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Introduction

A Voronoi Tesselation (Voronoi Diagram) V = {Vi}Ni=1 is a
special type of partitioning of an open subset Ω of Rn. This
partitioning of Ω is determined by distances to a specified set
of generators z = {zi}Ni=1. Each Voronoi region Vi will satisfy;

Vi = {x ∈ Ω : |x − zi | < |x − zj | for j 6= i}.
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Introduction

A Centroidal Voronoi Tessellation (CVT) is a Voronoi
Tessellation in where the generators correspond to the
centroids of each region.

Left: (Squares) Voronoi Tessellation on a square, (dots) CVT.

Right: Stable CVT on the same region.
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Energy Minimization

A CVT is also defined to be a critical point of the mean square
distortion measure (variance),

E(z,V) =
N∑

i=1

∫

Vi

‖x − zi‖2ρ(x) dx . (1)

Where ρ(x) is a given density function.

A stable CVT corresponds to a local minimizer of E(z,V).

An optimal CVT corresponds to the global minimizer.

An unstable CVT corresponds to a saddle point.
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Application

There is a wide range of applications for CVTs:

Computer graphics

Data compression

Mesh generation

Optimal quantization

Du, Qiang and Faber, Vance and Gunzburger, Max. Centroidal Voronoi

Tessellations: Applications and Algorithms. SIAM Rev.. 41(4):637-676, 1999.
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Main Idea: Graph Laplacian Precondtiioner

We propose using a weighted graph Laplacian as a
preconditioner in a quasi-Newton scheme for finding a stable
CVT. There are several benefits for choosing the graph
Laplacian instead of the Hessian.

The graph Laplacian is easy to assemble.

Captures the essential features of the Hessian.

The inverse of the graph Laplacian can be computed
efficiently (i.e. AMG)
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Lloyd’s Method

Two step gradient method:

Fix z, optimize partition

Fix V, optimize z

Lloyd Iteration

1 Construct Voronoi diagram V(zk)

2 Update zi ,k+1 =

(∫

Vi

ρ(x) dx

)−1 ∫

Vi

xρ(x) dx

Lloyd’s method is robust with a convergence rate of 1−O(h2),
where h = mini diam(Vi ). Hence the larger the size of the
problem, the slower the rate of convergence.
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Two Geometrical Multilevel Methods

There are two approaches to optimizing this energy:

FAS: Brandt, Yavneh.

Subspace Optimization Method: Tai and Xu, Du and
Emelianenko.

Difficult to implement in high dimensions.

Our approach: classic optimization methods with a good
preconditioned.
Liu, Y. and Wang, W. and Lévy, B. and Sun, F. and Yan, D.M. and Lu, L. and
Yang, C.. On centroidal voronoi tessellation – energy smoothness and fast
computation. ACM Transactions on Graphics (TOG). 28(4):101, 2009.

Classic optimization methods using LU decomposition of Hessian matrix.
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Hessian Matrix

A formula for H:

On Centroidal Voronoi Tessellation — Energy Smoothness and Fast Computation · 11

(1) initialization: r = �gk;
(2) 1st L-BFGS Update:

for i = min(M� 1, k� 1), . . . , 0⇢
gi := risT

i r;
r := r� giyi;

(3) dk := eH0
k r;

(4) 2nd L-BFGS Update:
for i = 0, . . . , min(M� 1, k� 1)
dk := dk + si(gi � riyT

i dk) ;
(5) update xk+1 = xk + akdk and let k = k + 1.

A typical choice of eH0
k is the diagonal matrix sT

k�1yk�1

yT
k�1yk�1

I [Liu and Nocedal 1989].

4.3 Preconditioned L-BFGS method

As we will see in the experimental results shortly, L-BFGS is significantly faster than Lloyd’s method. When
the Hessian is available, the convergence of L-BFGS can be further accelerated by frequently using the
Hessian as the initial value of eH0 — this is the idea of the preconditioned L-BFGS method, or P-L-BFGS
method for short, by Schlick [1992] and Jiang et al. [2004]. Normally the exact Hessian should not be used
in every iteration, for otherwise the method becomes equivalent to Newton’s method that spends too much
time on evaluating the Hessian.

There are two integer parameters, M and T in the P-L-BFGS method, denoted as P-L-BFGS(M, T). The
parameter M means that the gradients of the previous M iterations are used to construct the approximate
inverse Hessian, and T means that the initial Hessian estimate eH0 is updated using the exact Hessian once
every T iterations. Appropriate values of M and T can help achieve a balance between the accuracy of the
approximate inverse Hessian and the average time-cost per iteration.

