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Abstract

We propose a continuum model for the motion of sand oscillating vertically. We derive a nonlinear parabolic equation
with a nonlinearity corresponding to a bistable potential multiplied by a switching function. This is obtained by modifying
the equation for a free surface and incorporating the thermodynamics of the interface. c© 1998 Elsevier Science B.V.
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1. Introduction

Granular materials appear in many contexts and
applications, such as mining, agriculture, construc-
tion and the pharmaceutical industry (see for instance
Ref. [4] for a recent survey or Refs. [3,5] and refer-
ences therein). Besides, they have also been the sub-
ject of much interest in connection with self-organized
criticality [1].

Granular materials are large conglomerations of dis-
crete macroscopic particles and have a very unusual
behavior. However, under some circumstances, they
exhibit solid-, liquid- or gas-like features. Much work
has been done to understand these materials but a com-
prehensive theory is still lacking.

A relatively simple system that has been studied ex-
perimentally is the so-called jumping sandbox which
consists of a layer of sand in a container which is oscil-
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lating vertically. In fact, a similar experiment was car-
ried out with powder by Faraday in 1831 [9]. Despite
its simplicity, this system exhibits very complicated
dynamics. We mention that the same experiment has
also been performed with a fluid instead of sand [12]
and the fact that in both cases some common features
are observed will be important in our analysis.

Some of the main properties of the system are al-
ready present in a simplified model, namely, a com-
pletely inelastic ball under the influence of gravity on
a vibrating platform [14]. In the past few years Melo,
Umbanhowar and Swinney [15117] have performed a
series of experiments with the above-mentioned jump-
ing sandbox. They introduce dimensionless parame-
ters N and Γ = 4π2Af2g−1, the thickness of the layer
and the acceleration amplitude respectively, where A
is the displacement amplitude, f is the drive frequency
and g the acceleration due to gravity. In the experiment
Γ is varied, from small values up to large values and
then back to small values. During this process, several
spatial patterns oscillating at a fraction of the drive
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frequency are observed. When Γ is very small, the
whole layer of sand oscillates together with the tray,
as if it were a solid body. When Γ is increased, sev-
eral transitions occur, where stripes appear and then
bifurcate into hexagons or flat regions separated by
kinks. Some other changes occur until finally a dis-
ordered state is reached when the frequency is larger
than a certain critical value. The system exhibits hys-
teresis, that is, when the frequency corresponding to
this disordered state is decreased, and it lies roughly
in the region where previously squares or stripes were
present, localized structures appear. These structures,
called oscillons in Ref. [15], are stable circular peaks
that oscillate at half the drive frequency. They weakly
interact with each other forming small chains and tend
to stay in the same place. When Γ decreases even fur-
ther, the oscillons disappear and squares form again.

From the numerical point of view, treating the sys-
tem as a set of interacting particles is complicated,
since it involves counting collisions and solving a large
number of equations. Also, one can expect the overall
behavior of the system to be the consequence of net
forces due to the collective effect of grains. For these
reasons, we propose a continuum model leading to the
equation

zt − ε2Dz + T(t+ φ)W ′(z) = 0, (1)

where z(x, t) represents the “effective” height of the
sand above a reference level, T(t+φ) is an oscillating
function related to the motion of the tray, with phaseφ,
ε is a small parameter and W is a double well potential
(see Section 2 for the details of the derivation). Using
this model equation in one and two dimensions we can
reproduce qualitatively the behavior displayed by the
system. In particular, we obtain two radically differ-
ent pictures, namely, either we get oscillating patterns
or we obtain oscillating localized structures (see Sec-
tion 3 where the numerical results are presented). The
fact that one or the other is obtained depends on the
phase φ of T . Recently other models have been pro-
posed to understand localized structures. Cerda, Melo
and Rica [7] propose a mechanism due to two com-
peting processes, a focusing effect and a diffusion ef-
fect. Tsimring and Aronson in Ref. [21] propose an
amplitude equation for the parametric instability cou-
pled to the mass conservation law. There are mod-
els for fluids by Edwards and Fauve in Ref. [8]. In

Ref. [2] Barrio et al. propose a model for a “complex
fluid” consisting of a suspension of large molecules.

