• Solve $B\delta z = -\nabla \mathcal{E}(z_k)$

2 Update $\mathbf{z}_{k+1} = \mathbf{z}_k + \alpha \delta \mathbf{z}$

Where α satisfys the Wolfe conditions.

• If B is \mathcal{H} , then we have Newton's method.

Fast Computation for CVTs

Introduction

Preliminaries

Graph Laplacian

Optimization Methods

Numerical Results Given an approximation of the Hessian ${\cal B}$

Newton-Type Iterations

• Solve $B\delta z = -\nabla \mathcal{E}(z_k)$

 $Ipdate \mathbf{z}_{k+1} = \mathbf{z}_k + \alpha \delta \mathbf{z}$

Where α satisfys the Wolfe conditions.

- If B is \mathcal{H} , then we have Newton's method.
- If B = A then we have a quasi-Newton method.

Fast Computation for CVTs

Introduction

Preliminaries

Graph Laplacian

Optimization Methods

Numerical Results Given an approximation of the Hessian ${\cal B}$

Newton-Type Iterations

• Solve $B\delta z = -\nabla \mathcal{E}(z_k)$

 $Ipdate \mathbf{z}_{k+1} = \mathbf{z}_k + \alpha \delta \mathbf{z}$

Where α satisfys the Wolfe conditions.

- If B is \mathcal{H} , then we have Newton's method.
- If B = A then we have a quasi-Newton method.
- If B = diag(A) then we have a quasi-Newton method which preforms similar to Lloyd's method.

Preconditioned Nonlinear Conjugate Gradient (P-NLCG)

Fast Computation for CVTs

- Introduction
- Preliminaries

Graph Laplacian

Optimization Methods

Numerical Results After initializing $\beta_0 = -A^{-1}\mathcal{F}(\mathbf{z}_0)$

NLCG Iteration

- Calculate β_k
- **Q** Update conjugate direction $p_k = -\nabla \mathcal{E}(\mathbf{z}_k) + \beta_k p_{k-1}$
- Update with line search $\mathbf{z}_{k+1} = \mathbf{z}_k + \alpha_k p_k$

Preconditioned Nonlinear Conjugate Gradient (P-NLCG)

Fast Computation for CVTs

Introduction

Preliminaries

Graph Laplacian

Optimization Methods

Numerical Results After initializing $\beta_0 = -A^{-1}\mathcal{F}(\mathbf{z}_0)$

NLCG Iteration

- Calculate β_k
- **(a)** Update conjugate direction $p_k = -\nabla \mathcal{E}(\mathbf{z}_k) + \beta_k p_{k-1}$
- **③** Update with line search $\mathbf{z}_{k+1} = \mathbf{z}_k + \alpha_k \mathbf{p}_k$

We choose to impliment Polak-Ribière update.

$$\beta_k^{PR} = \frac{\mathcal{F}(\mathsf{z}_k)^\top \left[\mathcal{F}(\mathsf{z}_k) - \mathcal{F}(\mathsf{z}_{k-1})\right]}{\mathcal{F}(\mathsf{z}_k)^\top \mathcal{F}(\mathsf{z}_{k-1})}$$

Preconditioned Limited Memory BFGS (P-L-BFGS)

Fast Computation for CVTs

Introduction

Preliminaries

Graph Laplacian

Optimization Methods

Numerical Results After initializing $r = -H_0 \mathcal{F}(\mathbf{z}_0)$

BFGS IterationFirst update:Second update:for i to min $\{m, k\}$ for i to min $\{m, k\}$ • Calculate $\gamma_i = \rho_i s_i^\top r$ • Update search direction• Update residual $r = r - \gamma_i y_i$ $d_k = d_k + s_i(\gamma_i - \rho_i y_i^\top d_k)$

Update $\mathbf{z}_{k+1} = \mathbf{z}_k + a_k d_k$

$$s_{k} = \mathbf{z}^{k} - \mathbf{z}_{k-1} \qquad y_{k} = \mathcal{F}(\mathbf{z}_{k}) - \mathcal{F}(\mathbf{z}_{k-1})$$

$$\rho_{k} = \left(s_{k}y_{k}^{\top}\right)^{-1} \qquad H_{k+1} = \left(I - \rho_{k}y_{k}s_{k}^{\top}\right)^{\top}H_{k}\left(I - \rho_{k}y_{k}s_{k}^{\top}\right)$$

Preconditioned Limited Memory BFGS (P-L-BFGS)

