Math 117: Density of \mathbb{Q} in \mathbb{R}

Theorem. (The Archimedean Property of \mathbb{R}) The set \mathbb{N} of natural numbers is unbounded above in \mathbb{R}.

Note: We will use the completeness axiom to prove this theorem. Although the Archimedean property of \mathbb{R} is a consequence of the completeness axiom, it is weaker than completeness. Notice that \mathbb{N} is also unbounded above in \mathbb{Q}, even though \mathbb{Q} is not complete. We also have an example of an ordered field for which the Archmidean property does not hold! \mathbb{N} is bounded above in \mathbb{F}, the field of rational polynomials!

Proof by contradiction. If \mathbb{N} were bounded above in \mathbb{R}, then by \qquad
\qquad \mathbb{N} would have a \qquad . I.e., there exists $m \in$
\qquad such that $m=$ \qquad . Since m is the \qquad
\qquad is not an upper bound for \mathbb{N}. Thus there exists an $n_{o} \in \mathbb{N}$ such that $n_{0}>$
\qquad . But then $n_{o}+1>$ \qquad , and since $n_{o}+1 \in \mathbb{N}$, this contradicts \qquad

The Archimedean property is equivalent to many other statements about \mathbb{R} and \mathbb{N}.
12.10 Theorem. Each of the following is equivalent to the Archimedean property.
(a) For every $z \in \mathbb{R}$, there exists an $n \in \mathbb{N}$ such that $n>z$.
(b) For every $x>0$ and for every $y \in \mathbb{R}$, there exists an $n \in \mathbb{N}$ such that $n x>y$.
(c) For every $x>0$, there exists an $n \in \mathbb{N}$ such that $0<\frac{1}{n}<x$.

The proof is given in the book. The idea is that (a) is the same as the Archimedean property because (a) is essentially the statement that "For every $z \in \mathbb{R}, z$ is not an upper bound for \mathbb{N}." Then, it is fairly easy to see why (b) and (c) follow.

Theorem (\mathbb{Q} is dense in \mathbb{R}). For every $x, y \in \mathbb{R}$ such that $x<y$, there exists a rational number r such that $x<r<y$.

Notes: The idea of this proof is to find the numerator and denominator of the rational number that will be between a given x and y. To do this, we first find a natural number n for which $n x$ and $n y$ will be more than one unit apart (this will require the Archimedian property!) Notice that the closer together x and y are, the bigger this n will need to be! Picture (assuming $x>0$):

Since $n x$ and $n y$ are far enough apart, we expect that there exists a natural number m in between $n x$ and $n y$. Finally, $\frac{m}{n}$ will be the rational number in between x and y !

Proof. Let $x, y \in \mathbb{R}$ such that $x<y$ be given. We will first prove the theorem in the case $x>0$. Since $y-x>0$, \qquad $\in \mathbb{R}$. Then, by the Archimedean property, there exists an $n \in \mathbb{N}$ such that $n>$ \qquad . Therefore, \qquad $<n y$. Since we are in the case $x>0$, \qquad >0 and there exists $m \in \mathbb{N}$ such that $m-1 \leq$ \qquad $<m$ (The proof that such an m exists uses the well-ordering property of \mathbb{N}; see Exercise 12.9.) Then, $n y>\ldots \geq$. Thus $n x<m<n y$. It then follows that the rational number $r=\frac{m}{n}$ satisfies $x<r<y$.

Now, in the case $x \leq 0$, there exists $k \in \mathbb{N}$ such that $k>|x|$. Since $k-|x|=k+x$ is positive and $k+x<k+y$, the above argument proves that there is a rational number r such that $k+x<r<k+y$. Then, letting $r^{\prime}=r-k, r^{\prime}$ is a rational number such that $x<r^{\prime}<y$.

It is also true that for every $x, y \in \mathbb{R}$ such that $x<y$, there exists an irrational number w such that $x<w<y$. Combining these facts, it follows that for every $x, y \in \mathbb{R}$ such that $x<y$ there are in fact infinitely many rational numbers and infinitely many irrational numbers in between x and y !