2. Derivation of the model

First we consider the case of a fluid in a vibrat-
ing container. Depending on the fluid, various phe-
nomena are observed [12]. For water and small am-
plitude oscillations, some regular structures emerge.
These can be explained with the usual small ampli-
tude approximations which lead to either a linear wave
equation (standing waves) or the KdV equation (see
Ref. [11, Ch. 5]) which accounts for solitons. How-
ever, as detergent is added to the water, under some
circumstances, other localized structures appear that
cannot be modeled by the previous equations. As dis-
cussed in Ref. [12], they behave differently from soli-
tons in that they do not seem to interact with each
other or do so only very weakly. They do not have a
characteristic speed of propagation, rather they tend to
stay at the same place. In the same work, it is shown
that these localized structures are crucially linked to
the system dissipation produced by the detergent (see
Ref. [13, §63] where it is pointed out that adsorbed
films increase dissipative effects.) On the other hand,
an important characteristic of granular materials is
their strong dissipativity and it is therefore natural
to think that these localized structures might be pro-
duced by a similar physical mechanism in both cases.
This also suggests the possibility of using a continu-
ous medium model for the jumping sandbox. Besides,
it is pointed out in Ref. [7] that it can be seen from
experiment that the motion of sand particles is similar
to that of a fluid particle in a standing surface wave.

The model proposed in Ref. [2] also suggests that
this is a reasonable assumption. We would like to use
the standard fluid dynamics approach to describe the
motion of the interface of the sand. However, in de-
riving the equations of motion, the interface is con-
sidered to be sharp. For a granular material in motion
though, it is not even clear what this interface is, and
properties like local density, might strongly vary with
position near the “surface”. This is also the case for
the experiment with water if the detergent can diffuse
and therefore, cannot be assumed to form a thin film
on the surface. It is therefore necessary to incorporate
a detailed thermodynamic description of the interface.
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The introduction of a suitable local free energy den-
sityΨ(z) leads to a density profile ρ(z) which is con-
sistent with an interface of non-zero thickness. This
gives rise to the usual models of Ginzburg1Landau,
Cahn1Hilliard, Van der Waals etc. (see Ref. [20, Sec-
tion 3.1]) In the simplest version of the theory, Ψ(z)
has the following form,

Ψ(z) = −M[ρ(z)] + 1
2mρ

′(z)2, (2)

where ρ′ is the gradient dρ/dz and m is a coefficient
independent of ρ′(z) and higher order derivatives.
−M is W-shaped (double-well potential), has the di-
mensions of a free energy density and is the negative
of an excess pressure.

It must be noted that by doing this, a characteristic
length is introduced. This length corresponds to the
region of transition between phases and replaces the
previous sharp interface. If this region is small enough
in comparison with the equilibrium height of the fluid,
it is still meaningful to speak of the interface.

Now we can proceed with the derivation of Eq. (1).
Recall that the equations of motion of an incompress-
ible fluid in terms of the velocity potential φ are, in
dimensionless form,

Dφ = 0, (3)

φz = 0, on z = 0, (4)

ηt + φxηx + φyηy = φz , on z = 1 + η, (5)

φt + 1
2 (φ2

x + φ2
y + φ2

z) + η − SDη(1 + η2
x + η2

y)3/2

= 0, on z = 1 + η. (6)

Here the bottom is at z = 0 and Eq. (4) means that the
vertical component of the velocity is zero there. The
equilibrium height is z = 1 and η = z − 1 represents
the deviation of the surface from it. Eq. (5) follows
from the fact that the fluid elements on the surface
remain part of the main body of the fluid. Finally, Eq.
(6) follows from pressure balance on the surface. In
this equation S is a dimensionless constant related to
the surface tension T , acceleration of gravity g, density
of the fluid ρ and the equilibrium height, h,

S =
T

gρh2

(see Ref. [11, pp. 14, 100] for further details). We
will take this set of equations as starting point and

will make several approximations and modifications.
First, since the motion we describe is due to a verti-
cal forcing we will only take vertical displacements
on the surface, that is, φx and φy = 0. We assume
that except for a very small region near the surface,
the material is incompressible, and therefore, in the
bulk of the material, away from the free boundary, the
density is constant. This is certainly the case for water
and detergent. Next, in Eq. (6), we neglect the term
φt. From the discussion above, both for sand and wa-
ter with detergent, very strong dissipative effects near
the surface are to be expected. If we take into account
this fact, a term proportional to the Laplacian of φ
should be added, just as for the Navier1Stokes equa-
tion. Presumably, the system will arrive at a stationary
state very rapidly, making the term φt small. Then,
the system simplifies to

