Math 117: Density of \mathbb{Q} in \mathbb{R}

Theorem. (The Archimedean Property of \mathbb{R}) The set \mathbb{N} of natural numbers is unbounded above in \mathbb{R} .

Note: We will use the completeness axiom to prove this theorem. Although the Archimedean property of \mathbb{R} is a consequence of the completeness axiom, it is weaker than completeness. Notice that \mathbb{N} is also unbounded above in \mathbb{Q} , even though \mathbb{Q} is not complete. We also have an example of an ordered field for which the Archmidean property does not hold! \mathbb{N} *is* bounded above in \mathbb{F} , the field of rational polynomials!

Proof by contradiction. If \mathbb{N} were bounded above in \mathbb{R} , then by
N would have a I.e., there exists $m \in$
such that $m =$ Since m is the
is not an upper bound for \mathbb{N} . Thus there exists an $n_o \in \mathbb{N}$ such that $n_0 >$
But then $n_o + 1 > $, and since $n_o + 1 \in \mathbb{N}$, this contradicts

The Archimedean property is equivalent to many other statements about \mathbb{R} and \mathbb{N} .

12.10 Theorem. Each of the following is equivalent to the Archimedean property.

- (a) For every $z \in \mathbb{R}$, there exists an $n \in \mathbb{N}$ such that n > z.
- (b) For every x > 0 and for every $y \in \mathbb{R}$, there exists an $n \in \mathbb{N}$ such that nx > y.
- (c) For every x > 0, there exists an $n \in \mathbb{N}$ such that $0 < \frac{1}{n} < x$.

The proof is given in the book. The idea is that (a) is the same as the Archimedean property because (a) is essentially the statement that "For every $z \in \mathbb{R}$, z is *not* an upper bound for \mathbb{N} ." Then, it is fairly easy to see why (b) and (c) follow.

Theorem (\mathbb{Q} is dense in \mathbb{R}). For every $x, y \in \mathbb{R}$ such that x < y, there exists a rational number r such that x < r < y.

Notes: The idea of this proof is to find the numerator and denominator of the rational number that will be between a given x and y. To do this, we first find a natural number n for which nx and ny will be more than one unit apart (this will require the Archimedian property!) Notice that the closer together x and y are, the bigger this n will need to be! Picture (assuming x > 0):

Since nx and ny are far enough apart, we expect that there exists a natural number m in between nx and ny. Finally, $\frac{m}{n}$ will be the rational number in between x and y!

Proof. Let $x, y \in \mathbb{R}$ such that x < y be given. We will first prove the theorem in the case x > 0. Since y - x > 0, ______ $\in \mathbb{R}$. Then, by the Archimedean property, there exists an $n \in \mathbb{N}$ such that n > ______. Therefore, ______ < ny. Since we are in the case x > 0, ______ > 0 and there exists $m \in \mathbb{N}$ such that $m - 1 \leq$ ______ < m (The proof that such an m exists uses the well-ordering property of \mathbb{N} ; see Exercise 12.9.) Then, ny > ______ \geq ______. Thus nx < m < ny. It then follows that the rational number $r = \frac{m}{n}$ satisfies x < r < y.

Now, in the case $x \leq 0$, there exists $k \in \mathbb{N}$ such that k > |x|. Since k - |x| = k + x is positive and k + x < k + y, the above argument proves that there is a rational number r such that k + x < r < k + y. Then, letting r' = r - k, r' is a rational number such that x < r' < y.

It is also true that for every $x, y \in \mathbb{R}$ such that x < y, there exists an *irrational* number w such that x < w < y. Combining these facts, it follows that for every $x, y \in \mathbb{R}$ such that x < y there are in fact infinitely many rational numbers and infinitely many irrational numbers in between x and y!