Fast Computation for CVTs

Introduction

Preliminaries

Graph Laplacian

Optimization Methods

Numerical Results After initializing $r = -H_0 \mathcal{F}(\mathbf{z}_0)$

BFGS IterationFirst update:Second update:for i to min $\{m, k\}$ for i to min $\{m, k\}$ • Calculate $\gamma_i = \rho_i s_i^\top r$ • Update search direction• Update residual $r = r - \gamma_i y_i$ $d_k = d_k + s_i (\gamma_i - \rho_i y_i^\top d_k)$ Update $\mathbf{z}_{k+1} = \mathbf{z}_k + a_k d_k$

$$s_{k} = \mathbf{z}^{k} - \mathbf{z}_{k-1} \qquad y_{k} = \mathcal{F}(\mathbf{z}_{k}) - \mathcal{F}(\mathbf{z}_{k-1})$$

$$\rho_{k} = \left(s_{k}y_{k}^{\top}\right)^{-1} \qquad H_{k+1} = \left(I - \rho_{k}y_{k}s_{k}^{\top}\right)^{\top}H_{k}\left(I - \rho_{k}y_{k}s_{k}^{\top}\right)$$

For our tests we have choose to set m = 7, $H_0^{-1} = A$.

Fast Computation for CVTs

Introduction

Preliminaries

Graph Laplacian

Optimization Methods

Numerical Results

Introduction

2) Preliminarie

3 Graph Laplacian

Optimization Methods

Numerical Results: 1D - Formulation

Fast Computation for CVTs

Introduction

Preliminaries

Graph Laplacian

Optimization Methods

Numerical Results The Vornonoi regions are simple to construct

$$\mathcal{V}_i = (d_{i-1}, d_{i+1}) = (\frac{z_{i-1} + z_i}{2}, \frac{z_i + z_{i+1}}{2}).$$

The energy function given by the variance is defined by

$$E(z,d(z)) = \sum_{i=1}^{n} \int_{d_{i-1}}^{d_i} ||x-z_i||^2 \rho(x) dx$$

The gradient is

$$\partial_{z_i} E = 2 \int_{d_{i-1}}^{d_i} (z_i - x) \rho(x) dx.$$

Numerical Results: 1D - Formulation

Fast Computation for CVTs

The Hessian is

Introduction

Preliminaries

Graph Laplacian

Optimization Methods

Numerical Results
$$\begin{split} &\frac{\partial^2 E}{\partial z_i \partial z_{i-1}} = -\frac{1}{2} \rho(d_{i-1}) \left(z_i - z_{i-1} \right), \\ &\frac{\partial^2 E}{\partial z_i \partial z_{i+1}} = -\frac{1}{2} \rho(d_i) \left(z_{i+1} - z_i \right) \\ &\frac{\partial^2 E}{\partial z_i \partial z_i} = 2 \int_{d_{i-1}}^{d_i} \rho(x) \ dx - \frac{1}{2} \rho(d_i) (z_{i+1} - z_i) - \frac{1}{2} \rho(d_{i-1}) (z_i - z_{i-1}). \end{split}$$

Numerical Results: 1D - Formulation

Fast Computation for CVTs

The Hessian is

Introduction

Preliminaries

Graph Laplacian

Optimization Methods

Numerical Results
$$\begin{split} &\frac{\partial^2 E}{\partial z_i \partial z_{i-1}} = -\frac{1}{2} \rho(d_{i-1}) \left(z_i - z_{i-1} \right), \\ &\frac{\partial^2 E}{\partial z_i \partial z_{i+1}} = -\frac{1}{2} \rho(d_i) \left(z_{i+1} - z_i \right) \\ &\frac{\partial^2 E}{\partial z_i \partial z_i} = 2 \int_{d_{i-1}}^{d_i} \rho(x) \ dx - \frac{1}{2} \rho(d_i) (z_{i+1} - z_i) - \frac{1}{2} \rho(d_{i-1}) (z_i - z_{i-1}). \end{split}$$

The Graph Laplacian: (with suitable modification near the boundary generators)

 $A = \operatorname{diag}\left(\frac{\partial^2 E}{\partial z_i \partial z_{i-1}}, \left|\frac{\partial^2 E}{\partial z_i \partial z_{i-1}}\right| + \left|\frac{\partial^2 E}{\partial z_i \partial z_{i+1}}\right|, \frac{\partial^2 E}{\partial z_i \partial z_{i+1}}\right).$

1-D: Numerical Methods

Fast Computation for CVTs

Introduction

Preliminaries

Graph Laplacian

Optimization Methods

Numerical Results For the initial guess we implement a two-grid method. Starting from a coarse, say 32, uniformly distributed generators.

- Lloyd relaxion on the coarse grid until $||32\mathcal{F}(z_k)|| < 1.e-6$.
- Refine to fine grids by consecutive midpoints.