Dφ = 0, (7)

φz = 0, on z = 0, (8)

ηt = φz , on z = 1 + η, (9)

1
2φ

2
z + η − SDη(1 + η2

x + η2
y)3/2 = 0,

on z = 1 + η. (10)

Now the term in Eq. (10) which is multiplied by
S, comes from considering the interface as an elas-
tic membrane and can be obtained computing the first
variation of the corresponding potential energy. If we
want to take into account that the interface has some
structure, we can proceed by replacing this energy
with (2). This is given in terms of the density ρ, and
we would like to express it in terms of z . In order to
do this, we notice that the dependence of z in terms
of ρ can be obtained explicitly (see Ref. [20, p. 55,
Eq. (3.9)]). The form of −M as a function of z is
qualitatively the same, since ρ turns out to be a mono-
tone function of z , and we will denote it by W. As
pointed out in the same reference, this potential en-
ergy is a good approximation when ρ is slowly vary-
ing, so we will replace the term involving (ρ′)2 by
D|∇z(x, y)|2, where D is a small constant. Then Eq.
(10) becomes

1
2φ

2
z + z − 1−DDz +W(z) = 0.

Solving for φz and approximating
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√
v ' v√

v0
,

for 0 6 v 6 v0 (that is, approximating the square root
in this interval by the segment joining 0 and (v0,

√
v0),

and substituting into Eq. (10) we obtain

zt = ε2Dz + TW(z) + B(z − 1),

with ε, T and B constants. So far, we have not taken
into account that the bottom is oscillating. We suppose
that the net effect of this oscillation is to modify the
value of gravity by introducing a periodic variation on
g. Again, this is consistent with Ref. [2]. In terms of
the potential W, this would have the effect of chang-
ing the stability of its critical points, at least for some
time during the oscillation and suitable amplitudes.
The easiest way to achieve this is to have T change
sign. So T becomes a periodic function. Observe that
this does not contradict the fact that we have already
neglected the φt term, for we are only interested in
the effective motion of the surface and so we do not
consider the changes in this term during small time in-
tervals. This is similar to the usual multiple time scale
analysis when obtaining effective equations for the en-
velope of a wave packet [11]. In any case, its range
of validity depends on the frequency of the oscillatory
motion. By doing this, we finally obtain Eq. (1). Ac-
tually Eqs. (7)1(10) are written with respect to the
floor and not the bottom of the tray and strictly speak-
ing one would have to take into account the oscillation
of the tray in the coordinate system used, but if the
oscillation has small amplitude this can be ignored.

In the remainder of this section we discuss why the
previous equation gives rise to both periodic patterns
and localized structures. Recall that from the experi-
mental results two different types of structures appear,
one that we simply call “patterns”, which corresponds
to the formation of interfaces, squares and hexagons
and another one, that has been designated as “oscil-
lons”, which is a localized structure exhibiting some
periodic behavior.

From the mathematical point of view, the de-
scription of pattern formation in different situa-
tions has been very much studied (see for example
Refs. [10,18]). In many of these models a com-
mon feature is the use of a bistable potential as the
first and simplest approximation (Ginzburg1Landau,
Cahn1Hilliard, etc.).

That some kind of bistability might be the underly-
ing mechanism generating some specific structures is
suggested by the dissipative nature of sand. A proto-
typical equation for these processes is

∂u

∂t
− ε2Du+W ′(u) = 0, in Ω,

∂u

∂ν
= 0, on ∂Ω,

where u is the state variable. In our case u(x) repre-
sents the height of the sand surface above some refer-
ence level and W is a local potential energy density.
We also observe that equilibrium (time independent)
solutions of (11) correspond to critical points of the
energy

E(u) =
∫
Ω

(
1
2ε|∇u|

2 +
1
ε
W(u)

)
dx.

When ε is small, in order for the energy to remain
bounded, u(x) has to stay very close to the zeros of
W and the transitions separating these two values give
rise to the formation of patterns.