In the case of computing CVT in 2D and 3D, the exact Hessian can be constructed as follows. Let Ji denote
the indices of those sites whose Voronoi cells are adjacent to Wi. Let Wi

T
Wj be the common face shared by

the Voronoi cells of xi and xj, which is an edge in 2D or a polygon in 3D. Denote xT
i = (xi1, xi2, . . . , xiN) and

xT = (x1, x2, . . . , xN). Then the second-order derivatives of the CVT function are given by the following
explicit formulae [Iri et al. 1984; Asami 1991]:

8
>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

∂2F
∂x2

ik
= 2mi �Âj2Ji

R
Wi

T
Wj

2
kxj � xik

(xik � xk)2r(x) ds,

∂2F
∂xik∂xi`

= �Âj2Ji

R
Wi

T
Wj

2
kxj � xik

(xik � xk)(xi` � x`)r(x) ds, k 6= `,

∂2F
∂xik∂xj`

=
R

Wi
T

Wj

2
kxj � xik

(xik � xk)(xj` � x`)r(x) ds, j 2 Ji,

∂2F
∂xik∂xj`

= 0, j 6= i, j 62 Ji.

The combined pseudo code of the L-BFGS method and the P-L-BFGS method is as follows.
ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.



Fast
Computation

for CVTs

Introduction

Preliminaries

Graph
Laplacian

Optimization
Methods

Numerical
Results

Nonlinear Average

A Voronoi tessellation V is a CVT if

zi =

(∫

Vi

ρ(x) dx

)−1 ∫

Vi

xρ(x) dx , x ∈ Rn (2)

We can view zi as a nonlinear average of its neighbors.

zi =
∑

j∈Ji

wjzj (3)

Where Ji are the neighboring Voronoi regions of Vi .
The idea is to approximate as a linear average.

aiizi =
∑

j∈Ji

aijzj (4)
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Graph Laplacian Construction

eij = V i ∩ Vj , the edge of two neighboring Voronoi
regions Vi , and Vj .

pij1 and pij2 as the end points of eij .
Keeping positive orientation denote the element

τij = [zi , pij1 , pij2 ], and τji = [zj , pij2 , pij1 ].
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Graph Laplacian Construction

A =





aij = −
∫

τij∪τji

ρ(x) dx if j ∈ Ji , ∂Ω ∩ ∂Vi = ∅

aij = −2

∫

τij

ρ(x) dx if j ∈ Ji , ∂Ω ∩ ∂Vi 6= ∅

aii =
∑

j∈Ji

aij

0 otherwise

(5)
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Graph Laplacian comparison versus H

A direct comparison of H and our graph-Laplacian A shows
why it is such a convenient choice for a preconditioner.

graph-Laplacian Hessian
Symmetric M-matrix Symmetric but not necessarily definite
Efficient to compute costly to construct

optimal solver requres Modified Cholesky decomposition
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Quasi-Newton

Given an approximation of the Hessian B

Newton-Type Iterations

1 Solve Bδz = −∇E(zk)

2 Update zk+1 = zk + αδz

Where α satisfys the Wolfe conditions.

If B is H, then we have Newton’s method.

If B = A then we have a quasi-Newton method.

If B = diag(A) then we have a quasi-Newton method
which preforms similar to Lloyd’s method.
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Preconditioned Nonlinear Conjugate Gradient
(P-NLCG)

After initializing β0 = −A−1F(z0)

NLCG Iteration

1 Calculate βk

2 Update conjugate direction pk = −∇E(zk) + βkpk−1

3 Update with line search zk+1 = zk + αkpk

We choose to impliment Polak-Ribière update.

βPR
k =

F(zk)> [F(zk)−F(zk−1)]

F(zk)>F(zk−1)
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Preconditioned Limited Memory BFGS (P-L-BFGS)

After initializing r = −H0F(z0)

BFGS Iteration

First update:
for i to min{m, k}

Calculate γi = ρi s
>
i r

Update residual r = r − γiyi

Second update:
for i to min{m, k}

Update search direction
dk = dk + si (γi −ρiy

>
i dk)

Update zk+1 = zk + akdk

sk = zk − zk−1 yk = F(zk)−F(zk−1)

ρk =
(
sky>k

)−1
Hk+1 = (I − ρkyks>k )>Hk(I − ρkyks>k )

For our tests we have choose to set m = 7, H−1
0 = A.
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Numerical Results: 1D - Formulation

The Vornonoi regions are simple to construct

Vi = (di−1, di+1) = (
zi−1 + zi

2
,
zi + zi+1

2
).