1-D: Numerical Methods

Fast Computation for CVTs

Introduction

Preliminaries

Graph Laplacian

Optimization Methods

Numerical Results For the initial guess we implement a two-grid method. Starting from a coarse, say 32, uniformly distributed generators.

- Lloyd relaxion on the coarse grid until $||32\mathcal{F}(z_k)|| < 1.e-6$.
- Refine to fine grids by consecutive midpoints.

Quasi-Newton method

 $\mathbf{z}^{k+1} = \mathbf{z}^k - A^{-1} \nabla E(\mathbf{z}^k).$

1-D: Numerical Methods

Fast Computation for CVTs

Introduction

Preliminaries

Graph Laplacian

Optimization Methods

Numerical Results For the initial guess we implement a two-grid method. Starting from a coarse, say 32, uniformly distributed generators.

- Lloyd relaxion on the coarse grid until $||32\mathcal{F}(z_k)|| < 1.e-6$.
- Refine to fine grids by consecutive midpoints.

Quasi-Newton method

$$\mathbf{z}^{k+1} = \mathbf{z}^k - A^{-1} \nabla E(\mathbf{z}^k).$$

Number of Generators tested 2^L , L = 8 to 20. Stopping Criteria $||2^L \mathcal{F}(z_k)||_{\infty} < 1.e-12$

Fast

Numerical Results: 1D - Gaussian

Computation for CVTs				
		L	Iter	$\ 2^{L}\mathcal{F}(z)\ _{\infty}$
Introduction		8	12	3.8243e-013
Preliminaries	Gaussian distribution	9	12	3.0726e-013
Graph		10	12	2.7922e-013
Laplacian	$q(x) = e^{-10x^2}$ on $\Omega = [-1, 1]$		12	2.7887e-013
Optimization		12	13	3.2442e-014
Methods		13	14	4.5251e-015
Numerical Results		14	15	1.6482e-015
	1 0.5 0 0.5 1	15	16	1.6482e-015
		16	17	1.6482e-015
	# of generators = 2^{L}	17	17	6.7942e-013
	F_{rror} Toloreance = 1 e-12	18	18	3.3992e-013
		19	19	1.6975e-013
		20	20	8.4876e-014

Fast Computation for CVTs

Introduction

Graph

Laplacian

Methods Numerical

Results

Numerical Results: 1D - Gaussian

Numerical Results: 1D - Weibull

Fast Computation for CVTs

Introduction

Preliminaries

Graph Laplacian

Optimization Methods

Numerical Results Weibull distribution: $ho(x) = 6x^2e^{-2x^3}$ on $\Omega = (0,2)$

	DES	Iter	$\ 2^{L}\mathcal{F}(z)\ _{\infty}$
	8	14	3.7231e-013
	9	13	2.6792e-013
	10	12	9.8253e-013
	11	12	6.7196e-013
	12	13	9.8956e-014
0 0.5 1 1.5 2	13	14	1.1654e-014
81.11. 24 2333	14	15	4.1452e-015
# of generators = 2^{L}	15	16	3.6845e-015
Error Toloreance $= 1.e-12$	16	17	3.9958e-015
	17	17	8.4150e-013
	18	18	4.1955e-013
	19	19	2.1177e-013
	20	20	1.0389e-013

Fast Computation for CVTs

Graph

Results

Numerical Results: 1D - Weibull

Fast Computation for CVTs

Graph Laplacian

Methods

Numerical Results: 1D - Weibull

It is optimal but not as good as FAS. In Koren, Yaveneh and Spira 2005, the RRF is 0.17 – 0.20.

Numerical Results: 2D - Outline of test

Fast Computation for CVTs

Introduction

Preliminaries

Graph Laplacian

Optimization Methods

Numerical Results For each test we start with random distributed generators with respect to the given density function.

nFeval is the number of evalutations of the energy function.

 ${\mathcal E}$ is the final energy.

 $||D^{-1}\nabla \mathcal{E}||$ is the L_2 norm of the weighted error (problem size independent). D is the matrix of masses of the Voronoi tessellation.

 $\|\nabla \mathcal{E}\|$ is the L_2 norm of the error.

Stopping criteria is set at $||D^{-1}\nabla \mathcal{E}|| < 1.e - 6$.