On the other hand, equations that show solutions
localized in very small regions have also been consid-
ered in many contexts. We mention the work by Ni
and Takagi in Ref. [19] as a fundamental reference,
but we should point out that much work has been done
on the subject. They consider the equation

∂u

∂t
− ε2Du+M′(u) = 0, in Ω,

∂u

∂ν
= 0, on ∂Ω,

where M(u) = −W(u). For this equation, initial con-
ditions that take large positive and negative values will
tend to develop peaks (see Fig. 4). Notice that the
corresponding energy for stationary solutions

E(u) =
∫
Ω

(
1
2ε|∇u|

2 − 1
ε
W(u)

)
dx

is not bounded from below. Eq. (1) is then obtained by
combining these two dynamics by means of a switch-
ing function T(t + φ), τ-periodic. If T is oscillating
between −1 and 1, that is, when
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T(t) = −1, if − 1
2τ < t < 0,

= 1, if 0 < t < 1
2τ,

we have the dynamics corresponding to (11) for half
of the period and that of (12) for the other half.

In our model then, the pattern formation process
takes place during the second half and oscillons are
formed in the first half. In fact, for this case, it is easy
to paste solutions of (11) and a trivial solution, zero,
for our W or correspondingly solutions to (12) and
zero to obtain solutions of (1) discontinuous in time
that exhibit oscillating patterns and oscillating peaks
respectively.

The fact that Eqs. (11) and (12) exhibit the fea-
tures that we have mentioned can also be visualized
by considering the ODE analogues

ẋ = −W
′(x)
ε

,

ẋ = −M
′(x)
ε

=
W ′(x)
ε

.

The corresponding numerical solutions are shown in
the next section.

3. Numerics

In this section we present several numerical experi-
ments that validate our model as well as some details
on the numerical methods used to solve the equations.

Some numerical solutions of the ODEs are shown
in Figs. 1 and 2. Fig. 1 shows the trajectories for the
ordinary differential equation with W-shaped potential
energy. Zero is an unstable solution, 1 and −1 are
stable solutions. Trajectories that start above zero tend
to 1 and those that start below zero tend to −1. In Fig.
2 we show trajectories for the ODE with M-shaped
energy and therefore solutions that start between −1
and 1 tend to 0 which is now the stable solution and
others go to plus or minus infinity.

For the partial differential equation in one space di-
mension, when the energy is a “W” we observe pat-
terns, i.e. flat regions separated by sharp transitions
(Fig. 3); when it is an “M” we observe the formation
of a peak (Fig. 4). In the presence of the switching
term, depending on the phase, we observe localized

Fig. 1. Trajectories for the ODE with W-shaped energy.

Fig. 2. Trajectories for the ODE with M-shaped energy.

Fig. 3. Initial condition 1.1 sin(2παx). Energy is “W”, the region
between +1 and −1 becomes narrower with time.

solutions that persist for some cycles (Figs. 517) or
patterns (Fig. 8).

Next we show the figures obtained in two space di-
mensions. With the same initial condition shown in
Fig. 9, depending on the phase of the switching func-
tion we observe oscillons as in Fig. 10 or patterns as
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Fig. 4. Energy is an “M”, peak develops.

Fig. 5. Equation with switching function. Peaks develop.

Fig. 6. Equation with switching function. Peaks form.

in Figs. 11, 12 and 13. Note that the last three fig-
ures correspond to different times with the same initial
condition and phase.

3.1. The numerical method

To solve the partial differential equation (1) in R
we use a standard subroutine that can handle equations
of the form

ut = f(x, t, u, ux, uxx).

Fig. 7. Equation with switching function. Peaks form.

Fig. 8. Equation with switching function of opposite phase.

Fig. 9. Initial condition.

It uses the method of lines and represents the solution
using cubic Hermite polynomials.

In R2 we use Crank1Nicholson plus the method of
conjugate gradients. The equation we have in R is

ut = εuxx −
D

ε
(u3 − u),

where D is an oscillating function. One of the func-
tions we use is
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Fig. 10. 2D, “oscillons”.

Fig. 11. 2D, interfaces.

D = +1, if sin(2πtα) > β,

= −1, otherwise,

where α and β are constants. In Figs. 417, α = 24.5
and β is between 0.1 and 0.2. In the examples shown
ε = 0.03. The step-size was in most cases 0.004.

Acknowledgement

We would like to thank Jose Luis Lopez Gonzalez
for mentioning the problem to one of the authors.

References

[1] P. Bak, How Nature Works (Oxford Univ. Press, Oxford).

Fig. 12. 2D, interfaces.

Fig. 13. 2D, interfaces.

[2] R. Barrio, J.L. Aragón, C. Varea, M. Torres, I. Jiménez,
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