The energy function given by the variance is defined by

E (z , d(z)) =
n∑

i=1

∫ di

di−1

‖x − zi‖2ρ(x) dx .

The gradient is

∂zi E = 2

∫ di

di−1

(zi − x)ρ(x) dx .
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Numerical Results: 1D - Formulation

The Hessian is

∂2E

∂zi∂zi−1
= −1

2
ρ(di−1) (zi − zi−1) ,

∂2E

∂zi∂zi+1
= −1

2
ρ(di ) (zi+1 − zi )

∂2E

∂zi∂zi
= 2

∫ di

di−1

ρ(x) dx − 1

2
p(di )(zi+1 − zi )−

1

2
p(di−1)(zi − zi−1).

The Graph Laplacian: (with suitable modification near the
boundary generators)

A = diag(
∂2E

∂zi∂zi−1
,

∣∣∣∣
∂2E

∂zi∂zi−1

∣∣∣∣+

∣∣∣∣
∂2E

∂zi∂zi+1

∣∣∣∣ ,
∂2E

∂zi∂zi+1
).
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Numerical Results: 1D - Formulation

The Hessian is

∂2E

∂zi∂zi−1
= −1

2
ρ(di−1) (zi − zi−1) ,

∂2E

∂zi∂zi+1
= −1

2
ρ(di ) (zi+1 − zi )

∂2E

∂zi∂zi
= 2

∫ di

di−1

ρ(x) dx − 1

2
p(di )(zi+1 − zi )−

1

2
p(di−1)(zi − zi−1).

The Graph Laplacian: (with suitable modification near the
boundary generators)

A = diag(
∂2E

∂zi∂zi−1
,

∣∣∣∣
∂2E

∂zi∂zi−1

∣∣∣∣+

∣∣∣∣
∂2E

∂zi∂zi+1

∣∣∣∣ ,
∂2E

∂zi∂zi+1
).
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1-D: Numerical Methods

For the initial guess we implement a two-grid method. Starting
from a coarse, say 32, uniformly distributed generators.

Lloyd relaxtion on the coarse grid until ‖32F(zk)‖ < 1.e-6.

Refine to fine grids by consecutive midpoints.

Quasi-Newton method

zk+1 = zk − A−1∇E (zk).

Number of Generators tested 2L, L = 8 to 20.
Stopping Criteria ‖2LF(zk)‖∞ < 1.e-12
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1-D: Numerical Methods

For the initial guess we implement a two-grid method. Starting
from a coarse, say 32, uniformly distributed generators.

Lloyd relaxtion on the coarse grid until ‖32F(zk)‖ < 1.e-6.

Refine to fine grids by consecutive midpoints.

Quasi-Newton method

zk+1 = zk − A−1∇E (zk).

Number of Generators tested 2L, L = 8 to 20.
Stopping Criteria ‖2LF(zk)‖∞ < 1.e-12
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1-D: Numerical Methods

For the initial guess we implement a two-grid method. Starting
from a coarse, say 32, uniformly distributed generators.

Lloyd relaxtion on the coarse grid until ‖32F(zk)‖ < 1.e-6.

Refine to fine grids by consecutive midpoints.

Quasi-Newton method

zk+1 = zk − A−1∇E (zk).

Number of Generators tested 2L, L = 8 to 20.
Stopping Criteria ‖2LF(zk)‖∞ < 1.e-12
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Numerical Results: 1D - Gaussian

Gaussian distribution

ρ(x) = e−10x2
on Ω = [−1, 1]

# of generators = 2L

Error Toloreance = 1.e-12

L Iter ‖2LF(z)‖∞
8 12 3.8243e-013
9 12 3.0726e-013

10 12 2.7922e-013
11 12 2.7887e-013
12 13 3.2442e-014
13 14 4.5251e-015
14 15 1.6482e-015
15 16 1.6482e-015
16 17 1.6482e-015
17 17 6.7942e-013
18 18 3.3992e-013
19 19 1.6975e-013
20 20 8.4876e-014
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Numerical Results: 1D - Gaussian

Gauss distribution: ρ(x) = e−10x2
on Ω = (−1, 1)

RRF =
‖δzk+1‖
‖δzk‖

, # of generators = 2L , Error Toloreance = 1.e-12
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Numerical Results: 1D - Weibull

Weibull distribution: ρ(x) = 6x2e−2x3
on Ω = (0, 2)

# of generators = 2L

Error Toloreance = 1.e-12

L Iter ‖2LF(z)‖∞
8 14 3.7231e-013
9 13 2.6792e-013

10 12 9.8253e-013
11 12 6.7196e-013
12 13 9.8956e-014
13 14 1.1654e-014
14 15 4.1452e-015
15 16 3.6845e-015
16 17 3.9958e-015
17 17 8.4150e-013
18 18 4.1955e-013
19 19 2.1177e-013
20 20 1.0389e-013
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Numerical Results: 1D - Weibull

Weibull distribution: ρ(x) = 6x2e−2x3
on Ω = (0, 2)

RRF =
‖δzk+1‖
‖δzk‖

, # of generators = 2L, Error Toloreance = 1.e-12.