2-D Constant Distribution

Fast Computation for CVTs

$\rho=1$ with 2000 generators. $\Omega=\mathsf{A}$ regular octagon bounded by $[-2,2]\times[-2,2]$

Method	iter.	nFeval	Time(seconds)	ε	$ D^{-1}\nabla \mathcal{E} $	$ \nabla \mathcal{E} $
Lloyd	1000	1000	34.17	1.037639e-02	1.792159e-03	9.789437e-06
L-BFGS(7)	408	438	15.61	1.036375e-02	9.383625e-07	7.066382e-08
P-L-BFGS(7)	285	308	15.10	1.036287e-02	8.329667e-07	6.236222e-08
NLCG	290	300	17.57	1.037063e-02	9.824495e-07	7.415228e-08
P-NLCG	203	224	17.85	1.036535e-02	9.686512e-07	7.269889e-08

Introduction

Preliminaries

Graph Laplacian

Optimization Methods

Numerical Results

Constant Distribution: Energy and Error

Error Comparison

2D - Non-constant Distribution

Fast Computation for CVTs

Int	roc	LICTI	on

Preliminaries

Graph Laplacian

Optimization Methods

Numerical Results $\rho(x, y) = e^{-20(x^2+y^2)} + \frac{1}{20}\sin^2(\pi x)\sin^2(\pi y), 2000 \text{ generators.}$ $\Omega = a \text{ regular hexagon bounded by } [-2, 2] \times [-1.732, 1.732].$

Method	iter	nFeval	Time(seconds)	ε	$ D^{-1}\nabla \mathcal{E} $	$ \nabla \mathcal{E} $
Lloyd	1000	1000	55.12	1.435175e-04	2.955707e-03	2.923185e-07
LBFGS(7)	647	679	43.26	1.428238e-04	9.957305e-07	9.643630e-09
PLBFGS(7)	202	208	15.66	1.397377e-04	9.233494e-07	1.211738e-08
NLCG	413	413	38.26	1.427143e-04	9.864819e-07	1.145847e-08
PNLCG	194	207	24.02	1.421614e-04	7.533385e-07	1.125569e-08

Energy and Error

Time and Iteration Steps

Independent of Problem Size

Fast Computation for CVTs

Introduction

Preliminaries

Graph Laplacian

Optimization Methods

Numerical Results To test robustness we test 2000 to 8000 generators with an increment of 500. The stopping criteria is $||D^{-1}\nabla \mathcal{E}|| < 1.e-6$ (independent of problem size).

2D - Non-constant Distribution

Fast Computation for CVTs

$\rho(x, y) = e^{-10|x^2+y^2-1|}$ with 2000 generators. $\Omega = (-1, 1) \times (-1, 1).$

ĺ	Method	iter	nFeval	Time(seconds)	E	$ D^{-1}\nabla E $	$ \nabla E $
ĺ	Lloyd	1000	1000	72.27	7.471462e-05	6.113908e-04	1.540093e-07
	LBFGS(7)	530	547	39.60	7.455624e-05	9.091596e-07	6.983997e-09
	PLBFGS(7)	182	220	19.00	7.457583e-05	8.881937e-07	1.515717e-08
	NLCG	562	566	56.72	7.458000e-05	9.710043e-07	9.620996e-09
	PNLCG	159	171	18.09	7.450278e-05	8.156436e-07	1.567448e-08

Introduction

Preliminaries

Graph Laplacian

Optimization Methods

Numerical Results

Energy and Error

Time and Iteration Steps

Independent of Problem Size

Fast Computation for CVTs

Introduction

Preliminaries

Graph Laplacian

Optimization Methods

Numerical Results To test robustness we test 2000 to 8000 generators with an increment of 500. The stopping criteria is $||D^{-1}\nabla \mathcal{E}|| < 1.e-6$ (independent of problem size).

Two-Grid Method

Fast Computation for CVTs

- Introduction
- Preliminaries
- Graph Laplacian
- Optimization Methods
- Numerical Results

- To get an good initial guess we implement a two-grid method.
 - P-L-BFGS on the coarse grid.
 - Refine to fine grids by uniform refinement.
 - P-L-BFGS on the fine grid.

Two-Grid Method

Fast Computation for CVTs

- Introduction
- Preliminaries
- Graph Laplacian
- Optimization Methods
- Numerical Results

- To get an good initial guess we implement a two-grid method.
 - P-L-BFGS on the coarse grid.
 - Refine to fine grids by uniform refinement.
 - P-L-BFGS on the fine grid.

Two-Grid Method

Fast Computation for CVTs

- Introduction
- Preliminaries
- Graph Laplacian
- Optimization Methods
- Numerical Results

- To get an good initial guess we implement a two-grid method.
 - P-L-BFGS on the coarse grid.
 - Refine to fine grids by uniform refinement.
 - P-L-BFGS on the fine grid.

Work in progress: Adaptive Multiscale Redistribution by Koren and Yavneh 2006.

Fast
Computation
for CVTs

Introduction

Preliminaries

Graph Laplacian

Optimization Methods

Numerical Results

Thank you for your attention!

Fast Computation for CVTs

Introduction

Preliminaries

Graph Laplacian

Optimization Methods

Numerical Results

Thank you for your attention!

Supported by NSF.