It is optimal but not as good as FAS. In Koren, Yaveneh and
Spira 2005, the RRF is 0.17− 0.20.
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Numerical Results: 1D - Weibull

Weibull distribution: ρ(x) = 6x2e−2x3
on Ω = (0, 2)

RRF =
‖δzk+1‖
‖δzk‖

, # of generators = 2L, Error Toloreance = 1.e-12.

It is optimal but not as good as FAS. In Koren, Yaveneh and
Spira 2005, the RRF is 0.17− 0.20.
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Numerical Results: 2D - Outline of test

For each test we start with random distributed generators with
respect to the given density function.

nFeval is the number of evalutations of the energy function.

E is the final energy.

‖D−1∇E‖ is the L2 norm of the weighted error (problem size
independent). D is the matrix of masses of the Voronoi
tessellation.

‖∇E‖ is the L2 norm of the error.

Stopping criteria is set at ‖D−1∇E‖ < 1.e − 6.
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2-D Constant Distribution

ρ = 1 with 2000 generators. Ω = A regular octagon bounded by
[−2, 2]× [−2, 2]

Method iter. nFeval Time(seconds) E ||D−1∇E|| ||∇E||
Lloyd 1000 1000 34.17 1.037639e-02 1.792159e-03 9.789437e-06

L-BFGS(7) 408 438 15.61 1.036375e-02 9.383625e-07 7.066382e-08
P-L-BFGS(7) 285 308 15.10 1.036287e-02 8.329667e-07 6.236222e-08

NLCG 290 300 17.57 1.037063e-02 9.824495e-07 7.415228e-08
P-NLCG 203 224 17.85 1.036535e-02 9.686512e-07 7.269889e-08
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Constant Distribution: Energy and Error
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Error Comparison
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2D - Non-constant Distribution

ρ(x , y) = e−20(x2+y2) + 1
20 sin2(πx) sin2(πy), 2000 generators.

Ω = a regular hexagon bounded by [−2, 2]× [−1.732, 1.732].

Method iter nFeval Time(seconds) E ||D−1∇E|| ||∇E||
Lloyd 1000 1000 55.12 1.435175e-04 2.955707e-03 2.923185e-07

LBFGS(7) 647 679 43.26 1.428238e-04 9.957305e-07 9.643630e-09
PLBFGS(7) 202 208 15.66 1.397377e-04 9.233494e-07 1.211738e-08

NLCG 413 413 38.26 1.427143e-04 9.864819e-07 1.145847e-08
PNLCG 194 207 24.02 1.421614e-04 7.533385e-07 1.125569e-08
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Energy and Error
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Time and Iteration Steps
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Independent of Problem Size

To test robustness we test 2000
to 8000 generators with an
increment of 500. The stopping
criteria is ‖D−1∇E‖ <1.e-6
(independent of problem size).
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2D - Non-constant Distribution

ρ(x , y) = e−10|x2+y2−1| with 2000 generators.
Ω = (−1, 1)× (−1, 1).

Method iter nFeval Time(seconds) E ||D−1∇E || ||∇E ||
Lloyd 1000 1000 72.27 7.471462e-05 6.113908e-04 1.540093e-07

LBFGS(7) 530 547 39.60 7.455624e-05 9.091596e-07 6.983997e-09
PLBFGS(7) 182 220 19.00 7.457583e-05 8.881937e-07 1.515717e-08

NLCG 562 566 56.72 7.458000e-05 9.710043e-07 9.620996e-09
PNLCG 159 171 18.09 7.450278e-05 8.156436e-07 1.567448e-08
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Independent of Problem Size

To test robustness we test 2000
to 8000 generators with an
increment of 500. The stopping
criteria is ‖D−1∇E‖ <1.e-6
(independent of problem size).
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Two-Grid Method

To get an good initial guess we implement a two-grid method.

P-L-BFGS on the coarse grid.

Refine to fine grids by uniform refinement.

P-L-BFGS on the fine grid.
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Work in progress: Adaptive Multiscale Redistribution by Koren and

Yavneh 2006.
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Thank you for your attention!
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